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The ongoing epidemic of COVID-19 first found in China has reinforced the need to develop
epidemiological models capable of describing the progression of the disease to be of use
in the formulation of mitigation policies. Here, this problem is addressed using a
metapopulation approach to consider the inhomogeneous transmission of the spread
arising from a variety of reasons, like the distribution of local epidemic onset times or of the
transmission rates. We show that these contributions can be incorporated into a
susceptible-infected-recovered framework through a time-dependent transmission rate.
Thus, the reproduction number decreases with time despite the population dynamics
remaining uniform and the depletion of susceptible individuals is small. The obtained
results are consistent with the early subexponential growth observed in the cumulated
number of confirmed cases even in the absence of containment measures.We validate our
model by describing the evolution of COVID-19 using real data from different countries,
with an emphasis in the case of Mexico, and show that it also correctly describes the
longtime dynamics of the spread. The proposed model yet simple is successful at
describing the onset and progression of the outbreak, and considerably improves the
accuracy of predictions over traditional compartmental models. The insights given here
may prove to be useful to forecast the extent of the public health risks of the epidemics,
thus improving public policy-making aimed at reducing such risks.
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1 INTRODUCTION

First detected in December 2019 in the city of Wuhan in Hubei Province, China, the COVID-19
outbreak, caused by the newly identified coronavirus SARS-CoV-2, has spread around the globe and
reached the status of a pandemic on March 11th, 2020. Due to the severity of the damages it may
cause to health and its ease of transmission, a number of different strategies have been implemented
by the authorities of different countries to block or reduce the spread of the virus. In some cases like
China, Italy, or Spain, strict quarantine measures have been adopted [1–3]. However, strict lockdown
in many cases has been impossible due to prevailing economic and social factors. In such cases, the
authorities aimed for less strict mitigation policies [4], including social distancing and individual
non-pharmaceutical interventions [5]. Nonetheless, an accurate description of the progression of an
epidemic is of fundamental importance in helping to decide public policies to reduce its impact,
especially to stay below a fixed healthcare capacity and delaying the peak of the epidemic so that the
healthcare capacity can be expanded to support patients.
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In Mexico, the first detected case of COVID-19 was registered on
February 27th, 2020 and corresponded to an imported case from
Italy. Thismarks the start of what was called phase 1 of the epidemic,
characterized by imported cases only, with no local contagion.
Mexican health authorities identified a total of three
epidemiological phases, according to the degree of transmission
of the disease. Phase 2 of the coronavirus pandemic was
characterized by cases of the local contagion between people who
have not had contact with foreigners; it was declared onMarch 24th,
and the actions comprised primarily the suspension of certain
economic activities, the suspension of lessons at schools, the
restriction of mass congregations, and the recommendation of
domiciliary protection for the general population. As a
consequence of the evolution of confirmed cases and deaths from
the disease in the country, on March 30th, a “health emergency due
to force majeure” was declared, which led to the execution of
additional actions for its prevention and control; the most
conspicuous was the generalized voluntary quarantine of the
population (the so-called Jornada Nacional de Sana Distancia).
Eventually, on April 21st, phase 3, characterized by thousands of
cases disseminated in all the country, was declared.

Interventional measures adopted with the intention to
mitigate the spread are normally based on estimates of the
progression of the outbreak. Mathematical models of
infectious diseases are important tools for assessing the threat
of a novel pathogen and offer the best information for mitigating
an outbreak [6, 7], hence the need for epidemiological models
that are able to estimate with some degree of accuracy the
evolution of the outbreak to help to evaluate the impact of
interventions [2, 8–11]. The paradigmatic approach
traditionally used to model the dynamics of an epidemic is the
well-known SIR (susceptible, infectious, and removed)
compartmental model [12, 13]. In this model, the group S
represents individuals who are susceptible to the disease and
can become infected, the group I represents individuals who are
infectious and can infect susceptible individuals, and the group R
represents removed individuals who either gained life-long
immunity at recovery or died; in either case, removed
individuals cannot infect or be infected anymore. Although
this model was successfully applied to describe the spread of
an infectious agent in a well-mixed population [14], this same
simplifying assumption prevents its successful application in
many other cases [15], such as the recent outbreak of COVID-
19 which shows an early subexponential growth [16, 17]. In a
well-mixed population, a homogeneous distribution of the
susceptible-infectious contacts such that any susceptible
individual may be infected by any infectious individual in the
whole population is assumed. However, pathogens affect
populations in an uneven way [18]; there are many
heterogeneities in human populations that influence virus
transmission [19], for example, variability in the risk
experienced by age [20], comorbidities, or other factors (e.g.,
behavior and nutrition); the presence of individuals that
propagates the virus more efficiently (super-spreader
individuals) [21]; and the limited transmission between
geographically distant populations. Thus, any realistic
epidemic model should take them into account to some extent.

