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Trivalent praseodymium (Pr3+) is the most established rare-earth ion for the direct
generation of visible light. In our work, based on Pr-doped Lu3Al5O12 (LuAG) single
crystal, cladding waveguides are fabricated by applying femtosecond laser inscription with
different parameters. The main characteristics of the waveguides such as mode
distributions, propagation losses are investigated. The investigations on confocal
micro-photoluminescence enable us to illustrate femtosecond laser induced
modifications in Pr:LuAG matrix. The waveguides are further pumped at a wavelength
of 450 nm with an InGaN laser diode. Guided fluorescence emissions in visible range
covering green, yellow-green, orange and red are obtained with a maximum slope
efficiency of 4 × 10−4.
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INTRODUCTION

The development of visible light sources is of great interest due to their possible applications in a
wide range of topical areas such as color display, imaging, biomedical diagnostics and chemical
sensing [1–4]. With regard to this aim, rare-earth doped crystalline materials have shown powerful
capability of direct emission of fluorescence and laser in the visible, allowing for light sources with
significant advantages in terms of simple in alignment, high compactness and inherent
robustness [5–8].

Garnet-based materials have been widely used as host matrixes owing to their outstanding
physical and chemical properties. Of ten garnet host materials, Lu3Al5O12 (LuAG), an isomorphic
material of YAG, is chosen for study. When compared with YAG, LuAG crystal exhibits comparable
hardness (7.5 Mohs) and thermal conductivity (9.6 W/mK) together with higher melting point
(2,010°C), making it suitable for ultrafast laser machining and high power pumping [9, 10].
Furthermore, the crystal is characterized by low thermal occupation factor for the lower laser
level, which can be ascribed to the large manifold splitting [11]. More importantly, these features can
be well preserved in rare-earth doped LuAG since the molar mass of Lu3+ is close to that of dopant
ions [9, 10, 12, 13]. Among active rare-earth ions providing transitions in the visible, Pr3+ is the most
established one because of its multiple transitions that allow emission in the red, orange, green and
blue spectral domains in combination with high absorption cross sections (up to 10−19 cm2 at the
dominant emission in the red) and long upper state lifetime (several ten microseconds) [5]. Further,
the absorption lines of Pr3+ overlap well with the emission of InGaN laser diodes in the blue spectral
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range, which, benefiting from the development of novel pump
sources based on semiconductor gain materials, gives rise to the
extensive researches of visible light sources based on Pr3+

[14–20].
Waveguide structures, which can confine the light propagation

in a dimension with order of microns, are considered to be the
fundamental components of photonic integrated circuits. A large
number of techniques have been employed with the aim of
fabricating waveguide structures with high optical
performances [21–23]. Femtosecond laser inscription (FLI) has
emerged as an unprecedented three dimensional (3D) waveguide
fabrication technology, which can be manifested in plentiful
transparent materials [21, 24–27]. During the FLI process,
high optical energy at the laser focus would be deposited
inside the materials due to the nonlinear multi-photon
absorption, resulting in a highly localized structural
modification to the materials, one example of which is
refractive index (RI) change that is responsible for the
formation of waveguide structures [28, 29]. Depressed
cladding waveguides produced by FLI have attracted
increasing attention since they have flexible tubular structures
that ensure high coupling efficiency between input laser mode
and guiding mode [30, 31]. Such a morphology shows its unique
ability of propagating both transverse polarizations [8, 32], which
makes it an ideal platform for unpolarized pumping as light
sources. More attractively, many of the optical effects in the
waveguides can be enhanced by the high intra-cavity light energy,
which, for instance, enables high emission at low excitation
[21, 33].

In this work, we focus on fabrication and characterizations of
the depressed cladding waveguides in Pr:LuAG crystals by using
FLI. Wave-guiding performances and confocal micro-
photoluminescence (μ-PL) properties of the cladding
structures are investigated. The waveguides are further
pumped by a 450 nm laser diode, realizing guided fluorescence
with multiple wavelengths in visible spectral range.

