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Turbulent flows over wavy surfaces give rise to the formation of ripples, dunes and other
natural bedforms. To predict how much sediment these flows transport, research has
focused mainly on basal shear stress, which peaks upstream of the highest topography,
and has largely ignored the corresponding pressure variations. In this article, we reanalyze
old literature data, as well as more recent wind tunnel results, to shed a new light on
pressure induced by a turbulent flow on a sinusoidal surface. While the Bernoulli effect
increases the velocity above crests and reduces it in troughs, pressure exhibits variations
that lag behind the topography. We extract the in-phase and in-quadrature components
from streamwise pressure profiles and compare them to hydrodynamic predictions
calibrated on shear stress data.
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1 INTRODUCTION

Most natural flows occur on evolving topography. The resulting hydrodynamic variations are
described by a linear theory that Jackson and Hunt [1] developed for wind profiles over low hills.
Their work inspired analyses of laminar [2–6] and turbulent [7–18] flows on shallow bedforms, as
recently reviewed by Finnigan et al. [19]. Flow modulation associated with fluid-structure
interactions also drives the dynamics of wind-driven wave generation at a liquid surface [20,
21], or on compliant thin sheets [22–24], leading to the flag instability when a free end is allowed to
flap [25].

Most studies of fluid motion on wavy surfaces have focused on basal shear stress, which drives
sediment transport [26]. As Charru et al [27] reviewed, coupling the latter to the Jackson and Hunt
theory or its variants [10, 13] explains the formation of erodible objects like sand ripples and dunes,
which owe their initial growth to a basal shear stress peaking upstream of the highest elevation.

However, basal pressure is also affected by evolving topography. In porous sand beds, streamwise
pressure variations produce an internal flow that drives humidity and microscopic particles below
the surface [28]. With strong enough winds, the resulting pore pressure can also relieve part of the
bed weight, thereby facilitating the onset of its erosion [29]. At much larger scale, topography-
induced pressure variations are important to atmospheric science, especially mountain meteorology
[30, 31].

Relatively few experiments conducted in air [29, 32–39], water or other liquids [40–48] flowing
over wavy surfaces staged harmonic bedforms with low enough ratio of amplitude ζ and wavelength λ
to avoid flow detachment. This has made it difficult to compare data with linear theories predicated
on small ζ/λ. As the experiments of Hanratty, et al. [47] have shown, a hydrodynamic anomaly
occurs when the flow response to topographical variations transitions from laminar to turbulent
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behavior. This phenomenon is at the origin of an instability that
carves rippled or scalloped features on surfaces able to sublimize
or dissolve into the fluid [49, 50], but that disappears when the
bed becomes hydrodynamically rough [51]. Recently, such
sublimation ripples have been found at the surface of the
Martian north polar cap [52], with a typical wavelength much
larger than blue ice ripples found in Antarctica [53], but still
proportional to the viscous length ]/u* [54], based on kinematic
viscosity ν and shear velocity u*. This anomalous hydrodynamic
response is also essential to understand how subaqueous or
Martian ripples are superimposed on dunes [55], acting as a
separation of small and large scale bedforms. Therefore, a
question is whether streamwise pressure variations are also
subject to such anomalous transition.

When fluid flowing on a flat surface reaches an ascending
bedform, the narrowing of streamlines raises speed and decreases
static pressure, as predicted by energy conservation in the
Bernoulli equation. To leading order, this effect is captured by
dimensionless coefficients A and C, which respectively represent
the bedform’s role on speed and pressure. Because speed rises
when pressure decreases, these coefficients have opposite signs,
A> 0 and C < 0. In the “outer region” far above the surface, such
energy conservation holds. However, in the closer “inner region”,
inertia causes fluid flow to lag changes in the bedform, a
phenomenon that is captured by dimensionless coefficients B
andD that are both positive, and respectively represent effects on
shear and normal stress. Overall, fluid inertia causes surface shear
stress to lead topographical variations with a positive phase
arctan(B/A)> 0, whereas static pressure lags those changes
with arctan(D/C)< 0. While others have addressed A and B
[27, 32, 39], this paper focuses on C and D. We begin with a
summary of the theory, which predicts how C and D depend on
the wavenumber k � 2π/λ of bed oscillations.