Given that the subexponential growth seems to be a generic
characteristic of the COVID-19 outbreak, independent of the
suppression strategies implemented to mitigate the temporal
evolution of the epidemic process, it is suggested that the
existence of an underlying mechanism is responsible for this
temporal behavior. The purpose of the present study is to show
that the inhomogeneous transmission of the epidemics of
component subpopulations may be the source of this behavior.
It is also shown that the standard SIR model can be extended to
include the abovementioned inhomogeneities and that the
resulting model correctly captures not only the short time but
also the longtime dynamics of the COVID-19 outbreaks.

2 INCORPORATING INHOMOGENEOUS
TRANSMISSION IN A
SUSCEPTIBLE-INFECTED-RECOVERED
FRAMEWORK

A natural way to incorporate population heterogeneities or spatial
structure into an infectious disease model is by means of
metapopulation models [6, 22–24]. Let us assume a cross-coupled
metapopulation approach [24] in which the total population is
considered as if it were formed by n subpopulations or patches
connected to each other with transmission lines, and no explicit
mobility among subpopulations is included. In each subpopulation,
an infectious agent spread is described by a standard SIRmodel with
coupling terms.

dsi
dt

� −si(t) 1n∑j�1
n

βijij(t), (1)

dii
dt

� si(t) 1n∑j�1
n

βijij(t) − cii(t), (2)

dri
dt

� cii(t), (3)

where si(t) � Si(t)/Ni, ii(t) � Ii(t)/Ni, and ri(t) � Ri(t)/Ni are
the fractional representations of susceptible, infectious, and
removed individuals of subpopulation i that has Ni individuals
and satisfies the relationship si(t) + ii(t) + ri(t) � 1. No human
birth and death rates are being considered, and as stated above,
neither the immigration nor emigration effects [2]. Although it is
known that COVID-19 has a mean incubation period of about
five days [25], in order to maintain the number of parameters and
equations to a minimum, we are going to ignore it, and therefore,
there is no compartment of exposed individuals. In Eqs 1–3, βij
represents the elements of a matrix that describes the
transmission between and within patches, the recovery rate c
is common to all subpopulations, and, as in traditional SIR, all
these quantities are time independent. The transmission rate βij
captures the rate of flow from group Si to group Ij, while the
recovering rate c indicates that infectious individuals get
recovered or die at a fixed average rate c. If subpopulations
are independent from each other, then βij � β0δij, with δij as the
Kronecker delta function. The basic reproduction number,
R0 � β0/c, captures the average number of secondary
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infections an infected individual will cause before he or she
recovers or is effectively removed from the population; in
other words, it measures how many other people an infected
individual will infect. However, as the number of susceptible
individuals in the population declines due to a growing number
of infections, the effective reproduction number over time, Ri,t ,
is given by the product of R0, and the fraction of susceptible
individuals in the subpopulation i is given by Ri,t � R0si(t); in
other words, the effective reproduction number is the expected
number of new infections caused by an infectious individual in a
population where some individuals may no longer be
susceptible. During the first few generations of disease
transmission, in the absence of control interventions or
reactive population behavior changes, the SIR model
supports a reproduction number that is essentially invariant,
for example, Ri,t ≃ R0. Thus, in the classical SIR model with a
constant transmission rate, β0, in a completely susceptible
population, si(0) ≃ 1, ii(t) grows exponentially during the
early epidemic phase [26], that is, ii(t) � i0e(β0−c)t .

