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Local social interactions among individuals in animal groups generate collective behavior,
allowing groups to adjust to changing conditions. Historically, scientists from different
disciplines have taken different approaches to modeling collective behavior. We describe
how each can contribute to the goal of understanding natural systems. Simple bottom-up
models that describe individuals and their interactions directly have demonstrated that
local interactions far from equilibrium can generate collective states. However, such simple
models are not likely to describe accurately the actual mechanisms and interactions in play
in any real biological system. Other classes of top-down models that describe group-level
behavior directly have been proposed for groups where the function of the collective
behavior is understood. Such models cannot necessarily explain why or how such
functions emerge from first principles. Because modeling approaches have different
strengths and weaknesses and no single approach will always be best, we argue that
models of collective behavior that are aimed at understanding real biological systems
should be formulated to address specific questions and to allow for validation. As
examples, we discuss four forms of collective behavior that differ both in the
interactions that produce the collective behavior and in ecological context, and thus
require very different modeling frameworks. 1) Harvester ants use local interactions
consisting of brief antennal contact, in which one ant assesses the cuticular
hydrocarbon profile of another, to regulate foraging activity, which can be modeled as
a closed-loop excitable system. 2) Arboreal turtle ants form trail networks in the canopy of
the tropical forest, using trail pheromone; one ant detects the volatile chemical that another
has recently deposited. The process that maintains and repairs the trail, which can be
modeled as a distributed algorithm, is constrained by the physical configuration of the
network of vegetation in which they travel. 3) Swarms of midges interact acoustically and
non-locally, and can be well described as agents moving in an emergent potential well that
is representative of the swarm as a whole rather than individuals. 4) Flocks of jackdaws
change their effective interactions depending on ecological context, using topological
distance when traveling but metric distance when mobbing. We discuss how different
research questions about these systems have led to different modeling approaches.
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INTRODUCTION

Throughout nature, molecules, cells, and organisms interact in
ways that generate collective behavior. Collective behavior has
been defined in many ways, but some features are generally
recognized as essential. First, and perhaps most importantly,
collective systems operate without central control. The group-
level behavior and properties arise spontaneously from the local
behavior of the individuals in the group, and no individual directs
the behavior of others. The individuals interact with one another,
but because individuals typically do not have global knowledge
about the whereabouts and behavior of all the others, these
interactions are local. Since the interactions are essential in
determining the resulting collective behavior, different forms
of group-level behavior arise from distinct types of
interactions. Finally, collective behavior in nature (as we define
it) always performs some biological function. The goal of
modeling is to elucidate how local interactions, in the
aggregate, allow the group to accomplish this function.

Some of the best-known examples of collective behavior are
the many spectacular forms of synchronous movement in
animals. Flocks of starlings wheel in the sky. Schools of fish
travel together and turn sharply when a predator approaches.
Clouds of locusts travel together. Similar patterns occur at the
cellular level and also arise from interactions among individual
cells. Groups of neural crest cells, for example, move together
early in mammalian development [1]; the cells at one side
contract, and the others do not, pulling the whole group of
cells along. Common patterns of collective movement include
flocks, where the animal motion is directionally ordered and the
group has a net linear momentum; mills, where the motion is
ordered and the group has a net angular momentum; and
swarms, where the motion is disordered but the group
remains bound together.

A second and widespread category of collective behavior
regulates activity or effort to determine who does what and
when, using a distributed process based on interactions [2].
For example, differentiation in a developing embryo occurs
through local chemical and tactile interactions among cells,
leading to the formation of distinct tissues that descend from
identical cells. Another example of this type of collective behavior
is task allocation in social insects, the process that determines how
colonies adjust the numbers of individuals performing each of
various tasks, such as foraging and care of the larvae. Individuals
change tasks in response to interactions with each other and
changing colony needs [3].

The patterns generated by collective animal groups, and more
generally the distributed processes common to many forms of
collective behavior, have captivated scientists beyond biology and
have inspired diverse modeling approaches. Collective movement
first caught the interest of the computer graphics and animation
community [4], and has subsequently been the subject of a great
deal of study in physics and applied mathematics [5, 6].

Physicists have been especially interested in the observation
that when different kinds of animals in different environments
with very different individual behavior are brought together in
sufficiently large numbers, only a few types of group dynamics

emerge. Because collective behavior in natural systems involves
large numbers of discrete individuals, many physicists have
considered collective behavior through the lens of statistical
mechanics. The hope in this approach is that collective
behavior can be understood as an emergent property that
arises from averaging over large numbers of interacting
individuals. This is conceptually similar to how bulk material
properties emerge from averaging over atoms or molecules.

This line of thinking has been the genesis of the young but
rapidly evolving field of active matter [7, 8]. In conceptualizing
groups of organisms as matter, the focus of modeling has been on
specifying minimal microscopic models and working to tease out
how the group-level dynamics emerge. In this way, this bottom-
up approach to describing collective behavior reflects the way that
physicists are trained to work from first principles when possible.
The goal of the modeling in this case is the development of a
general understanding of how and why group-level properties
emerge given knowledge about the individual-level behavior. This
approach has historically been successful in allowing us to
understand and link many disparate physical phenomena [9].
However, the complexities of biological systems make them
different from systems traditionally considered by physicists,
in ways that warrant additional care in interpreting the
predictions of models.