Our objective is to review articles reporting pressure
measurements on wavy surfaces subject to a turbulent flow. As
we will discuss, existing data [29, 36, 37, 47, 56] suggest that the
anomalous transition in shear stress may also arise in the pressure
response. However, we recognize that the corresponding
experiments, which were not designed to address this
question, do not support a definitive conclusion. In the
context of the anomalous transition, a crucial shortcoming of
these experiments is their determination of u*, which may have
been approximate. Because the coupling of surface pressure with
porous media is relevant to industrial applications and the
formation of geophysical bedforms, we hope that this article
will inspire future experiments in the dimensionless wavenumber
range 10− 3 ≤ k]/up ≤ 10− 1, where our theory predicts distinct
behavior of D for rough and smooth walls.

2 TURBULENT FLOW OVER A WAVY BED

Because our main objective is to reanalyze existing data for
turbulent flows over wavy beds, this section does not repeat
our own derivations of the underlying theory, but rather provides
a summary of key quantities and concepts. To account for the
hydrodynamic anomaly, the framework of Fourrière, et al. [9, 10]

was recently extended, as detailed in [27, 51]. We examine a
turbulent fluid flow along the x direction, unbounded vertically
and driven by a shear stress ρu2* imposed far above the bed.
Restricting attention to the linear flow response to bed relief, the
elevation Z(x) can be decomposed in Fourier modes. Therefore,
without loss of generality, we consider a bed profile of the form

Z(x) � −ζ cos(kx), (1)

where kζ is a parameter ≪ 1. From Eq. 1, troughs reside at
x � 0mod(2π). z is the crosswise distance normal to the reference
mean bed elevation. We assume invariance in the spanwise
direction y that completes the Cartesian coordinate system.

In this framework, hydrodynamics is described by
Reynolds-averaged Navier-Stokes equations governing the
mean velocity field ui and pressure p. A first order
turbulence closure relates the stress tensor τij to the velocity
gradient. This closure involves a turbulent kinematic viscosity
associated with a mixing length and a mixing frequency
representing typical eddy length and time scales [57]. The
mixing frequency is given by the strain rate, and the mixing
length ℓ depends explicitly on distance from the bed. To
account for both the smooth and rough regimes, we adopt a
mixing length inspired from van Driest [58].

ℓ � κ(z + r × d − Z){1 − exp[ −
(z + s × d − Z)

�����
τxz/ρ√

]Rt
]}, (2)

where κ � 0.4 is von Kármán’s constant, τxz is the bed shear
stress, and ρ is the constant fluid density. d is the sand-equivalent
roughness size, from which we define the Reynolds number
Rd � du*/]. The exponential term in Eq. 2 suppresses
turbulent mixing within the viscous sub-layer close to the bed.
The term r × d corresponds to the standard Prandtl
hydrodynamic roughness z0 extracted by extrapolating the
logarithmic law of the wall at vanishing velocity,
ux � (u*/κ)ln(z/z0). The term s × d controls the reduction of
the viscous layer thickness upon increasing bed roughness. In the
rough limit where d∝Rd →∞, the exponential term vanishes
and the hydrodynamic anomaly is suppressed altogether. The
dimensionless parameters rx1/30 and sx1/3 are calibrated
from measurements of velocity profiles over various rough
walls [59, 60].

In Eq. 2, Rt is the van Driest transitional Reynolds number.
Following Hanratty [49], the hydrodynamic anomaly is captured
by a spatial relaxation of Rt . In the homogeneous case of a flat
bed, it is R0

tx25. However, in general, Rt is not constant but
instead trails behind the pressure gradient by a space lag on the
order of (]/u*) that is associated with a thickening of the
boundary layer,

(a]/up)zxRt � bR0
t ]/(ρu3p)zx(τxx − p) − (Rt −R0

t ). (3)

Charru, et al. [27] calibrated this additional equation with
ax2000 and bx35 by matching theoretical predictions to basal
shear stress measurements [32, 33, 44, 47, 61]. These predictions
were obtained in the regime where the hydrodynamic equations
could be linearized with respect to kζ , and then solved for
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boundary conditions [9, 10, 51]. In this regime, we write the basal
shear stress response δτxz to the bed perturbation (1) as

δτxz/ρu2
p � kζ[ −A cos(kx) + B sin(kx)]. (4)

Here, ρu2* is reference shear stress in the flat base state. In Eq. 4,
the two terms in straight brackets respectively quantify the in-
phase and in-quadrature contributions of the response. Both A
and B have values of order unity [32, 39] and are positive, thereby
producing a shear stress leading the bed elevation. They are weak
logarithmic functions of the bed wavenumber, except in the range
10− 4 ≤ kz0 ≤ 10− 2 where strong variations arise around the
hydrodynamic anomaly [27, 51].