As mentioned before, it is unusual for a naturally
occurring disease emergence to occur simultaneously at
many locations and to propagate at a uniform rate. This
means that at least during the initial phase of transmission,
infectious individuals are clustered [8]. The presence of the
subpopulations can be thought as clustered regions in space
where a given individual spent most of his time. Clusters
exchange pathogens with each other through infected or
susceptible individuals traveling among them during the
period of infectiousness. Thus, spatial inhomogeneities
lead naturally to outbreaks that do not occur
simultaneously in all subpopulations. Even if they are
governed by the same dynamical equations, they are
asynchronic, which means that the onset of the outbreaks
in the subpopulations are not necessarily simultaneous
[27–29]. In a similar way, different individuals may
propagate the pathogen at different rates, and one can
also consider groups of individuals with similar
transmission rates as distinct subpopulations even if not
geographically remote. Adding the corresponding
differential equations of all subpopulations, one gets the
following equations:

ds
dt

� − 1
n
∑
i�1

n

si(t) 1n∑j�1
n

βijij(t)

� −β0seff (t)i(t)
� −β(t)s(t)i(t),

(4)

di
dt

� 1
n
∑
i�1

n

si(t) 1n∑j�1
n

βijij(t) −
c

n
∑
i�1

n

ii(t)

� β0seff (t)i(t) − ci(t)
� β(t)s(t)i(t) − ci(t),

(5)

dr
dt

� c

n
∑
i�1

n

ii(t)

� ci(t),
(6)

where s(t) ≡ S(t)/N � ∑ si(t)/n, i(t) ≡ I(t)/N � ∑ ii(t)/n, and
r(t) ≡ R(t)/N � ∑ ri(t)/n are the fractional representations of
susceptible, infectious, and removed individuals of the total
population with N individuals, and N � nNi relates to the
total population with that of each subpopulation Ni which is
assumed to be the same for all subpopulations. To obtain the
final relations in Eqs (4–6), we have defined a time-dependent
transmission rate by the following equation:

β(t) � β0
seff (t)
s(t) , (7)

with

seff (t) ≡ ∑n
i�1

si(t)[
1
n∑n

j�1βijij(t)
nβ0i(t)

]. (8)

If all the subpopulations were synchronic and had the
same transmission rate, then βij � β0, and we can recover the
standard SIR result β(t) � β0 and seff (t) � s(t). However, in
general, β(t)< β0 for inhomogeneous systems with a
distribution of onset times and transmission rates. This
means that seff (t)< s(t). In other words, the fact that the
population is not homogeneous (in contrast to the well-mixed
assumption of standard SIR) implies that ds/dt is not
proportional to the product of the total number of
susceptible individuals in the population times the total
number of infectious individuals as in the traditional SIR
model. On the contrary, these inhomogeneities (the
population is not well-mixed) make ds/dt proportional
(with the same proportionality constant β0) to the product
of the number of infectious individuals multiplied by a
smaller number of susceptible individuals, seff (t). Such
effective number would represent a subset of the
susceptible individuals who are able to mix with the
infectious population. The exact expression for si(t)
appearing in Eq. (8) in principle could be obtained from
the solution of Eqs (1, 2); however, the quantities βij are
unknown. Here, we propose to approximate si(t) in Eq. (8) by
the solution of a standard SIR model, sSIR(t + ti), evaluated at
time t + ti that depends on the subpopulation i. The onset
times t � −ti of the local epidemics can be different (they are
asynchronic) from one subpopulation to the other, and
transmission rates βij can also be different. The initial
conditions sSIR(0) � 1 − 1/Ni, iSIR(0) � 1/Ni, and rSIR(0) � 0
are assumed. Then, si(t) ≃ sSIR(t + ti) can be directly
substituted into Eq. (8) to obtain

seff (t) ≃ ∑n
i�1

sSIR(t + ti)[
1
n∑n

j�1βijij(t)
nβ0i(t)

]. (9)