Collective behavior in natural systems is particularly appealing
to engineers, who hope to exploit it in the design of engineered
distributed systems. Collective behavior operates with no
individual in charge and directing the motion of the others,
and the properties and functionality of the group arise from
the interactions among the individuals. This means that no
individual is essential for the group to function. Thus, one
advantage of collective behavior is that the function performed
by the group is robust to the loss of individuals. Additionally, the
bottom-up, self-organized nature of collective behavior means
that the group is regulated and maintains coherence without the
need for any individual to have global information about the state
of the others—and thus serves as a robust model of distributed
control with limited communication or information sharing.

Because the emphasis in the engineering community has been
on the function performed by the group rather than on scaling up
the behavior of each individual, models of collective behavior
formulated by engineers tend to start with the group-level
dynamics and propose a simplified model that generates this
behavior. In this way, these top-down engineering models can be
seen as explaining how a collective system works (in a simplified
fashion) rather than why it works. The resulting models can be
very powerful, both because they are easily translatable to
designed systems and because they lead to predictions that can
be tested in the biological system. However, because such models
are not based on first principles, it can be difficult to know
whether they will remain valid when the system parameters or
other factors change.

Modeling biological processes brings further challenges that
are not typically encountered in physics or engineering. Different
organisms communicate and sense their surroundings
differently, imposing distinct constraints on their behavior, so
that even if the structure of two groups of different organisms is
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similar or they have similar functions, they may operate in very
different ways. Additionally, organisms behave differently in
different situations, so that a model that describes a particular
group of animals well in one context may not hold when the
environment changes. Moreover, organisms act to modify their
environments, in ways that influence whether and how they
interact, so that their behavior cannot be considered to be
operating in an environment independent of the organisms
[10]. Thus, models of collective behavior are unlikely to be
generic, and do not fully describe the biological system. We
argue that models of collective behavior that are intended to
provide biological insight are most effective and useful when
designed to address specific questions about collective behavior,
and that it is important to remember their limitations.

To illustrate these ideas, we begin below with a broad overview
of modeling trends in collective behavior, including a discussion
of reasons why intuition gleaned from modeling in physics and
engineering may not be sufficient to understand a biological
system. We then discuss four distinct case studies that differ
in organism, interactions, and ecological context: foraging by
harvester ants, the formation of trail networks by arboreal turtle
ants, the emergence of binding and group-size regulation in
midge swarms, and collective travel and mobbing by flocking
jackdaws.

MODELING COLLECTIVE BEHAVIOR

Modeling is ubiquitous in all branches of science. However, both
what is meant by the term “modeling” and what its goal is differ
among disciplines. Such distinctions are particularly fraught in an
interdisciplinary field such as collective behavior, and they can
lead to misunderstandings among scientists with different priors.
Here, then, we begin by trying to elucidate some of these
differences and to clarify the various starting points and
perceived purposes of modeling collective behavior, before
describing modeling strategies in more detail.

Modeling in physics tends to be built on the process of
stripping away details, in an attempt to isolate only the most
fundamental aspects of a problem or system. A “toy model” in
this sense is typically not intended to reproduce the behavior of
the modeled system exactly; rather, the goal is to construct a more
tractable system that shares the same key features as the problem
of interest but whose dynamics can be completely understood. A
model of collective behavior developed in this spirit would not
necessarily be expected to capture the specific behavior of any
particular organism, but instead could be used to explain how
individual, local interactions can scale up to produce coherent
and distinct group-level behavior. We can characterize this
general approach as being bottom-up: the model explicitly
specifies the microscopic dynamics of the system, and the
macroscopic behavior is expected to be an outcome of solving
the model.

An engineer might approach modeling the same system
differently. The goal of models in engineering is often to
describe the actual behavior of the system, rather than why a
system behaves as it does. If such a model captures enough about

how the behavior works, it can then be translated into a new
situation or used for a different purpose. For collective behavior,
this style of modeling would entail describing in a simplified
fashion what a collective group does in the aggregate, without
explaining how the function of the collective behavior arises from
the behavior of the individuals. In this way, this approach is more
top-down: the macroscopic behavior of the group is what is
explicitly specified in the model.

Here we discuss the approach to modeling used by biologists
to guide empirical investigation [11]. Amodel is a description of a
natural process that can make specific predictions. When the
predictions do not fit the data, this provides an opportunity to
modify the model so as to describe the natural process more
accurately. However, even when the predictions of the model fit
the data, this does not prove that the model is correct, because the
same observed outcome could be achieved in other ways. Thus,
although the physicist’s modeling goal is achieved when the
collective behavior can be explained as the outcome of
individual behavior and the engineer’s goal is reached when
the operation of the system can be predicted, the biologist
with a model that predicts the observed outcome will still seek
to confirm that the real system actually operates in the way
described by the model. In other words, for the biologist,
obtaining a model that can then be studied and applied in
contexts that do not occur in nature is not the goal; rather,
the goal is to understand phenomena that do occur.

Thus, different scientific communities use models of collective
behavior in different ways and to address different questions. It is
important to remember that in all of these approaches, models are
by their nature always limited in scope and applicability; as
famously explained by the statistician George Box, “all models
are wrong” [12]. In particular, no model is likely to capture all of
the inherent complexity of a biological system as it adjusts to
constantly changing environments. Richard Levins in Evolution
in Changing Environments remarked that any model is either so
general that it cannot be used to ask how well it fits observations
or so detailed that it merely captures what is already known, and
so the exercise of modeling is the attempt, through matching
model results with data, to find a model that is somewhere in
between [13].