Similarly, we write the basal pressure response δp in the linear
regime as

δp/ρu2
p � kζ[ − C cos(kx) +D sin(kx)]. (5)

Figure 1 shows how C and D vary with the dimensionless
wavenumber k × z0 in the rough Rd ≫ 1 and smooth Rd → 0
limits [9, 10, 51]. The opposite signs C < 0 andD> 0 mean that, in
contrast with shear stress, the phase of pressure modulations are
delayed with respect to the bed profile. In addition, because
|C|≫D, the pressure response is dominated by the Bernoulli
effect, in that it is nearly out-of-phase with the topography.
Therefore, variations of C with wavenumber are well captured
by approximating the flow as inviscid and irrotational. In this
case, the pressure varies as the square of the velocity at a height
≤ λ on the order of the wavelength, which is the only macroscopic
scale over which a pressure disturbance is expected to penetrate
the flow. From the logarithmic law of the wall, the velocity
therefore scales as (up/κ)ln(bλ/z0), where b is ≤ 1. This
argument suggests that, in the rough case where complications
associated with the hydrodynamic anomaly do not arise, C should
scale as the square of ln(kz0). As the parabola in Figure 1A
shows, this approximation indeed conforms well to the theory for
the rough case [9, 10]. The smooth case differs from this log-
parabolic behavior above kz0x10− 3 where the anomaly comes
into play. While the dependence of C flattens somewhat at the
larger wavenumbers, the anomaly has a more pronounced effect
on D, with a distinctive non-monotonic behavior spanning a
decade around kz0x10− 3 (Figure 1B).

3 PRESSURE MEASUREMENTS OVER
WAVY SURFACES

In this section, we compare theoretical predictions to available
experimental data. We first outline how to fit the recorded
pressure profiles. Then, for each set, we discuss how this
procedure yields C, D, and their respective uncertainties.

3.1 Fitting Procedure
Because the theory is built on a linear analysis of
hydrodynamic equations, we restrict attention to data sets
with a harmonic pressure response to topographical
variations at low kζ ≤ 0.2 (Table 1). However, as Figure 2
and graphs in Supplementary Appendix S1 indicate,

relatively weak non-linearities are apparent. Accordingly, we
fit dimensionless pressure response profiles to third-order
expansions of the form

δp/ρu2
p � kζ[Δ1 cos(kx − ϕ1) + Δ2 cos(2kx − ϕ2)

+ Δ3 cos(3kx − ϕ3)], (6)

but we infer C, D from the leading order

C � −Δ1/ ���������
1 + tan2ϕ1

√
, (7)

D � Δ1 tan ϕ1/ ���������
1 + tan2ϕ1

√
. (8)

For the data sets under consideration, the second and third
terms have amplitudes Δ2 and Δ3 ≪Δ1. As expected, fitting them
to first-order alone (Δ1 ≠ 0, Δ2 � Δ3 � 0) does not significantly
affect the resulting C and D.

Uncertainties in C and D depend not only on experimental
scatter in Δ1 and ϕ1, but also on how u* was inferred. Using Eqs 7,
8, we estimate uncertainties due to scatter by carrying out a least-
squares regression of data to Δ1 and ϕ1, while assuming that Δ1

and ϕ1 are uncorrelated and normally distributed. Unfortunately,
too little information is available to gauge how accurately u* was
established.

3.2 Zilker et al. and Cook
We first review experiments reported in [47], which were used
to compare predictions for basal shear stress and related
behavior of A and B in [27]. Experiments were conducted in
a rectangular channel circulating an electrolyte of density ρ �
1.02 × 103 kg/m3 and kinematic viscosity ] � 8.7 × 10− 7 m2/s.
The bottom of the test section featured interchangeable smooth
Plexiglas wavy surfaces of fixed λ � 5.08 cm but different
amplitudes ζ. Basal shear stress and static wall pressure were
respectively measured with an electrochemical method and
small taps. Shear velocity u* was inferred from measurements
of flow rate by integrating the logarithmic law of the wall
recorded on a flat surface.

