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In this perspective, we describe how the link removal (LR) analysis in social complex
networks may be a promising tool to model non-pharmaceutical interventions (NPIs) and
social distancing to prevent epidemics spreading. First, we show how the extent of the
epidemic spreading and NPIs effectiveness over complex social networks may be
evaluated with a static indicator, that is, the classic largest connected component
(LCC). Then we explain how coupling the LR analysis and type SIR epidemiological
models (EM) provide further information by including the temporal dynamics of the
epidemic spreading. This is a promising approach to investigate important aspects of
the recent NPIs applied by government to contain SARS-CoV-2, such as modeling the
effect of the social distancing severity and timing over different network topologies. Further,
implementing different link removal strategies to halt epidemics spreading provides
information to individuate more effective NPIs, representing an important tool to offer a
rationale sustaining policies to prevent SARS-CoV-2 and similar epidemics.
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INTRODUCTION

The prominent role of networks in epidemiology has been recognized in last 2 decades [1–7]. In fact,
a spreading disease can be modeled as a network where nodes represent the individuals (i.e., the
hosts) and links (edges) represent the social contacts between the individuals. One of the major issues
in epidemiology is to determine the most efficient way to halt an epidemic.

When a vaccine is available, one must take into account resource limitations (vaccine doses,
doctors, time, costs, etc.) and optimize vaccine administrations [3, 4, 8–11]. This is equivalent to
remove some nodes from the network and there is extensive literature about how to rank nodes to be
first removed in order to efficiently halt a spreading epidemic [3, 4, 8]. Classic results showed that the
random vaccination of a fraction of individuals is not the most efficient way to protect the population
[1, 3, 4]. The best strategy consists in obtaining a targeted immunization, where the most central
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nodes/individuals of the system are immunized in decreasing
order of centrality importance [3, 4, 8, 12–17].

On the other hand, when a vaccine is not available, control
policies must rely upon non-pharmaceutical interventions
(NPIs), which mainly consist in policies reducing the chances
to disease transmission by imposing the so called “social
distancing” [18]. In terms of network, this is equivalent to
remove links, and in the network science research, rich
literature exists on the most efficient link removal strategies to
disentangle network connectivity (see, e.g., [19–23]). Although
the link removal (LR) analyses can help model the consequences
of NPIs policies and evaluate their efficacy [9], it has been rarely
used for this purpose.

In this perspective article, we define possible ways to model the
consequences of social distancing in complex social networks by
LR analysis. First, we focus on the network fragmentation
triggered by LR strategies through a topological and static
representation of the effect of NPIs to reduce the epidemic
spreading entity [2, 4]. Second, we propose a dynamical
representation of the effect of NPIs by coupling LR and
classical, dynamical, epidemiological type SIR models (EM) [6,
24, 25]. A similar framework combining EM and LR has been
proposed with the aim to minimize the spreading of computer
viruses [26, 27] and to halt epidemic in airport networks [28, 29].
Here, we show that the proposed approach has the advantage to
investigate important aspects of the NPIs, such as modeling how
the social distancing affects the temporal dynamic of the
infection. Eventually, we discuss our findings with respect to
the control of the SARS-CoV-2.

MODELING EPIDEMICS SPREAD ON
SOCIAL NETWORKS AFFECTED BY LINK
REMOVAL
Network Topology and Link Removal
In the present perspective, we will provide simulations for
different kind of networks. We will use two “virtual” networks
with different characteristics and a real one. The virtual networks
have N � 1,000 nodes, that is, a network size sufficiently large to
avoid significant size effect in the topological structure of the
model networks [30], and average node degree <k> 8, that is, each
node has eight links on average, modeling the individual real
range of daily social interactions [31].

We will use the Erd}os–Rényi (ER) random network [32]. The
ER network is the simplest, oldest, and widely used network
model, and it is generated by adding links between nodes with an
independent probability p for each node pair [33]. The ER model
presents a Poissonian distribution of the node degree and nodes
deviating from the average are extremely rare; it generates a
“small-world network,” that is, the distance between nodes
increases very slowly (usually logarithmically) as a function of
the number of nodes in the network [32, 33].

The Watts–Strogatz (WS) [34] network has been proposed as
a small-world network model encoding the clustering property,
that is, it presents high density of links among groups (clusters) of
nodes. The clustering property makes WS more suitable to

reproduce the “community structure” of real-world networks,
and it is widely used to model epidemic spreading [6]. Last, we
process the United Kingdom faculty real-world social network
(UK) that represents the friendship among academic staff (81
nodes/individuals) in a United Kingdom university [35].

Any link removal policy is characterized by its “severity,” that
is, the fraction of links removed and its “rule” to select the links
that will be removed first. In fact, one can randomly remove links
(RAN) or start from those with higher importance in the network,
for example, measured by the link betweenness centrality (BC)
[20, 36].