Next, we contrast strategies for implementing the bottom-up
and top-down approaches described above to address questions
about natural systems, and then discuss case studies of models of
different types of collective behavior.

Bottom-Up Modeling
The starting point of a bottom-up model of collective behavior is
the individual. Each member of the group is assigned a set of
behavioral rules, including interactions with others, that it
executes. The goal is that the correct group-level collective
behavior will emerge as the individuals follow their rules. This
approach, often termed agent-based modeling, has seen
widespread use in modeling collectively moving groups of
animals such as flocks and schools. Designing an agent-based
model of this type requires several explicit choices [14]. One must
at minimum specify how each individual behaves when it is not
interacting with others, which is often as simple as moving in a
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straight line at a constant speed; how the individual interacts with
others; and which others it interacts with. Although these rules
may be fully deterministic, it is common to include some
stochasticity to mimic variously the imperfections of biological
sensing or the random or unexplained variation among
individuals that occurs in natural groups. Any behavioral rules
assigned to individuals are themselves not fundamental, as they
must arise from a complex process of sensory signal transduction
by each individual and subsequent internal decision-making.
Some classes of bottom-up models attempt to take aspects of
these internal processes into account explicitly.

Some of the earliest agent-based flocking models were
developed in the computer-graphics community [4], with the
goal of producing animations of group motion that looked
realistic. Subsequently, the same general framework was
adopted by the physics community with the goal of casting
the emergence of collective motion as a kind of critical
phenomenon [15], by analogy with the study of phase
transitions. The focus of this work was primarily on groups
that display unidirectional ordered motion (that is, flocks), but
later research showed that changes to the interaction rules can
produce other types of group motion such as toroidal mills or
disordered swarms [16]. More generally, agent-based models
have also been used to describe many forms of collective
behavior beyond simple collective movement [17].

The primary goal of bottom-up modeling, however, is not
simply to replicate the observed collective outcome, such as the
shape of a group of moving individuals, but rather to explain how
that outcome arises from the behavior of individuals and their
interactions. For example, we would like to understand how
interactions between individual birds give rise to the
macroscopic ordered motion of a flock [18, 19], or why rafts
of interlocked fire ants display an effective viscoelasticity [20].

In physics, questions about collective outcomes of interactions
among individuals fit the general paradigm of statistical
mechanics. Originally developed to describe thermal systems,
statistical mechanics is a core tool throughout condensed matter
physics, and is extremely powerful for describing the properties of
materials by appropriately averaging over interactions between
their constituent atoms. The purview of statistical mechanics has
over the past several decades expanded enormously beyond its
traditional areas of application, and has proved to be useful in
understanding a broad range of topics, both physical and non-
physical [9]. Researchers have attempted to apply the general
methods of statistical mechanics to just about every problem
involving large numbers of discrete degrees of freedom [9]. It is an
obvious extension of this approach to use statistical mechanics to
treat collective groups, where the degrees of freedom are the
individual organisms. This is the core of the young subdiscipline
of active matter physics.

Statistical mechanics is not, however, a panacea; there are
many cases where its methods do not work. It is worth
considering when and why this occurs, to be aware of the
limitations of a statistical-mechanical approach to collective
behavior. The central concept in statistical mechanics is that
of an ensemble: instead of trying to predict the dynamics of a
single system, we instead make statements about the average

properties of a large number of identically prepared and
constrained systems. Thus, the key to any statistical-
mechanical approach is the specification of an appropriate
ensemble. One classical way to do this is to appeal to
conservation laws. For an isolated thermal system, for
example, we expect that its total energy is conserved. An
appropriate ensemble in this case is the microcanonical
ensemble, the set of all configurations of the constituent
molecules whose individual energies add up to the (conserved)
total energy.We can characterize different thermal systems in this
framework by specifying the relative likelihood of each of these
configurations via a density of states. However, there are many
cases where this approach fails. Without an appropriate
conservation law, for example, defining an ensemble is often
not possible, e.g., in highly dissipative athermal systems like
granular materials [21]. In systems far from equilibrium,
which is the rule for biological systems, defining an
appropriate ensemble is difficult, because the macroscopic
properties of such a system may change in time.

Unfortunately, both of these caveats apply in the case of
collective behavior. Because each individual organism
independently consumes and dissipates energy, we cannot in
general assert any of our usual conservation laws such as energy
or momentum. By the same token, life is inherently far from
equilibrium; a biological system in equilibrium is dead. Thus, it is
not obvious how to define an appropriate ensemble.

Modeling methods that originated in the study of
hydrodynamics and liquid crystals (and that generally fall
within the domain of nonequilibrium statistical mechanics)
have been somewhat more successful in developing group-
level descriptions of animal groups that exhibit net motion [8].
In this approach, one models the group with a small number of
continuum fields rather than discrete individuals. The equations
of motion for these fields can either be developed by coarse-
graining over the discrete microscopic equations of motion, or
sometimes simply by including all terms allowed by symmetry
and setting their relative strengths empirically. This approach was
notably recently applied to polarized human crowds [22].