Summarizing, inhomogeneous transmission has been
incorporated in an SIR framework through a time-dependent
transmission rate, β(t). As we will show below, a time-dependent
transmission rate may be used to explain the early subexponential
growth of the spread, even in the absence of susceptible depletion or
interventional measures. Let us stress that other SIR models also
consider time-dependent transmission rates, but in those cases, it is
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introduced externally andmainly tomodel the reactive behavior of the
population in response to containment measures [14, 18, 30, 31]. In
contrast, in the present model, β(t) is obtained as part of the solution
of the dynamic equations, and its time-dependence appears even if the
population contact dynamics is uniform and the depletion of
susceptible individuals is negligible.

3 A TIME-DEPENDENT TRANSMISSION
RATE THAT DESCRIBES CORRECTLY THE
SPREAD OF COVID-19 AND LEADS TO
EARLY ALGEBRAIC GROWTH

The calculation of seff (t) in Eq. 9 would depend on the
distribution of subpopulation onset times, −ti, and
transmission rates, βij, and is influenced by the amount of
contacts among the individuals of different populations. The
effective fractional susceptibility seff (t) can be thought as a
weighted average over subpopulations, with the quantity in
square brackets in Eq. 9 playing the role of a weight factor.
Assuming that we can transform the average over subpopulations
into a time average and making a continuous approximation, we
propose to transform Eq. 9 into the following equation:

seff (t) ≃
∫∞

−∞ sSIR(t + t′)ρ(t, t′)dt′
∫∞

−∞ ρ(t, t′)dt′ , (10)

with ρ(t, t′) as a weight function that plays the role of the quantity
in square brackets in Eq. 9. Lacking additional information about
the distribution of onset times, population sizes, transmission
rates, or mixture rules, here we make the parsimonious
assumption that ρ(t − t′) � Θ(at − t′)Θ(t′ − t0 + t), with Θ(x)
as the Heaviside step function and a as a constant. In other words,
the effective susceptible population, intervening in the
transmission rate given by the average in Eq. 10, has been
approximated by a set of independent SIR subsystems with a
uniform distribution of onset times, between an initial time t0 − t
and a final time at:

seff (t) ≃ 1
at − (t0 − t) ∫

at

t0−t
sSIR(t + t′)dt′. (11)

Approximation (Eq. 11), together with Eqs 4–6, pretends to
describe the effects that the inhomogeneous transmission
between subpopulations have on the epidemic propagation.
The lower limit of the integral appearing in Eq. 11 is chosen
so that in the average, there will always be contributions from
subpopulations that evolve more slowly than the nominal
subpopulation, defined as the one with t′ � 0, that is, sSIR(t).
On the other hand, the upper limit is chosen to allow
subpopulations that evolve more rapidly. More precisely, the
interval (t0,−t) corresponds to subpopulations that have not
started their local outbreaks at time t, as can be the case of
segments of the population or regions where the pathogen is not
present at time t. The interval (−t, 0) corresponds to
subpopulations with delayed outbreaks, and finally, the
interval (0, at) corresponds to outbreaks apparently in

advance to the nominal one. Since the upper limit at is
chosen to consider subpopulations where the pathogen
propagates more rapidly than the average, this would imply
that for those subpopulations, their local transmission rates βij
would be larger than the nominal value β0 and their evolution
equations should be written in terms of those transmission rates.
Correspondingly, the number of susceptible individuals at time t
has evolved more rapidly than that in subpopulations with
smaller values of βij. Here, however, we have described the
evolution of all the subpopulations using the same nominal
value β0 for the transmission rates. This means that the
evolution of those populations with βij larger than β0 has been
approximated by populations evolving with β0 but evaluated at
latter times (a> 0). As a consequence of the distribution of
transmission rates, the time dispersion of the local outbreaks
increases with time. This is reflected in the time dependence of