A Static Approach Based on LCC
High network connectivity has been demonstrated to be
positively correlated to disease incidence [6]. Thus, the
reduction of network connectivity, which can be described by
the largest connected component (LCC), can be seen as the target
of NPIs. The LCC, also named giant or spanning cluster,
accounting the highest number of connected nodes in the
network [4, 14, 20, 21] provides a static indicator of the
spreading magnitude. When assuming the absence of link/
interaction rewiring, that is, no new interactions may be
formed among individuals, the LCC represents the maximum
number of individuals that may be infected following a primary
infection.

When considering an ER network, the effect of link removal
becomes effective (i.e., it halves the LCC) only when removing
more than 80% of original links, whatever the strategy
is—random removal (RAN) or based on BC (Figure 1A). On
the other hand, when considering a WS network, 55% of links
removed according to a BC strategy becomes effective to
dismantle the LCC, while if one removes randomly it should
remove more than 80% of the links to obtain a similar result
(Figure 1B). Results obtained for UK faculty real-world network
are close to those obtained with the WS network (Figure 1C).

A Dynamic Approach Based on Solving an
Epidemiological SIR Model on a Social
Network
The analysis of the topological changes over the network
consequent to link removal provides interesting insight on
how much the network is suited for epidemic spreading but
does not provide information over the temporal dynamics of the
epidemic spreading. Such dynamics is captured by classical
susceptible-infected-recovered (SIR) models [see [37] for an
overview].

Network topology has been successfully incorporated into SIR
models which could then be analytically [1, 2] or numerically [31]
solved according to the complexity of the considered network. In
order to solve a SIR model on a social network, one should
assume that a given society is composed by N individuals
connected by social links. Hereinafter, we will refer to those
individuals that are connected by a social link with the term
“neighbors.”

At any time, an individual is in one of three possible
compartments: susceptible (S), infected (I), and recovered (R).
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If an individual is infected, the individual will infect susceptible
neighbors with a transmission rate, β. An infected individual stays
infectious on average for γ −1 consecutive days, that is, recovers
with a rate equal to γ. Recovered individuals can no longer infect
others and their state will no longer change, which is equivalent to
assume that immunization does not vanish in the considered time
horizon. The system is initialized by fixing all nodes as susceptible

except one, randomly chosen, whose state is set as infected. The
system dynamics can then be solved and permit to model the
epidemics evolution over time. Note that a fraction of links can be
removed, randomly or following a given rule, at any time to
simulate the implementation of social distancing. Also, in a
temporal dynamic model, the time at which links are removed
plays a key role. We model this time of intervention by removing

FIGURE 1 | Static epidemic spreading indicators largest connected component (LCC) as a function of the fraction of the links removed (%LR) for the three networks
analyzed. Blue bars indicate the LCC subjected to random link removal (RAN), whereas red bars indicate the LCC under link betweenness centrality removal (BC). The
outcomes are the average of 103 simulations. Panel (A): LCC as a function of %LR over the ERN � 1,000, p � 0.008 model network; panel (B): LCC as a function of %LR
for the WS N � 1,000, p � 0.3 model networks; panel (C): LCC as a function of the %LR for the United Kingdom faculty real-world social network.

FIGURE 2 | Indicators of the dynamic epidemic spreading infected peak (Peak) and total infected (TI) of the SIRmodel over three networks analyzed as a function of
the fraction of the links removed (%LR). Bar plots indicate the TI; lines/points indicate the Peak. Red bar plots with diagonal lines indicate the spreading indicators of the
network subjected to random link removal (RAN), whereas blue empty bar plots indicate the spreading indicators under link betweenness centrality removal (BC). Red/
circle describes the spreading indicators of the network subjected to random link removal (RAN), whereas blue/triangle indicates the spreading indicators under link
betweenness centrality removal (BC). The SIR model has per-day transmission probability β � 0.04 and per-day recovery probability γ � 0.06. The outcomes are the
average of 103 simulations. 1th row: Panels (A–C) spreading indicators as a function of %LR over the ER N � 1,000, p � 0.008 model network; 2nd row: Panels (D–F)
spreading indicators as a function of %LR for the WS N � 1,000, p � 0.3 model network; and 3rd row: Panels (G–I) spreading indicators as a function of %LR for the
United Kingdom faculty real-world social network. 1th column: Panels (A,D, and G) the social distancing represented by the LR is implemented at t � 0; 2nd column:
Panels (B,E, and H) the LR is implemented at t � 20; 3rd column: Panels (C,F, and I) the LR is implemented at t � 40.
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a certain fraction of links at different times, that is, the first day at
which an infected node appears in the system, 20 and 40 days
later. This permits to evidence the consequences of a delay in
applying control measures.