To date, bottom-up, agent-based models have been quite
successful in demonstrating that collective states can be
generated only from simple local interactions. Such models
can produce various kinds of group shapes reminiscent of
those observed in nature. Advances in active matter are
beginning to lead to an understanding of how these collective
states arise and their properties. However, we must remain
cautious about interpreting these successes as indications that
simple bottom-up models accurately describe real biological
systems. It is certainly tempting to do so, following intuition
gained from decades of studying critical phenomena. Toy models
such as the Ising model accurately describe the behavior of
physical systems with much more complicated structure at the
microscale because these systems are strongly constrained by
conservation laws and symmetries. These constraints give rise to
universality, so that in a formal sense toy models describe aspects
of real physical systems exactly. Biological systems, however, need
not respect conservation laws and symmetries, particularly at the
whole-organism level. Thus, care must be exercised in trusting the
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predictions of simple agent-based models of collective behavior,
particularly when they are extrapolative. And because formal
theoretical arguments cannot guarantee that models predictions
will be correct, validation against observational data is essential.
Finally, we note that even such validation is fraught, and
comparing the output of a model with the macroscopic
behavior of a real system cannot definitively confirm that the
mechanisms assumed in the model are correct. Collective
behavior requires interactions and is thus inherently nonlinear,
and nonlinear systems are rarely invertible.

Top-Down Modeling
An alternative approach, that is characteristic of classic methods
in engineering, is to use a top-down approach to describe a
collective process. The goal of such models is not to discover the
underlying principles that govern collective behavior, but instead
to specify how to generate particular collective outcomes. It goes
without saying, of course, that employing this approach requires
one to know what outcome is sought. Dynamical systems theory
generally aims to predict the outcomes of dynamical processes,
without necessarily specifying the behavior of each component.
For example, control theory was developed to specify how the
flow of work, such as in a factory, possibly involving many
different operations, yields a rate of production and minimizes
delays or optimizes some outcome [23].

The tools of dynamical systems theory have been used to
model forms of collective behavior that regulate activity. For
example, many physiological processes arising from chemical
interactions and interactions among cells can be considered to be
collective behavior within tissues. The kinetics of such processes
describe how outcomes depend on concentrations of various
components, without considering the details of how the
components encounter each other and interact. For example,
metabolic pathways depend on interactions among various
molecular actors, and their collective behavior can be
described in a top-down way [24, 25].

Systems biology has developed the quantitative analysis of
collective processes within and among cells [26]. In general, the
dynamics of signaling pathways can be described with differential
equations that specify quantities without examining the details of
local interactions among the participants, ranging from
transcription networks [27] to cell division. For example,
Cheng and Ferrell [28] showed how, in the frog egg, a trigger
wave works quickly in apoptosis by examining the change in the
quantity of caspase moving across the cell. The dynamics
demonstrate the mechanism; trigger waves occur faster than
diffusion. This result is based on top-down modeling; the
dynamics reveal the broad strokes of how the components of
the system interact without describing the interactions
themselves in detail.

Similarly, the study of population dynamics in ecology uses
models of the outcome of interactions among individuals to
explain collective processes in populations [29]. The Lotka-
Volterra equations are a simple example. They describe how
populations change as a function of numbers of individuals and
amounts of resources in the environment, without addressing the
details of the particular interactions that cause individuals to

reproduce or die, or how birth and death are affected by available
resources.

Here we present some examples from our own work of
different approaches to modeling collective behavior.

Harvester Ants
Our investigations of the collective behavior that regulates
foraging activity in harvester ants have primarily used tools
from engineering to create top-down models that capture the
goals and tasks of the ants.

First, we considered a model of spatial distributions of a
population of harvester ant colonies. Harvester ants forage for
scattered seeds and so do not use pheromone trails [30]. Colonies
compete with neighboring colonies of the same species for
foraging area [31]. A colony regulates its foraging activity in
response to interactions with neighboring colonies and food
availability. Colonies must regulate activity in response to the
risk of water loss. Ants lose water to evaporation when out
foraging in the desert sun, but obtain their water from
metabolizing the fats in the food they eat. The extent to which
one colony’s foraging area overlaps with its neighbors’ changes
over a colony’s lifetime, as colonies grow older and larger [32].

We modeled the spatial distribution of colonies to ask how
competition among neighboring colonies generates the shifting
spatial distribution of colonies [33]. Our goal was to capture the
relevant interactions among colonies enough to predict how
distributions change over time. Similar studies have been done
to explain the collective outcome of spatial interactions among
individuals in populations of sessile organisms that compete with
their neighbors for resources, such as self-thinning in trees [34] or
populations of termite colonies [35]. The basic parameter in our
model was the spatial range of foraging by each age class of
colony. The results show how the local neighborhood of colonies
of the same species affects each colony’s opportunity to expand its
foraging area. A recent analysis of the effect of spatial
distributions on colony foraging area and its survival supports
the results of this model.

Harvester ant colonies regulate foraging collectively using
local olfactory encounters. Ants smell with their antennae, and
when one ant touches the antennae of another, it assesses the odor
of the other ant. Ants, like many insects, spread long-chain fatty
acids, cuticular hydrocarbons, on their bodies by grooming.
These cuticular hydrocarbons help to prevent desiccation, and
also carry specific odors. In the course of a brief antennal contact,
one ant smells the cuticular hydrocarbon profile of the other [36].
Ants use the odor of cuticular hydrocarbons to recognize whether
another ant is a nestmate and also to identify the task of the ants
they meet.