MATERIALS AND METHODS

The Pr:LuAG crystal (doped by 3 at% Pr3+ ions) is cut into a
10 mm × 10 mm × 2 mm cuboid, with six facets polished to
optical quality. In order to fabricate cladding structures, the
prepared Pr:LuAG crystal is mounted to a set of high
precision x-y-z air bearing translation stages made by
Aerotech® (ABL1000). The femtosecond (fs) laser is provided
by an IMRA® FCPA µJewel D400, delivering 360 fs pulses with
500 kHz repetition rate. The output is centered at 1,047 nm and
has a bandwidth of 10 nm (FWHM). The laser system produces
linearly polarized light which is attenuated by a half-wave plate
and polarizing beam splitter combination. The laser beam is
focused by a 0.4 NA aspheric lens into the substrate. By using a
transverse scanning geometry (i.e., the substrate is translated
perpendicular to the laser beam axis) with a speed of 3 mm/s,
a series of tracks are inscribed, forming tubular claddings with a
central location of 300 μm beneath one of the 10 mm × 10 mm
surfaces. The average laser power for inscription varies from 220

to 60 mW with a step of 20 mW, corresponding to pulse energy
decreasing from 0.44 to 0.12 μJ. The diameters of fabricated
structures are designed to be 35–15 μm with a varying step
of 5 μm.

The guiding properties of these waveguides are investigated by
applying a typical end-face coupling arrangement with a linearly-
polarized diode laser at 633 nm, the polarization of which is
controlled with a half-wave plate. A CCD camera is used to record
the modal profiles of the output light. By directly detecting the
incident and output beam powers, the propagation losses α of the
cladding waveguides can be calculated as follows:

Pout � Pin · η · (1 − R)2 · e−αL

in which Pin and Pout correspond to the input and output laser
powers, respectively. R, determined to be 0.0878 for Pr:LuAG
crystal, is the Fresnel reflection coefficient at waveguide-air
interface. L presents the length of the waveguide and η is the
coupling efficiency that relates to the modemismatch between the
pump beam and the waveguide, which can be approximated by
using the formula:

η � ( 2ω1ω2

ω2
1 + ω2

2

)
2

where ω1 is the mode width of the pump beam and ω2 is the mode
size of the waveguide which, in our work, is assumed to be single-
mode. For pump beam that is focused with convex lenses, the
mode width ω1 can be calculated with the following equation:

ω1 � 4M2λf
πD

where λ is the wavelength of the input laser,M2 is the beammode
parameter, f is the lens focal length and D is the input beam
diameter at the lens. During the experiment, convex lenses with
different focal lengths are selected to couple the pumping beam
into waveguides, ensuring high overlap efficiency between the
pumping mode and the wave-guiding mode.

The room-temperature confocal μ-PL properties of the
fabricated structures in Pr:LuAG are investigated using a
confocal microscope with a fiber-coupled system (WITec
alpha 300R). A continuous wave (CW) radiation from a high
performance single frequency diode pumped laser at 488 nm,
being used as an excitation laser, is focused via a 100×microscope
objective lens (NA � 0.9). The scattered PL light is dispersed by a
300 mm focal length spectrometer (UHTS 300) with a
150 grooves/mm grating. The signals are eventually detected
using a CCD thermoelectrically cooled to −60°C.

With an end-face coupling system, the characterizations of
guided fluorescence from the cladding waveguides are
investigated, in terms of emission spectra, mode profiles and
intensities. Pumping is achieved with the aid of a fiber coupled
CW diode laser at 450 nm, meeting the absorption line of Pr:
LuAG crystal in the blue spectral range. After being collimated,
the pump beam is focused and coupled into the waveguide by a
25× microscope objective (NA � 0.40). The visible fluorescence
emission from the waveguide is collected by another 10×
microscope objective with 0.25 NA and then separated from
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the residual pump with a 460 nm long-pass filter. For
comparison, the fluorescence generated from the bulk are also
detected.