As Figure 2 shows for kζ � 0.16, the pressure profiles exhibit a
minimum shortly after the crest. From Eq. 6, we find C �
−193 ± 4 and D � 35 ± 4. Cook [56] measured additional
pressure profiles in a similar setup, albeit using another
electrolyte solution with ρ � 1.05 × 103 kg/m3 and ] � 1.08 ×
10− 6 m2/s. Data at four different flow rates are shown in
Supplementary Figure S1. Pressure amplitude increases with
flow velocity, whereas phase shift with respect to bed elevation
decreases.D remains nearly constant ∼ 40, while −C rises with u*
(Table 1).

3.3 Motzfeld and Kendall
We analyzed experiments performed in wind tunnels over
smooth solid sinusoidal waves. The oldest work is Motzfeld’s
[37], who staged four different bed profiles carved in plaster and
varnished. To stay within reach of the linear assumption, we
only exploited his data for the smallest amplitude (his ‘model I’
with kζ � 0.16 and λ � 0.3 m). The corresponding pressure
profile and fits are shown in Supplementary Figure S2. Eq. 6

Frontiers in Physics | www.frontiersin.org May 2021 | Volume 9 | Article 6825643

Claudin et al. Basal Pressure over a Wavy Surface

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


yields a relatively precise C � −377 ± 22, but a less accurate
D � 13 ± 24, which hints at pressure variations almost in phase
with the bed.

The other wind tunnel data are Kendall’s [36], who studied
turbulent flows over mobile and immobile waves on a rubber
surface. We only considered his immobile sinusoidal bed
(kζ � 0.2, λ � 0.1 m) at different wind velocities. Profiles are
shown in Supplementary Figure S3. Consistent with the
results of [56], Kendall’s [36] pressure amplitude increases
with flow velocity, while phase with respect to bed elevation
decreases.

Motzfeld [37] and Kendall [36] both inferred shear
velocity from logarithmic fits of vertical velocity profiles.
However, Kendall fitted z0 and u* separately. Because
hydrodynamic roughness on a smooth wall is correlated
with shear velocity, we recalculated Kendall’s u* using
z0x]/(7u*).

3.4 Musa et al
Musa et al. [29] also acquired data on sinusoidal, smooth, rigid
walls in the wind tunnel (λ � 0.1 m), but their objective was to
record pore pressure within a permeable rigid material
mimicking a sand bed. We only consider their ripple of
smallest amplitude (kζ � 0.19), which they deployed at six
different wind speeds. From a solution of the Laplace equation
governing pore pressure, Musa et al. fitted δp at the surface to
their pore pressure measurements at 45 locations within the
ripple [In the nomenclature of their Eq. 9, p1cos(2πx/λ − ϕ1)
is equivalent to our δp]. They then inferred shear velocities by
fitting vertical wind profiles to the logarithmic law of the wall
using an aerodynamic roughness proportional to the viscous
length. For consistency with other data reviewed here, we
adopt z0 � ]/(7u*), which differs slightly from their fit of z0 in
the smooth limit. Surface pressure profiles and fits to Eq. 6 are
shown in Supplementary Figure S4 for their six values of u*. As

FIGURE 1 | Basal pressure coefficients in terms of the rescaled wavenumber k × z0 from predictions in [51]. Panel (A): in-phase component C. Panel (B): in-
quadrature component D. Blue lines: rough bed case with roughness z0 � r × d andRd ≫ 1, calculated from [9, 10]. Black lines: smooth bed caseRd → 0, for which the
effective bed roughness in the logarithmic region is proportional to viscous length [27, 51]. Blue and black lines collapse at small wavenumbers adjusting the roughness
proportional to the viscous length: z0 � ]/(7u*). Inset of panel (A): comparison of the rough case [9, 10] and the quadratic fitC � −(1/κ2)ln2(2πb/kz0), with bx0.04
(dashed line).
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the open diamonds in Figure 3 suggest, −C rose slowly with u*
and D was non-monotonic.

4 DISCUSSION AND CONCLUDING
REMARKS

Table 1 summarizes conditions of all available experiments on
smooth walls with nearly harmonic response, and the resulting C
and D. First- and third-order fits of experimental pressure
profiles yield similar values for these quantities, thereby
demonstrating robustness of the fitting procedure.
Uncertainties are relatively small, except for D from Motzfeld
and from Musa, et al.