A harvester ant forager waits inside the nest entrance between
foraging trips. An outgoing forager uses the rate at which it
meets returning foragers with food to decide whether to leave
the nest on its new trip [37]. Because each ant searches until it
finds food, the rate of forager return is a cue to food
availability: more food means a shorter search time and a
higher rate of forager return.

We developed a model to predict the rate at which outgoing
foragers leave the nest, based on the rate of forager return [38].
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We tracked the rates at which foragers left the nest and returned,
including in field experiments in which we manipulated the rate
of forager return. The parameters of our model were the rate at
which foragers left the nest, which we treated as a Poisson process,
and a variable that describes how much returning foragers
stimulate the rate at which foragers leave the nest. Here we
did not specify the dynamics or details of the interactions of
outgoing and returning foragers. We used the data on the rate of
foraging return, and the model, to simulate the rate at which
foragers leave the nest. Our goal was to ask if this simple process
was sufficient to predict the observed fluctuations in foraging
activity. We found a good fit by the simulations with the observed
rate at which foragers left the nest. The good fit between model
predictions and data shows that it is plausible that the interactions
of returning and outgoing foragers as theymix inside the entrance
chamber generate the moment-to-moment rate at which foragers
they leave the nest.

The model showed that overall the rate at which foragers leave
the nest depends on the rate of forager return. We then looked
more closely at the interactions of outgoing and returning
foragers, to ask what is the process that individual foragers use
to decide whether to leave the nest on their next trip. Each forager
makes many trips in a day, and when it returns to the nest, uses its
rate of encounter to decide whether to leave the nest. The
encounters are antennal contacts in which it assesses the odor
of the ant it meets.

We asked how a forager assesses its rate of antennal contact
with other ants [39]. We used a leaky integrator model, based on
drift-diffusion dynamics, from theoretical neuroscience. This
choice of model was based on an analogy between ants and
neurons. Just as a forager uses the rate at which it meets returning
foragers to decide whether to leave the nest, so a neuron uses the
rate of stimulation from other neurons to decide whether to fire.
In neurons, the electrical charge leaks as it travels down the axon.
We modified the leaky integrator model to explain the firing rate
of neurons, to ask whether the decisions of outgoing foragers
could be based on a similar process.

In our model, each encounter between a returning and
outgoing forager stimulates the outgoing forager to leave the
nest, and this stimulus has a decay. If enough encounters occur
often enough, the stimulus reaches some stochastic threshold
value and the forager is likely to decide to leave the nest to forage.
We added another element to the model that does not apply to
neurons. Experiments showed that when no foragers return for
an extended period, about 8 min or more, the outgoing foragers
leave the entrance chamber and go down to the deeper nest where
they are not available to be stimulated to forage.

We were able to fit the model to data by developing a method
in the field to film ant interactions inside the nest. This allowed us
to obtain data on the rates of encounter of outgoing and returning
foragers inside the nest, as well as the rates of encounter of ants
that decided not to leave the nest on the next trip. These data fit
the predictions of the model. These results show that it is
plausible that a forager can assess interaction rate using a
physiological process in which each interaction it experiences
has a decay, and the decision depends on the accumulated
stimulation from encounters over time.

Once we understood the dynamics that regulate a forager’s
decision to leave the nest, we were able to consider the regulation
of foraging activity, and how it varies from day to day and among
colonies [40]. Using a low-dimensional analytical model from
control theory, we brought together the dynamics of different
aspects of the system, including interactions inside the nest and
foraging outside the nest [41].

The model brings together the encounters of foragers inside
the nest as an open loop with the activity of foragers going out to
search, retrieve seeds and return to the nest as a closed loop. It
uses excitability dynamics to represent how outgoing foragers
inside the nest respond to returning foragers to decide whether to
leave the nest to forage, and then uses a random delay distribution
to represent the activity of foragers outside the nest. The results
show how feedback from outgoing foragers returning to the nest
stabilizes the incoming and outgoing foraging rates to a common
value determined by the volatility of available foragers. There is a
critical volatility in the interactions of outgoing and returning
foragers, above which foraging activity continues at a set rate, and
below which foraging stops. Observations show that foraging
activity adjusts to changes in temperature and humidity both
within a day and from day to day. Our model suggests that these
adjustments occur because foragers modify their volatility after
they leave the nest and become exposed to the environment; a
forager’s experience on its last trip influences how it responds to
encounters with returning foragers.

In these examples, modelling was used to investigate
different aspects of harvester ant behavior. First, we
considered how the interactions of foragers of neighboring
colonies shape the spatial distribution of the population.
Then a series of models, combined with field experiments,
investigated the feedback that regulates foraging activity
through interactions of outgoing and returning foragers. We
found that interactions lead to individual forager decisions
whether to leave the nest, through excitable dynamics. Then
we combined these in a model that included both the excitable
dynamics and the adjustment of volatility by foragers in
response to the conditions they encounter outside. This
series of modelling projects show the role of feedback across
many timescales in the collective regulation of foraging activity,
and helps to explain how evolution is shaping collective
behavior through variation among colonies in individual
response to interactions [42].