FIGURE 1 |Number of cases in Mexico compared to model predictions.
The total number of cases (blue line) is obtained from fits of the model defined
by Eqs 4–11 to real data for Mexico. The prediction of the number of infectious
individuals and of the new daily cases is obtained as a consequence; no
independent fittings are required. Themodel predicts that the peak time for the
number of infectious cases is around July 29, 2020, whereas that for the new
daily cases is around July 22, 2020. The number of total infected saturates at
around 850,000. Note that it is a common trend in epidemiological models to
fail longtime predictions [18, 33], and many cases tend to underestimate final
observations. Predictions improve as the number of data points considered in
the fitting increases. The inset shows the results of a traditional SIRmodel. The
green symbols in the second panel correspond to seven-day averages of the
new daily cases data represented by the yellow bars. The green line is the
prediction of the model.
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the limits of the integral in Eq. 11. The value of the parameters t0
and a is obtained from the fitting to the data points of the
epidemic curve for a given population. The parameter a is a
measure of the strength of the asynchronicity in the sense that the
larger the distribution of transmission rates, the larger the
parameter a.

To examine the validity of the proposed approximation, we
apply it to the COVID-19 epidemics in different countries
starting with the case of Mexico. Figure 1 (top panel) shows a
semilogarithmic plot of s(t) and i(t), as obtained from Eqs (4, 5),
and compares it with the observed data (by confirmation date)
[32] for both the total number of infected (cumulative cases),
1 − s(t), and infectious individuals (active cases), i(t), for the case
of Mexico. In practice, active cases correspond to individuals
whose symptoms started within the previous 14 days from the
day a given data point was released. Let us stress that identifying
the measured active cases with the number of infectious
individuals is only an approximation. There is some
uncertainty on the number of days an infected individual
remains infectious, and also, there is some variability in the
degree of infectiousness at different days. Nonetheless, here we
are going to consider that the active cases correspond to infectious
individuals. An initial basic reproduction number R0 � 2.2 and
recovery rate c � 1/6 were used as parameters for phase 1, that is,
before containment measures were adopted. After t � 20 days,
once containment measures were adopted and their effects
started to be noticeable, the initial reproduction number was
changed to R0 � 1.7. The data have been plotted fromMarch 9th,
which corresponds to t � 0, where the data points show the
beginning of a regular behavior (see Materials and Methods). The
bottom panel shows the empirical new daily cases and the model
fit. Remarkably, the model is able to correctly reproduce the
empirical infectious cases (yellow line) and the new daily cases
data, considering that the fitting was performed only for the total
number of infected (blue line), and no independent fittings for
each curve were required. We did not exclude the possibility that

the other set of parameters (using a different value for c)
corresponds better to real values even if the yellow curve
would not be as accurately fit. The inset in the first panel
shows that traditional SIR using the same set of parameters
fails to reproduce the epidemic curves. The exponential
growth and characteristics of traditional SIR makes the
comparison with real data, which shows algebraic growth, to
eventually differ largely. Figure 2 shows the early growth of the
total number of cases. After a first short exponential growth, an
algebraic dependence with scaling law ≃ t3.4 follows. Let us stress
that, in contrast to other approaches [16, 17], this scaling law
appears exclusively due to the time-dependence of the
transmission rate β(t), arising from the assumption of
inhomogeneous transmission even without reactive population
behavioral changes and before the susceptible depletion sets in.
Figure 3 shows with lines the behavior of β(t) as obtained from
themodel, Eq. 7with the approximation given by Eq. 11. The first
section of this curve (blue line) corresponds to the beginning of
the outbreak, when propagation was free, without containment
measures. The second section of the curve (yellow line)
corresponds to days after containment measures were
implemented. In both cases, the transmission rate decreases
with time. The data points are obtained solving for β(t) from
Eq. 4, employing real data for Mexico [32]. We used the fact that
the measured new daily cases equal −ds/dt, that the cumulative
cases equal 1 − s(t), and that the infectious cases are the measured
active cases. The gray vertical line signals the end of the
generalized voluntary quarantine (“Jornada Nacional de Sana
Distancia”), and mitigation measures started to be released

FIGURE 2 | Early subexponential growth of the total number of cases
compared to model predictions. The model captures both well: the initial
exponential rise of total infected and the subsequent algebraic growth with
scaling ≃ t3.4. An example of exponential growth is shown for
comparison.