Figure 3 shows corresponding variations with the rescaled
wavenumber k]/u* and, consistently with experimental
conditions, compares them with theoretical predictions in the
smooth case [9, 10, 51], which rely on a calibration of the
hydrodynamic equations and the relaxation framework of
Hanratty [49] on the streamwise evolution of basal shear
stress [27]. While these preditions capture the correct trend,
they clearly underpredict C. A Bernoulli-like approximation
(dotted line in Figure 3A) is more faithful to the data, but it
requires b ∼ 0.02, which is lower than the value used in the inset
of Figure 1 by a factor of 2. We attribute the discrepancy to
challenges in extracting u* from experiments.

At first glance, Figure 3 suggests that D is nearly constant
within experimental error. However, its trend vs k]/u* hints at the
presence of a local minimum from the hydrodynamic anomaly
for a smooth wall (black curve in Figure 1). Nonetheless, the
precision in D is not yet sufficient to distinguish this behavior
from that of a rough wall (blue curve).

FIGURE 2 | Pressure measurements from [47]. Table 1 lists
experimental conditions, and (C,D) inferred from (Δ1 , ϕ1) using Eqs 7, 8. (A)
Basal pressure variations in the flow direction. Filled circles are experimental
data. The blue line is a sinusoidal fit to third order (Eq. 6). The black line is
the harmonic fit kζΔ1 cos(kx − ϕ1). As the dashed line indicates, the in-phase
profile kζΔ1cos(kx) fails to capture data, confirming that pressure variations
along the wind lag those of the topography. (B) Bed elevation profile with origin
x � 0 at the trough and flow from left to right (arrow).

TABLE 1 | Experimental conditions and values of C and D inferred from harmonic fits of pressure profiles using Eqs 7, 8. Last column: downwind shift relative to bed
wavelength ψ1 � ϕ1/(2π), calculated from tan(2πψ1) � −D/C.

Experiment Data symbol, bed and fluid properties

Profiles u* (m/s) k]/u* C D ψ1 (%)

Zilker et al. [47] •, λ � 0.05 m, kζ � 0.16, ] � 8.7 × 10− 7 m2/s, ρ � 1.02 × 103 kg/m3

Figure 2A 0.028 0.0038 −193 ± 4 35 ± 4 2.8 ± 0.4
Cook [56] +, λ � 0.05 m, kζ � 0.16, ] � 1.08 × 10−6 m2/s, ρ � 1.05 × 103 kg/m3

Supplementary Figure S1A 0.030 0.0045 −140 ± 3 41 ± 3 4.5 ± 0.4
Supplementary Figure S1B 0.062 0.0022 −217 ± 3 42 ± 3 3.0 ± 0.3
Supplementary Figure S1C 0.076 0.0018 −231 ± 2 37 ± 2 2.5 ± 0.2
Supplementary Figure S1D 0.079 0.0017 −246 ± 2 41 ± 2 2.6 ± 0.1

Motzfeld [37] ▲, λ � 0.3 m, kζ � 0.16, ] � 1.5 × 10− 5 m2/s, ρ � 1.2 kg/m3

Supplementary Figure S2 0.69 0.0005 −377 ± 22 13 ± 24 0.5 ± 1.0
Kendall [36] ■, λ � 0.1 m, kζ � 0.2, ] � 1.5 × 10−5 m2/s, ρ � 1.2 kg/m3

Supplementary Figure S3A 0.13 0.0072 −135 ± 1 51 ± 1 5.7 ± 0.2
Supplementary Figure S3B 0.21 0.0044 −166 ± 1 46 ± 1 4.3 ± 0.1
Supplementary Figure S3C 0.30 0.0031 −193 ± 1 41 ± 1 3.3 ± 0.1
Supplementary Figure S3D 0.39 0.0024 −225 ± 1 38 ± 1 2.6 ± 0.1