RESULTS AND DISCUSSION

During the FLI process it is found that, with the laser power
decreasing lower than 80 mW, no obvious modification is
induced, leaving 35 cladding waveguides produced. These
waveguides are numbered as WG1–WG35 from left to right in
Figure 1A which is the cross sectional microscope images of the
fabricated waveguides. For easy visualization, zoomed-in images
of waveguides fabricated with an average laser power of 160 mW
(WG16–WG20) are shown in Figure 1B. As can be clearly
observed, circularly-shaped waveguide boundaries are
produced deeply embedded in the substrate without any
damage in the core regions. Therefore, the excellent properties
of Pr:LuAG crystal are expected to be well preserved in the
guiding areas. Mode distributions of 35 waveguides at 633 nm
are experimentally captured. The mode numbers are proved to be
reducing along with the reduction of the waveguide diameters,
until 15 μm, at which point the structures become single-mode.
Furthermore, single-mode guidance is also obtained from WG14
and WG19, the diameters of which are 20 μm. Increasing the

mode size while maintaining single mode performance
demonstrates the appropriateness of inscription laser powers
of 180 and 160 mW. In Figure 1C, the mode patterns of all
35 waveguides are summarized and single-mode waveguides are
highlighted in orange. Nonetheless, the waveguides inscribed
with smaller sizes are found to be weakly guiding, leading to
relatively high propagation losses as evidenced in Figure 1D
which exhibits the loss-dependence on the fabricating parameters
of 35 waveguides measured with both TE- and TM-polarized
laser beams. As for waveguides with 35 μm diameter, the
minimum value of propagation loss is estimated to be around
2.08 dB/cm, implying that the optimized laser power for
waveguide inscription in Pr:LuAG is about 160 mW and lower
losses could be expected with even larger structures. Additionally,
it is reasonable to deduce that the actual mode mismatch η of
multi-mode waveguide is higher than its calculated value owing
to the assumption of single-mode profile; consequently, the
waveguides produced in our work possess even lower
propagation losses than the values measured experimentally. It
is worth pointing out that these waveguides exhibit ability of
propagating both transverse polarizations without significant
difference on propagation losses, which further highlights the
advantage of polarization independence of cladding structures.
As an illustration of strong optical confinement, Figure 2 shows
the mode distributions of WG16–WG20 under both TE and TM

FIGURE 1 | (A) The end-facemicroscope images of cladding waveguides in Pr:LuAG. (B) Enlarged images ofWG16-WG20. (C)Mode profiles observed from all 35
waveguides; MM and SM represent multi-mode and single-mode, respectively. Single-mode wavegudies are highlighted in orange. (D) Propagation losses of the
cladding waveguides at 633 nm under TE and TM polarization.
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polarizations. For WG19 and WG20, Gaussian-type profiles are
achieved, which is typical of all of the nine single-mode
waveguides inscribed and measured.

With WG16 as a representative, the confocal μ-PL properties
of the Pr3+ ions are investigated as shown in Figure 3. Figure 3A
depicts the Gaussian fitted μ-PL spectra of the 3P0→3F2 emission
lines around 610 nm collected from the guiding core (point a in
Figure 3B), the filament constituting the cladding (point b) and
the Pr:LuAG bulk (point c). In order to obtain the detailed
modification of luminescence properties and get complete
knowledge on micro-structural changes over the whole
waveguide cross-section, 2D mappings of the intensity,
spectral shift and bandwidth of the emission lines are obtained
from a wide area covering the modified and unmodified Pr:LuAG
volumes, as shown in Figures 3B–D. Meanwhile, 1D
distributions, as plotted in Figures 3E–G, are measured along
the lines crossing the filaments indicated in Figures 3B–D. It can
be concluded that, as compare with the bulk, the laser-induced

filaments are characterized by 1) quenching in the luminescence
intensity indicating the presence of the irreversible damages,
lattice defects and imperfections, 2) red-shift of the emission
line corresponding to extended lattices that leads to expansive
stress in these areas, and 3) broadening of the spectra that further
suggests the presence of lattice disorders. All of these features
indicate a large degree of lattice modifications induced in
filaments by fs-laser, which are responsible for the RI
reduction in the cladding areas, and hence have considerable
effects on the guiding properties of the waveguides. In addition, it
is clear that the spectroscopic properties of the Pr3+ ions are well
preserved in the guiding core, showing the potential of active
applications of these structures for guided fluorescence or laser
emissions.