FIGURE 3 | Transmission rate, β(t), and time-dependent basic
reproduction number R0(t) ≡ β(t)/c. Two different sections of the
transmission rate as a direct consequence of containment policies are
obtained. The initial blue section corresponds to a situation in which no
specific policy was considered and the spread proceeds without restrictions.
The yellow line is the result of the containment measures, consisting in the
closure of nonessential activities and the suggestion to stay at home starting
from April 1st. The time-dependence of β(t) is not due to the containment
policies but is a natural consequence of the asynchronicity of the
subpopulation spreads. However, once containment measures were
adopted, the basic initial reproduction number decreased from R0(t � 0) �
2.2 to around R0(t � 0) ≃ 1.7. The symbols are obtained from Eq. 4 using real
data for Mexico. The dashed vertical line marks the end of the generalized
voluntary quarantine of the population on May 31st. The recovery rate was
c � 1/6.
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FIGURE 4 | Epidemic curves for various countries. We plot the data and model fits for the new daily cases for the eight European countries with the largest number
of cases. The model fits correctly capture the epidemic progression in all cases. The green symbols correspond to seven-day averages of the data represented by the
yellow bars. Note that the second wave (already apparent in the case of Sweden) could also be fit by considering a third regime with an increased value of R0 due to the
gradual release of containment measures starting around t � 80 days.
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locally, depending on the strength of the epidemic in each state of
the country. Accordingly, rebounds are verified after this date.
Other approaches [14, 31, 34] attributed the time-dependence of
β(t) to the reactive behavior of the population in response to the
non-pharmaceutical mitigation measures and are introduced
externally to the model. Even if no centralized information is
provided about the presence of a disease, the impact of
information diffusion, through first-hand observation and
word of mouth, on the epidemic propagation can also be
incorporated in a time-dependent basic reproductive number
[35–37]. In contrast, in the present model, the temporal variation
of β(t) is attributed to the inhomogeneous transmission arising
from a distribution of transmission rates and of onset times of the
local outbreaks, even if the behavior of the population remains
unaltered and is obtained from the model dynamical equations.
The right axis shows the corresponding values of the time-
dependent basic reproduction number defined as [30],
R0(t) ≡ β(t)/c.

Since the first outbreak of COVID-19 in Mexico remains in
progress (at the time of writing this manuscript), it is interesting
to evaluate the performance of the model in countries where the
first outbreak has nearly ended. We have chosen the eight
European countries with the largest number of COVID-19
cases to further validate the model [38]. Figure 4 shows the
epidemic curves for Belgium, Italy, France, Germany,
Netherlands, Spain, Sweden, and United Kingdom. The
model-fits capture the epidemic progression surprisingly well
in all cases in spite of the different mitigation strategies applied by
each country [39, 40]. Note that the fit starts to fail around t > 80
particularly in the case of Sweden where a second wave is already
apparent. This is due to the fact that we have not taken into
consideration the progressive release of the containment
measures once the first outbreak has mostly finished. If a
larger value for R0 is used around t � 80, then an increase of
the epidemic curve can be obtained again, giving rise to a second
wave. In Figure 4, we have used the present model to fit only the
first wave in all cases.

Table 1 shows the parameters used to fit the model in
Figure 4. In most of these countries, containment measures
were taken at about 20–40 days after time t � 0 days, and
thus, the epidemic curve can be divided into two sections, one
before and one after the containment measures were adopted.
The negative values of t0 found in the first section, before

mitigation measures were adopted, reflect the fact that a
fraction of the subpopulations whose local outbreaks had not
started contributes to the average in Eq. 11. On the other hand,
the positive values of t0 in the second section reflect the fact that
when confinement measures were adopted, there were already a
considerable number of infected individuals. Since the local
epidemics in this second section evolve with an assumed
attenuated value R0, then, in order to produce the same
number of initial cases (which in reality were obtained with
the original larger value R0), larger times (t0 > 0) are needed in the
SIR subsystems appearing in Eq. 11. In contrast, the case of
Mexico shows a negative value of t0 after the containment
measures were adopted, reflecting the fact that the measures
were taken very soon in the epidemic progression, when very few
cases were present. This is also consistent with the fact that the
evolution of the outbreak is taking considerably longer in Mexico
than in most of the other countries analyzed. In most cases, the
value c � 1/6 was used as a parameter and the rest of the
parameters were obtained by a least-squares fit. We cannot
disregard that other choices for the parameter c could also
produce good fits but with different values for the rest of the
fit parameters. Additionally, the fact that we are ignoring the