The entity of the epidemic spreading can be quantified by 1)
the total number of individuals that have been infected (TI)
(i.e., the cumulative sum of new cases, which is equivalent to the
number of recovered nodes at the end of the dynamics, where, by
model construction, no more nodes can be infected) and 2) the
maximum value of infected nodes in a given day (Peak). The first
indicator provides an estimate of the spread of the disease within
a population, and it is likely to correlate with the number of
severe, and possible fatal, cases. The second indicator provides an
estimate of the pressure over the sanitary system which might
collapse, thus causing higher mortality probabilities of infected
individuals, when a critical threshold is exceeded.

In order to provide explicative results via simulations, we use
the NDlib Python library presented in Rossetti et al. [38] by
keeping the default SIR parameter of β and γ equals to 0.06 and
0.04 (see [38] for details).

Results are reported in Figure 2. For the ER model network,
the RAN and BC strategies show similar effect to curb Peak and
TI, and if NPIs are implemented with a delay of 20 days, the NPIs
become useless to halt epidemic spreading (Figures 2A–C).
Differently, in the WS model network, the BC strategy is more
effective to curb Peak and TI; however, in the case NPIs are
implemented at t � 40 (or after), the NPIs become useless to halt
epidemic spreading (Figures 2D–F). Last, similar to the WS for
the UK faculty real-world network, the BC strategy is more
effective to curb Peak and PI but even more pronounced than
we observe for WS network; to delay the NPIs implementation
may impair their effectiveness, that is, already for t � 20, the LR
did not curb Peak and PI (Figures 2G–I).

SIR-type models have been recently used for SARS-CoV-2 [7,
31]; we therefore decided to combine LR analyses and the SIR
model. Nonetheless, other epidemiological models, such as the
SEIRS [24], have been proposed to describe SARS-CoV-2
spreading. The network approach proposed here can be easily
adapted to other epidemiological models.

DISCUSSION

In the following, we discuss ideas combining LR and EM tomodel
important aspects of the recent NPIs applied by government to
contain SARS-CoV-2.

Social Distancing Severity
When establishing social distancing, one should first decide the
severity of such an action which, in network analysis, translates to
the fraction of links to be removed. The preliminary outcomes
presented here show that to remove less than 25% of the links
would be useless to curb epidemic spreading whatever the network
type, giving us information to evaluate the minimum value of the
severity to perform effective NPIs. To note, %LR > 45% triggers an
increase of the spreading slowdown, and this would indicate that to
tighten up the NPIs toward higher level would produce an increase

of themarginal efficacy to halt the epidemic spreading. This kind of
results from LR analyses may be particularly important, since they
furnish information about the opportunity to implement more
severe NPIs, with the possibility to verify preliminary results
showing that the adoption of multiple NPIs would achieve a
stronger effect [39]. Noteworthy, the LCC start to significantly
decrease only for %LR > 55%; this would indicate how the LCC is
not able to detect the epidemic slowdown indicated by EM
indicators for lower LR percentage. In fact, one can remove
many links and yet leave the nodes connected and the LCC size
constant. In this case, the LCC may be a coarse indicator
underestimating the NPIs effectiveness to curb the spreading.

Social Distancing Rules
To understand which NPIs to implement is a fundamental
problem for policy containing the epidemic spreading. Good
NPIs should present 1) high efficacy while 2) minimizing the
detrimental social effects. With the first aim, we have to find the
LR strategy producing the fastest epidemic spreading slowdown
in the network. To do this, it is possible to adopt different LR
methods [19–22, 26, 27, 40] and testing their efficacy to slowdown
EM epidemic. With the aim to curb epidemic spreading in
computers network models, Nandi and Medal [19] showed
that LR producing the complete isolation of susceptible nodes
from infected nodes is the most effective method in reducing the
average number of new infections.

The BC strategy, based on link betweenness, is more effective
to halt epidemic spreading than randomly removing links,
especially for real-world UK faculty and model network with
community structure (WS). Betweenness centrality accounts the
number of shortest paths that must go through link, and it is able
to identify bridge links connecting different communities of
individuals [20]. For this reason, our outcomes would advise
against to reduce social links/interactions at random, outlining
the necessity to perform highly targeted NPIs with the aim to
isolate social network communities by breaking bridges links, and
this can be done in real situations at different levels, such as
implementing policies reducing the interactions between families,
school classes, cities, or regions.

Social Distancing Timing
The use of an epidemiological dynamical model permits to
evaluate the role of the time of application of control measure,
an aspect otherwise ignored by classical network analysis based
on network topology.