Musa et al. [29] ◇, λ � 0.1 m, kζ � 0.19, ] � 1.5 × 10− 5 m2/s, ρ � 1.2 kg/m3

Supplementary Figure S4A 0.16 0.0058 −225 ± 11 78 ± 13 5.3 ± 1.1
Supplementary Figure S4B 0.33 0.0028 −284 ± 11 59 ± 13 3.2 ± 0.8
Supplementary Figure S4C 0.55 0.0017 −256 ± 10 38 ± 12 2.3 ± 0.8
Supplementary Figure S4D 0.76 0.0012 −241 ± 10 45 ± 12 2.9 ± 0.9
Supplementary Figure S4E 0.95 0.0010 −258 ± 11 48 ± 13 2.9 ± 0.9
Supplementary Figure S4F 1.21 0.0008 −252 ± 11 50 ± 12 3.1 ± 0.9
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Overall, C and D exhibit dispersion among different
experiments. One reason is inconsistent ways to evaluate u*,
which affects both axes in Figure 3 by rescaling stresses with ρu2*
and lengths with ]/u*. Because velocity fluctuations or Reynolds
stresses close to the bed are difficult to measure, u* was inferred
from velocity profiles or flow rates using the law of the wall. In
addition, it is open to question how flows driven by a pressure
gradient, such as those in wind tunnels or pipes, can be
quantitatively compared to a theoretical framework where
shear stress is imposed. In this context, the Bernoulli-like
approximation suggests that the velocity very close to the bed
at an altitude xbλ is a better proxy for an effective u* than the
average flow velocity.

A second issue is non-linear effects. Weakly non-linear
developments [9, 62] and measurements [10] suggest that kζ �
0.2 is an upper bound for validity of the linear theory. In recorded
pressure profiles, we clearly discern weakly non-linear effects,
especially in Musa et al. (Supplementary Figure S4), whose
pressure is lower than expected on bed crests and troughs,
although this effect may be due to an interaction with the
porous bed underneath [29]. In addition, non-linearities also
raise the effective bed roughness on a scale comparable to λ, with

a first corrective term in (kζ)2 [9]. This further complicates an
estimation of the relevant experimental shear velocity.

These observations call for more measurements, particularly
in the range 10− 3 ≤ k]/u* ≤ 10− 1 that resolves the peak of the
hydrodynamic anomaly. For air at ordinary wind speed, for
example u*x0.5 m/s, this implies a wavy bed with
2 mm < λ< 20 cm. For more gentle winds, the smaller
wavelength could rise to 1 cm. Larger λ could be staged with
oils of larger viscosity. Data at significantly smaller
wavenumbers would require a natural wavy surface such as a
sand dune. An example is the hump studied in [32], where
λx40 m and kz0x10− 5 in the rough limit. Here, the theory
predicts Cx − 700 and Dx40, i.e. a phase shift ϕ1x0.06 rad,
corresponding to a distance ϕ1/kx0.4 m downwind of the crest.
If small pressure differences could be reliably recorded over
relatively long distances, such spatial phase lag could also be
measured.

Finally, DNS or LES simulations would also constitute
another source of data, since runs could be performed with
strictly imposed values of u* [63, 64], thereby mirroring the
theoretical approach. Unfortunately, simulations of Maaß and
Schumann [65, 66] or those of Salvetti et al. [67] involve
amplitudes too large to avoid non-linear effects arising at
kζ ≥ 0.1. In both experimental and numerical investigations,
k]/u* is typically adjusted at fixed wavenumber using different
winds. However, investigating the role of k under constant flow
is equally valuable, perhaps again with DNS, to gain a deeper
understanding of the hydrodynamic anomaly. At present, the
relaxation closure inspired from Hanratty [49] is convenient.
However, the interplay between a wavy bed and modulation of
the viscous sublayer remains an open problem.

The evolution of pressure on geophysical bedforms such as
sand ripples creates an internal seepage flow that brings
nutrients to the liveforms they shelter [68], and it provides
a mechanism for the accumulation of moisture or dust within
them [28]. The phase lag that is proportional to
arctan(D/C)< 0 also induces surface variations that future
research could relate to complex drying patterns that are
observed in sand seas [69]. More generally, pressure
variations affect phase change and thermodynamics.
Pressure is also a stress scale that may alter the rheology of
dense granular flows and suspensions in subtle ways, for
example by altering the opening and closing of contacts
among grains [70], especially when the continuous phase is
a liquid [72]. Although initially motivated by wind flows over
ripple-like bed oscillations, the pressure effects that we have
reviewed could then be relevant to subjects as diverse as
dissolution and sublimation patterns [50, 51, 72], granular soil
liquefaction [71], droplets and aerosols production [73] and
cloud formation over larger scale topography [30, 31].
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