Arboreal Turtle Ants
Turtle ants form networks of trails in the canopy of the tropical
forest. The network consists of a routing backbone that connects
several nests of the same colony, along which the ants distribute
resources, and temporary trails to ephemeral food sources. Ants
lay pheromone trails as they go, and when they get to a junction,
tend to take the edge with the most pheromone. The pheromone
evaporates over time, probably with an exponential decay. While
most ants follow the edge with the most pheromone, occasionally
some ant takes a different edge, not the one most strongly
reinforced. This allows for search and exploration, and also for
repair of breaks in the vegetation that interrupt the trail
network [43].
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We asked what is the algorithm that the ants use to maintain
and repair trails [44]. We modeled this as a distributed algorithm
with two parameters: the rate of evaporation of the pheromone,
and the probability that an ant leaves the trail to explore. We
found that the parameter values most successful in simulations
matched those from field observations [43]. This shows that this
model is plausible because it is consistent with field observations.

Next, we asked what objectives are optimized by the algorithm
that the ants use [45]. Unlike species that forage on the ground
and can go anywhere in a 2D plane, arboreal ants never leave the
tree canopy, and so the configuration of their trail networks is
constrained by the vegetation. We considered what objectives the
ant networks meet by comparing the observed turtle ant trail
networks with simulated networks of random, hypothetical trails
in the same surrounding vegetation. We made these comparisons
with trails optimized for different objectives: the shortest path, the
path with the least number of nodes or junctions in the
vegetation, and finally the path linking nodes with a 3D
configuration most likely to be reinforced by pheromone. To
consider the alternatives from which the ants choose a path, we
used data from maps of trail networks, tracking the path through
the tree canopy that the ants used, and also the vegetation around
the path. We found that the ants’ trails minimize the number of
nodes traversed, reducing the opportunity for ants to get lost at
each node, and favor nodes with 3D configurations most likely to
be reinforced by pheromone, thus keeping the ants together on
the same trail. The results showed that rather than finding the
shortest path, turtle ant trail networks take advantage of natural
variation in the environment to favor coherence, keeping the ants
together on the trails.

Next, we examined in detail what algorithm the ants use to
minimize the number of nodes or junctions in the trail network,
although no ant can assess the length of the trail [46]. This asks
what the details of the local interactions involving trail
pheromone are that have the outcome that trails minimize the
number of nodes, although no ant can assess the total number of
nodes in the trail.

The model is a form of a reinforced random walk on a directed
graph. The ants lay pheromone on edges and at each junction,
choose an edge with the most pheromone. The pheromone
decays with time. Ants travel both ways on the trail. Because
there is a consistent small probability that some ants explore, or
choose an edge that is not reinforced, every edge not taken is an
opportunity for leakage, losing ants off the trail. We found that
this process converges to the path with the fewest nodes bypassed
when the rate of flow of ants in both directions is constant.
However, when the flow rate increases, for example, due to the
discovery of a new food source, it converges to the shortest path.
We showed that the combination of forward and backward flow,
with ants laying pheromone (without directional signal) in both
directions, is necessary for convergence. Thus this model provides
a plausible explanation for how collectively the ants can minimize
the number of junctions in the path, or find the shortest path,
although no ant assesses the path’s length or number of nodes.

These modelling projects help to explain how colonies
maintain and repair trail networks that link nests and food
sources using only local information based on pheromone

intensity at junctions in the vegetation, how the networks are
shaped by the physical configurations of the vegetation, and
which aspects of the process contribute to the coherence of
the trails.

Midge Swarms
Chironomid midges, like most other species in order Diptera,
form swarms spontaneously as part of their mating process.
Swarms are composed entirely of males, and are thought to
provide targets for females to find mates. These swarms are
transient (tending to form at dawn and dusk based on light-
level cues), and form over ground-based features known as swarm
markers. Unlike flocks or mills, swarms are fixed in place, in that
the group as a whole does not exhibit net translational or
rotational motion; however, each individual is constantly
moving. Since the vector sum of the (nonzero) linear and
orbital angular midge velocities must vanish, the relative
motion of the midges must be either highly structured or
largely random. Empirically, the latter situation is what is
observed. However, the motion of individual midges is not
completely arbitrary, because they remain bound to the
swarm. In the wild, swarms form in free space with no
external constraints; thus, the swarm boundaries, which are
surprisingly tightly regulated, are dynamically set, and depend
most strongly on the number of individuals in the swarm [47].
More precisely, midges behave as if they are moving in a
harmonic potential well that binds them to the swarm [47].
The strength of this effective potential scales with the number
of midges in the swarm. This emergence of this effective potential
is one of the signatures that swarming is indeed collective despite
the difficulty of identifying specific interactions between
individuals [48].

Because swarms do not obviously accomplish any collective
tasks (aside from staying fixed despite environmental fluctuations
[49] and acting as a target for females), most models of swarms
are bottom-up. Building on the body of work done to understand
the Vicsek flocking model [15], one popular avenue for modeling
swarms has been to treat them as Vicsek flocks in the unpolarized
regime, often with additional attractive interactions [16] or a
confining potential [50, 51] to keep them cohesive. However, this
type of model makes predictions that do not agree with
observations, displaying, for example, much stronger attraction
to neighbors relative to other swarm features than is measured in
real swarms [48] or suggesting that swarms may spontaneously
polarize and become mobile flocks [51]. Part of the problem with
these models may indeed be that they start by assuming that the
collective behavior arises from direct interactions between
neighboring individuals, even though evidence for significant
interactions of this type is scant [48, 52].