Under 450 nm diode laser excitation, the spectra of guided
fluorescence excited with fixed pumping power are collected from
the 35 cladding waveguides and the bulk. The results, focusing on
the 609 nm emission lines corresponding to 3P0→3H6 transition

FIGURE 2 | Model profiles of the cladding waveguides WG16-WG20 at 633 nm under TE and TM polarization.

FIGURE 3 | (A) The μ-PL spectroscopy of WG16 obtained from the inner core (a), processing track (b) and bulk material (c). The 2D mappings and 1D profiles of
intensity (B,E), peak position (C,F) and FWHM (D,G) of μ-PL spectra obtained from the WG16. 1D profiles are measured along the blue lines in (B–D).
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of Pr3+ ions, are depicted in Figure 4A. For easy comparison,
Figure 4B plots the relative intensities of emission lines. It is
obvious that, with fixed inscription power, the performance of
guided fluorescence improves while the guiding core is enlarged,
which is related to the reduction of propagation losses. As
expected, the best performance is observed in WG16.
Meanwhile, in comparison with the bulk, the fluorescence
intensities are strengthened in the waveguides, revealing the
strong optical confinement of the fluorescence in the guiding
volumes, as further evidenced by the photograph of visible
emission in WG16 (see inset of Figure 4A).

The overall fluorescence spectra generated from WG16 are
further measured with increasing excitation power, as described
in Figure 5A. The emission lines have been proved to be arised
from the radiation transitions 4f-4f of Pr3+ ions [33]. Such an
emission possesses a broad bandwidth covering green, yellow-
green, orange, and red spectral ranges, with five dominated peaks
centered at 525, 533, 550, 565, and 609 nm, corresponding to the
main transition lines of 3P0→3H5,

1I6→3H5,
3P0→3H5,

3P0→3H5,
and 3P0→3H6 of Pr3+ ions [5, 16–20]. Furthermore, as the
excitation power is increased, the intensities of all emission

lines are found to be increasing. Figure 5B plots the output
fluorescence power obtained from WG16 as a function of
incident power. The highest output power of 0.4 mW at
900 mW pumping is achieved. The linear fitting of the
experimental results gives a slope efficiency of 4 × 10−4, which
is comparable to that recorded from the cladding waveguides in
Ti:Sapphire as previously reported in [8]. The inset of Figure 5B
shows the intensity profile of the output signal originated from
WG16, which further confirmed the strong optical confinement
of the guided fluorescence.

Table 1 lists the performances of waveguides in Pr3+ doped
crystalline materials fabricated by using liquid phase epitaxy
(LPE) and FLI. Compared with planar and double-line
waveguides [35–38], the structures produced in our work are
superior owing to their flexibility in shape and size that enables
high coupling efficiency when connecting with the commercial
fibers to construct fiber-waveguide-fiber integrated photonic
circuits. More importantly, unlike the previously demonstrated
waveguides that only support guidance or emission under certain
polarization [15, 34–38], the waveguides fabricated here show
unique ability of propagating both transverse polarizations at

FIGURE 4 | (A) Fluorescence spectra around 609 nm obtained from 35 waveguides and bulk material under 450 nm diode laser excitation. The inset of (A) shows
the visible fluorescence generated in WG16. (B) The dependence of relative intensities of 609 nm emission lines on the fabrication parameters.

FIGURE 5 | (A) Overall spectra of the guided fluorescence from WG16 measured with increasing excitation power. (B) Dependence between the output
fluorescence power and the input power fromWG16. The blue balls represent the experimental results and the solid line is linear fitting of experiment data. The inset of (B)
is the mode distribution of waveguide fluorescence obtained from WG16.