The timing which NPIs are imposed is thought to be
important to determine the size of the epidemic spreading [31,
41]. Assessing the effects of early NPIs on SARS-CoV-2 spread is
crucial for understanding and planning future control measures
to combat the pandemic [41]. It is possible to model the effect of
NPIs timing by performing LR for increasing time values from
the epidemic starting. The simulations show that the LR time
delay results in higher Peak and TI, thus reproducing the efficacy
in halting the epidemic by imposing NPIs early [41]. To note, if
the LR are performed for t > 20, they are no longer able to reduce
the Peak and TI in the three types of networks tested here
(Figure 2). This would indicate that in case NPIs are imposed
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too late and the disease covers a sufficient part of the population,
the NPIs can result useless to contain epidemic.

This phenomenon has a simple explanation: when performing
LR with delay, the epidemic may have already infected a large
fraction of individuals, and even removing enough links to
fragment the network in many isolated clusters, each cluster
will own with high probability of some infected individuals and
the epidemic spreading will continue within the clusters.

It is also worthy to note that to perform immediate
intervention would permit to hold the NPIs for a reduced
window of time, thus minimizing the inevitable detrimental
social effects.

The Cost of Social Distancing
Although NPIs, including lockdown, have been shown to reduce
the SARS-CoV-2 spread, they implicate detrimental impact on
population health and economies [42], such as physical inactivity
[43], increased depression [44], increased domestic violence [45],
and reduced access to health care [46].

To find highly efficient LR that can curb an epidemic may be
useful to minimize these negative social effects, given that it is
possible to implement less severe social distancing (less link
removed) yet inducing a significant spreading slowdown. A
similar idea can be found in the study by Nishi et al. [47] that
propose network interventions by removing and rewiring links to
form specific subgroups of individuals (e.g., customer groups can
only go to the grocery store in the morning or in the afternoon)
showing that the strategy may curb the epidemic spreading while
preserving economic activities. We can translate this idea in our
framework, performing LR while maintaining a quota of links to
preserve desired social interactions, such as family, work, or school
interactions. This problem can be reframed: once selected the
groups that have to be preserved in the social network, and
thus defining the links set to hold, to find the most efficient LR
strategies acting over the complementary set of links.

Social Distancing on Different Types of
Social Network Model
The structure of the interpersonal relationships forming the social
networks may differ among society and different society may
present different dynamics of the epidemic spreading. For these
reasons, a fundamental problem to simulate NPIs using LR
methodology is to choose the proper network structure. The
easiest approach is to use a synthetic network mimicking
desired social system characteristic. The ER is the simplest and
themore commonlymodel used, due to the ease of analysis allowed
by its random structure [32, 33]. The ER is able to reproduce the
small-world property of real-world social systems, that is,
individuals are separated by small number of link/connections
[48] but fails to mimic other features, such as the presence of
“hubs,” individuals with higher than average number of
interactions [32], and the “community structure” in which
individuals are joined together in tightly knit groups, between
which there are only looser connections [20, 49, 50]. Other social
network models are the Barabasi–Albert scale-free network [51],
the Watts–Strogatz (WS) small-world network [34], and the

Poissonian small-world network (PSWN) which generalizes the
WS with a Poissonian degree distribution of the nodes [31]. The
WS and PSWN seem promising models to analyze SARS-CoV-2
epidemic [31], since they allow to describe transmission in a social
network owing both community structure (with local groups of
individuals) and highly connected individuals that may act as a
“superspreaders” [52]. Comparing ER and WS with equal number
of nodes and links under BC, we find that the BC strategy is clearly
more effective to halt the epidemic spreading over theWS network.
This seminal outcome would indicate that real-world social
networks with a pronounced community structure may
experience faster spreading decrease under NPIs.

Social Distancing on Real-World Social
Networks
The simulation of control strategies for SARS-CoV-2 epidemic
transmission in real-world social networks is an optimal
framework to investigate NPIs effectiveness [53].

We show the LR outcomes from the United Kingdom faculty
social network (UK) that represents the friendship among
academic staff (81 nodes/individuals) in a United Kingdom
faculty [35]. We can see how the BC strategy is clearly more
effective than RAN to curb SIR epidemic spreading (Figure 2G),
showing how the United Kingdom response to LR is similar to the
WS and different with respect to the ER model. This would
outline how real-world social networks present a non-random
community structure that affects the epidemic spreading [54] and
may influence the efficacy of the NPIs [31].

The use of real-world networks seems particularly
promising because recent technological progress made easier
to collect massive social interactions data, such as the high-
resolution GPS, the longitudinal data on the physical
proximity, and face-to-face contacts of individuals. This
made available to build social networks in numerous real-
world environments of epidemics importance, such as
schools, museums, and hospitals [53]1. Such new
technologies represent strong tools to develop real-world
networks to investigate the transmission of infectious
diseases and implement reliable LR analyses.
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