A different modeling approach that has been more successful
in capturing observed features of swarms is to begin not by
assuming a particular type of behavioral interaction, but rather by
considering how midges sense each other. Midges in swarms
interact acoustically, perceiving the sound of the wingbeats of
other midges. Indeed, this is thought to be the primary
mechanism by which midges distinguish males from females,
as the fundamental wingbeat frequency is very different for males
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and females. Male midges transduce sound via their Johnston’s
organs, and to leading order, the strength of the sound signal they
perceive will decay as the inverse square of the distance from the
emitting source [53]. Inverse-square laws are, of course, very
common—perhaps most notably in gravitation. This observation
led us to model swarms as a kind of self-gravitating system
[53–57], following a line of reasoning that goes back to Okubo
[58]. This framework is very appealing, as it allows us to translate
intuition gained from studying gravitation to collective behavior.
Several observed features of swarms also naturally arise in a
gravitational model. Gravitational systems are, for example,
naturally bound together, but local interactions are difficult to
discern because gravitational forces are long-range. Additionally,
multi-body gravitating systems are well known to allow for
chaotic motion, so that the random and disordered nature of
the motion of individuals in the swarm can be captured without
needing to build it into the model explicitly.

A simple, purely gravitational model, although qualitatively
reasonable, does not quantitatively capture the structure of real
midge swarms [56]. However, we found that we can improve the
model by making an addition that is also grounded in biological
sensing. Most biosensors do not have a fixed gain; rather, to avoid
damage and improve sensitivity, their gain adapts to the input signal
strength. This typically occurs via the so-called fold-change detection
mechanism [59], also known as Weber’s law. In the case of a
gravitational swarm model, incorporating adaptivity means that
midges that are not too close to their neighbors primarily
respond to the net contribution of all of the other midges in the
swarm, while those that are close to neighbors respond primarily to
these nearby midges [53]. Note that this renormalization of the
effective force felt by individuals also formally makes the model
many-body, in that the adaptive force cannot be decomposed into the
linear superposition of the contributions from each individual midge.

Whether implemented in a deterministic way [53, 54, 56, 57] or
via a stochastic modelling framework [49, 55, 60, 61], adaptive-
gravity models of swarms correctly reproduce many features of
midge swarms. Model swarms display an emergent harmonic
potential, as they must given the form of the gravitational
interaction; but with adaptivity, they also reproduce the observed
weakening of the strength of the potential with increasing swarm size
[53]. They also reproduce the heavy tails seen in the acceleration
distributions [53, 60] and the distinct behavior of midges in the
swarm core as compared with those on the swarm periphery [60,
62]. What is perhaps more unexpected, since these adaptive-gravity
models do not explicitly model direct interactions between
individuals, is that such models also reproduce multipoint
properties of swarms. For example, they display similar transient
pairing of individuals as has been observed in real swarms [52, 57].
Adaptive-gravity swarms also display similarmaterial-like properties
such as effective viscoelasticity [60, 61].

To summarize, because the general function of swarms is not fully
understood, we approachedmodeling them from the bottomup.Our
primary goal was to understand a specific feature of the swarms,
namely the emergence of the effective potential that binds swarms
together and the way in which this potential varies with swarm size.
Appealingly, our models also reproduced other empirical features of
midge swarms. However, the models are certainly not full

descriptions of the biology; for example, these models cannot
shed light on the biological function of swarming.

Jackdaw Flocks
Jackdaws (Corvus monedula) are a highly social, colony-breeding
corvid. In the winter, when there are no young in the nest, they
roost together nightly in communal trees. At dusk, they form large
“transit” flocks to travel from their daytime foraging grounds to
their roosts. These flocks are highly polarized, in that the flight
directions of all the individuals in the flock are close to uniform. In
that sense, jackdaw transit flocks are qualitatively similar to those
other species of flocking birds that have been studied such as
European starlings. Unlike starlings, however, jackdaw societies are
highly structured; in particular, they are known to form lifelong
monogamous pair bonds [63]. Paired birds not only remain in close
proximity during foraging and nesting, but also qualitatively appear
to fly together during flocking [64]. Quantitative statistical analysis
of jackdaw transit flocks confirms the presence of paired birds,
which tend to remain unusually close together along their entire
flight trajectories [65].

Agent-based, bottom-up models that assume a tendency for
individuals to align their motion, such as the classic Reynolds [4] or
Vicsek [15] models, were first introduced with the intent of
capturing the behavior of bird flocks. Testing of these models,
however, occurred only many years later, due to the difficulty of
collecting detailed measurements of bird movement. Nevertheless,
when tested on starling flocks, these models have been shown to
perform reasonably well. They not only capture simple features of
the flocks, such as their high degree of polarization, but also more
subtle properties such as their long-range, scale-free velocity
correlations [66, 67]. To achieve agreement between the model
and the data, however, one significant modification was
required—not to the way in which individuals interact, but
rather to which individuals interact. Standard agent-based
models such as the Vicsek model assume that a given individual
responds to all others that lie within some distance of it. This way of
determining the interaction range is described as being metric,
because it depends on real, physical distance. Flocking starlings, in
contrast, were found to respond to a specific number of neighbors
(six or seven, empirically), regardless of their distance [68]. This
kind of interaction range is termed topological, because it does not
depend on distance.