TABLE 1 | Fitting parameters used in Figure 4. The effects of containment measures were started to be observed at times t ≃ 20 − 40 days (labeled transition day).
Parameters are rough estimates and should not be considered as accurate values.

Country γ (1/days) Before containment Transition day After containment

R0 t0 (days) a R0 t0 (days) a

Belgium 1/6 2.5 −106.8 5.88 20 2.0 50.5 3.05
Italy 1/6 2.5 −49.8 4.48 29 1.7 97.0 4.01
France 1/6 2.8 −74.1 4.47 21 1.8 113.5 2.50
Germany 1/6.5 2.6 −43.7 3.59 21 2.5 63.1 1.54
Netherlands 1/6 2.7 −34.4 4.01 17 2.0 62.2 2.4
Spain 1/7.5 3.7 −7.7 2.52 29 2.15 96.9 2.37
Sweden 1/6 2.5 −46.4 4.07 42 1.8 34.9 4.22
United Kingdom 1/8 2.9 −142.4 3.87 36 1.9 86.9 3.27

FIGURE 5 | Progression of the spread assuming different
asynchronicities. Blue line: The observed data points for the total number of
cases in Mexico with the fitted model. Yellow line: The predicted evolution for
subpopulations with a smaller asynchronicity (a � 9). Green line: The
predicted evolution for subpopulations with a larger asynchronicity (a � 15). In
all cases, R0 � 1.7 and c � 1/6.
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incubation time of the disease may give rise to modified fit
parameters; thus, they should be considered only as rough
estimates.

The effect of the strength of asynchronicity is shown in Figure 5,
which shows the evolution of the total number of infected, considering
different values for the parameter a, for a givenR0.We observe that the
longtime total number of infected individuals will be highly dependent
on a. The blue line corresponds to the fitted value of a for the case of
Mexico, while the yellow and green lines are the predictions for a
smaller (smaller a) or a larger (larger a) asynchronicity.

4 DISCUSSION AND CONCLUSION

Summarizing, we have shown that the spread of the local outbreak
onset times and transmission rates can be incorporated in an SIR
formulation through the use of a time-dependent basic
reproduction number. This quantity is obtained as a solution of
the dynamical equations and not introduced externally. Thus, its
time-dependence does not arise as a result of changes in the social
behavior in response to containment measures or of the depletion
of susceptible individuals. Instead, it is the result of an
inhomogeneous transmission expressed as a time-dependent
average of asynchronic SIR subpopulations (Eq. 11). We have
shown that a simple assumption for the distribution of onset times
and transmission rates can be at the origin of the algebraic growth
observed at the early stages of the COVID-19 outbreak. This
contradicts the common assumption that the early growth
phase should be exponential in the absence of susceptible
depletion or interventional measures. In the present model,
containment measures contribute by decreasing the initial
reproduction number or equivalently, the initial transmission
rate. Other epidemic outbreaks also show early subexponential
growth, and a number of potential mechanisms have been
proposed to explain it. Among them are the spatial
heterogeneity and clustering of contacts arising from the fact
that the number of noninfected individuals in the immediate
neighborhood of infecting agents is strongly constrained [41,
42]. Reactive population behavior has also been proposed to
explain the changes that can gradually mitigate the transmission
rate [16, 26, 31, 35–37, 43]. Related to these mechanisms, a range of
mechanistic models that can reproduce the subexponential growth
dynamics before susceptible depletion sets in have been proposed.
These include models with gradually declining contact rate over
time [14] and spatially structured models such as household-
community networks [26], among others. However, for real
epidemics, the underlying mechanisms governing the
subexponential growth have been difficult to disentangle, and
the matter remains debated [26, 41, 44].