Frontiers in Physics | www.frontiersin.org May 2021 | Volume 9 | Article 6849585

Sun et al. Femtosecond Laser Inscribed Pr:LuAG Waveguides

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


pumping and emission wavelength, meeting the requirement of
unpolarized pumping as light sources or applications related to
polarization independence. Furthermore, the guided fluorescence
obtained in our work possess broad emission band which, in
combination with the unique optical properties of LuAG crystal,
suggests promising potential of these cladding waveguides as
integrated fluorescence sources for visible applications.

CONCLUSION

In conclusion, we demonstrate for the first time to the best of our
knowledge femtosecond-laser- inscribed waveguides in Pr:LuAG
single crystal. The investigations on the guiding performance
highlight the good properties of the fabricated waveguides
especially in terms of single-mode guidance and polarization
independence. The optimized laser power for waveguide
fabrication in Pr:LuAG is found to be around 160 mW.
Confocal micro-luminescence investigations evidence lattice
damages, defects, imperfections and disorders in fs-laser
induced filaments, with these effects being at the basis of the
refractive index modification. Meanwhile, the spectral properties
of Pr3+ ions are well preserved in the guiding core. Guided
fluorescence in a tubular cladding geometry operates at a
maximum output power of 0.4 mW under 900 mW of incident
InGaN-laser-diode emission at 450 nm. The fluorescence shows
broad bandwidth with five dominated peaks centered at 525, 533,
550, 565, and 609 nm. This study paves the way for the realization
of miniature integrated platforms in Pr:LuAG crystal for possible

applications as visible light sources in photonic integrated
circuits.
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TABLE 1 | Comparison of waveguides fabricated in Pr3+ doped crystalline materials.

Material Preparation
method

Waveguide
morphology

Waveguide characterization Application

Pr:YLF [15] FLI Tubular cladding
waveguide

Single-mode at 605 and 720 nm
(π-polarization)

Waveguide laser at 605 and 720 nm (π-polarization)

Propagation loss of 0.6 dB/cm at 632.8 nm
Pr:YLF [34] FLI Rhombic cladding

waveguide
Single-mode at 632.8 nm (π-polarization) Waveguide laser at 604 and 720 nm (π-polarization)
Propagation loss of 2.3 dB/cm at 632.8 nm
(π-polarization)

Pr:YLF [35] LPE Planar waveguide Multi-mode at 604.2 nm (π-polarization) Waveguide laser at 639.4 nm (σ-polarization) and 604.2 nm
(π-polarization)Propagation loss of 0.8 dB/cm at 632.8 nm

Pr:YLF [36] LPE Planar waveguide Multi-mode at 639 nm (σ- and π-polarization) Waveguide laser at 522.5 nm (π-polarization), 604 nm
(π-polarization) and 639 nm (σ-polarization)Propagation loss of 0.13 dB/cm at 604 nm

(π-polarization)
Pr:
SrAl12O19 [37]

FLI Double-line
waveguide

Single-mode at 632.8 nm (π-polarization),
muti-mode at 444.5 nm (π-polarization)

Waveguide laser at 643.9 nm (π-polarization)

Propagation loss of 0.16 dB/cm at 632.8 nm
(π-polarization)

Pr,Mg:
SrAl12O19 [38]

FLI Double-line
waveguide

Multi-mode at 632.8 nm (σ-polarization) Waveguide laser at 525.3, 644.0, and 724.9 nm
(σ-polarization)Propagation loss of 0.12 dB/cm at 632.8 nm

(σ-polarization)
Pr:LuAG [this
work]

FLI Tubular cladding
waveguide

Single-mode at 633 nm (polarization
independent)

Waveguide fluorescence in visible range centered at 525,
533, 550, 565, and 609 nm (polarization independent)

Propagation loss of 2.08 dB/cm at 633 nm
(polarization independent)
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