In many ways, jackdaw transit flocks appear to be similar to
starling flocks. Like starling flocks, they are highly polarized and
exhibit long-range velocity correlations [65]. Jackdaws in transit
flocks also interact via a topological distance. An individual’s
topological range, however, depends on whether it is part of a
mated pair or not: paired birds interact with three to four others,
while unpaired birds interact with seven to eight [65]. This
difference has group-level consequences, as the correlation
length decreases monotonically with the fraction of jackdaws in
the flock that are paired. Because the correlation length can roughly
be taken to be a measure of the global responsiveness of the flock,
this result suggests that the more paired birds a jackdaw flock
contains, the less effectively that flock can detect and evade
predators. This effect can be reproduced by a Vicsek-style model
with a topological interaction rule and two classes of individuals

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 6878238

Ouellette and Gordon Modeling Collective Behavior

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


with different interaction ranges [65]. Pairing thus appears to have
an adverse effect on the group behavior, in a way that can be
captured by simple modeling. That finding led us to question
whether pairing also carries some advantage. And indeed, in
addition to any benefits that long-term pairing may convey
when not flocking, paired birds also gain individual benefits
from pairing when participating in transit flocks. An analysis of
the wingbeat frequencies of paired and unpaired birds shows that
paired birds beat their wings more slowly on average, and thus
expend less energy flying in the flock than their unpaired
conspecifics [65]. This effect is not captured by simple Vicsek-
style agent-based modeling, since such models do not consider
energy expenditure; rather, self-propulsion is simply assumed at no
cost to the individual.

Jackdaws in the winter roosting season, in contrast to the
summer nesting season, roost in separate nests while taking care
of their young, and transit flocks do not form. However, even in
this season jackdaws will come together when responding to
distinctive scolding calls to mob predators [69]. This behavior can
be induced using model predators and playbacks of recorded
scolding calls [70].

Mobbing flocks are qualitatively different from transit flocks.
Paired birds, for example, are not evident, presumably because one
member of each pair remains in the nest with the young. The more
significant difference between mobbing and transit flocks, however,
is that the interactions among individuals in mobbing flocks occur
over metric rather than topological distances [70]. Rather than
interacting with a fixed number of neighbors, jackdaws in mobbing
flocks align their motion with neighbors over a real physical
distance, perhaps because they need to be careful about keeping
their distance from the predator. This difference has consequences
for the structure of mobbing flocks. Whereas transit flocks do not
show a qualitative dependence on flock size, small mobbing flocks
are loose and disordered while large mobbing flocks are dense and
polarized [70]. The development of this large-scale order as the
flock density increases is captured remarkably well by the Vicsek
model using a metric distance [71].

When tested against quantitative observational data, bottom-up,
agent-based models thus capture a fairly broad range of the features
of jackdaw flocks. In particular, we were able to use modeling to
assess the likelihood that pairing (and, more generally, differences in
local interaction range and type) was responsible for the decrease in
correlation length that we observed. However, the results described
here also illustrate the limitations of such models. In particular, the
observation that jackdaws in transit flocks interact via topological
distances but use metric distance in mobbing flocks dispels any
notion that there may be a single model for bird flocks, or even a
single model for a given species. Ecological context is an essential
factor for designing appropriate models, and cannot be ignored.

DISCUSSION AND CONCLUSION

These four examples illustrate how different modeling
approaches can be used to address questions about collective
behavior in biological systems. For both harvester ants and turtle
ants, we know at least some of the functions that the collective

behavior performs: the regulation of foraging in the case of
harvester ants, and the construction and maintenance of trails
in the case of turtle ants. For both of these examples, modeling
shows in a simplified way how these distributed systems can
accomplish these tasks given only local information. For both
midge swarms and jackdaw flocks, however, the situation is
somewhat different because the purpose of the collective
behavior is less clear. The role of modeling in these examples
thus cannot be to explain how the group achieves a task. Instead,
in the case of midge swarms, we used models to describe the
nature and properties of their non-random aspects. For jackdaws,
we used models to understand the consequences of differences in
local interactions between different individuals and of different
ways of determining interaction distance. Importantly, in none of
our examples did we attempt to create a single, complete model
for the collective behavior; rather, our models were designed to
ask specific questions or test specific hypotheses.

We argue that this approach, recognizing the limitations of
models and deploying them in targeted, judicious way, is not
simply an expression of ignorance but instead is a necessary
consequence of the characteristics of biological systems. Biology
is not physics. Organisms are not all the same, and even single
individuals do not always respond the same way to stimuli.
However, these variations are not purely stochastic, but rather
are influenced and biased by many factors. The powerful
constraints of conservation laws and symmetries that give rise
to universality in physics simply do not apply to biological
systems. Additionally, the types of questions that are pertinent
to a biologist are different from those typically asked in physics.
For physicists, the consequence is that there will probably never
be a single unified model of collective behavior in biology, or even
of the simpler problem of collective movement. Instead, we must
acknowledge that the goal of models based on the physics
approach is to explicate general principles of how global
properties can arise from local interactions, and perhaps to
constrain what kinds of properties are possible, while
making it clear that such models are not intended to
reproduce the details of any particular biological system. All
models are limited and imperfect. Biologists will not be able to
take a model off the shelf and apply it to a new system. Instead,
we can bring together the modeling tools from different
approaches to learn more about how collective behavior
operates, and to identify for further investigation the
processes that we do not yet understand.
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