The model predicts a final number of cumulated cases that is
substantially smaller than that predicted for homogenous well-
mixed populations in agreement with models that predict
smaller disease-induced herd immunity when population
heterogeneity is taken into account [19].

The present model was validated using the case of the COVID-
19 outbreak in different countries, with an emphasis in the case of
Mexico. As of the origin of the inhomogeneities in the

transmission rates and onset times, one can propose different
underlying mechanisms, including the transmission between
geographical dispersal subpopulations as individuals travel
among them [6, 8, 15]. Another possible source of
inhomogeneities is the existence of different social cohorts,
with transmission rates between them that are lower than
those between individuals of the same cohort [19, 45]. In
general, the overall connectivity between subpopulations will
determine to a large extent the rate of propagation of the viral
agent and the final number of cases. Subpopulations more
efficiently connected between them will have smaller
dispersion of onset times and transmission rates.

The model is consistent with mitigation strategies, consisting
in the design of containment mechanisms oriented to increase
inhomogeneities, for example, imposing travel restrictions for
long-distance routes, partially isolating subpopulations from each
other [46, 47], or by increasing the time an individual takes to
move from one subpopulation to the other. Furthermore, travel
restrictions could be targeted to highly connected individuals.
The reason is that the effective number of susceptible individuals,
seff (t), that are the responsible for the rate of change of s(t),
decreases with the implementation of such mitigation
mechanisms. For countries where a strict quarantine is
impracticable, this could be a more realistic alternative. We
believe that the insight obtained from the present model may
be useful for planning non-pharmaceutical responses to better
mitigate or block the overall spread of an epidemic outbreak.

5 MATERIALS AND METHODS

Identifying the first infectious case is a difficult task, so
considering t � 0 days as the day the first case was reported,
does not seem to be appropriate. For this reason, before trying to
fit the original data points, we first shifted them in time so that the
time t � 0 days corresponds to the point where a discernible
regular behavior starts to appear. This is shown in
Supplementary Figure S1 where the data for Mexico that
were disregarded for fitting purposes correspond to dates
ranging from February 27th, the day of the first detected case,
until March 9th. Those data show an irregular behavior probably
due to the fewer number of cases and large relative fluctuations.

From a practical point of view, it is numerically easier to
approximate sSIR(t) in Eq. 11 by the function

sSIR(t) ≃ 1 − 1

(c + qe−t/τ)1/], (12)

where the parameters c, q, ], and τ are obtained from the fitting to
the exact form for sSIR(t) once β0 and c are known. The initial
conditions sSIR(0) � 1 − 1/Ni, iSIR(0) � 1/Ni, and rSIR(0) � 0
were assumed. Supplementary Figure S2 shows an example
for sSIR(t) as obtained from the standard SIR model (solid
line) and its approximation Eq. 12 (dashed line). By
incorporating Eq. 12 into Eq. 11 and the last result into Eqs
4–7, the evolution of s(t), i(t), and r(t) for the whole population
is finally obtained.
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The fitting of the model to the data, before containment
measures were taken, was done choosing the value of a spline
function that softens the data taken arbitrarily at time t � 4
days as an initial condition, as shown in Supplementary Figure
S3. In this way, possible misfitting due to fluctuations of the
data at the very first data points is minimized. The fitting of the
second section of the model, that is, once containment
measures were taken at day 20 in the case of Mexico,
considered as initial values of the model, the values obtained
from the first section evaluated at day 20.

For the case of Mexico, the parameters used were R0 � 2.2 and
c � 1/6, values generally accepted for the initial regime without
containment measures, and R0 � 1.7 for the second regime after
containment measures were adopted. The first fitting process
considered the first data points up to t � 20 days with obtained
fitting parameters t0 ≃ − 26.8 days and a ≃ 6.5. Analogously, the
fitting for the second regime consisted of data from t � 21 days to
the last data point available. For this second regime, the obtained
fitting values were t0 ≃ − 896 days and a ≃ 11. The results were
largely insensitive to variations in the exact day of transition
between the two regimes.
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