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When implementing a pseudo-random number generator (PRNG) for neural network chaos-
based systems on FPGAs, chaotic degradation caused by numerical accuracy constraints
can have a dramatic impact on the performance of the PRNG. To suppress this degradation,
a PRNG with a feedback controller based on a Hopfield neural network chaotic oscillator is
proposed, in which a neuron is exposed to electromagnetic radiation. We choose the
magnetic flux across the cell membrane of the neuron as a feedback condition of the
feedback controller to disturb other neurons, thus avoiding periodicity. The proposed PRNG
is modeled and simulated on Vivado 2018.3 software and implemented and synthesized by
the FPGA device ZYNQ-XC7Z020 on Xilinx using Verilog HDL code. As the basic entropy
source, the Hopfield neural network with one neuron exposed to electromagnetic radiation
has been implemented on the FPGA using the high precision 32-bit Runge Kutta fourth-order
method (RK4) algorithm from the IEEE 754-1985 floating point standard. The post-
processing module consists of 32 registers and 15 XOR comparators. The binary data
generated by the scheme was tested and analyzed using the NIST 800.22 statistical test
suite. The results show that it has high security and randomness. Finally, an image encryption
and decryption system based on PRNG is designed and implemented on FPGA. The
feasibility of the system is proved by simulation and security analysis.

Keywords: PRNG, hopfield neural network, electromagnetic radiation, chaotic degradation, FPGA, security analysis,
image encryption and decryption system

1 INTRODUCTION

With the rapid development of digital communication technology, especially in today’s increasingly
popular smart phones and network communication, more and more people are demanding security for
private information [1–5]. Cryptography has been commonly used for fast transmission of information
and data and can meet the privacy information security requirements. The secure transmission of
information and data relies on the randomness of the security keys of information security systems
[6–10]. Therefore, the use of high-quality random sequences as security keys and encrypted data is
increasingly common in today’s information security systems. In the field of information security,
pseudo-random number generators (PRNGs), an important part of stream ciphers, can efficiently
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generate random sequences with high randomness and sensitivity
and improve the security of information security systems [11, 12]. At
the same time, the development of neural network chaotic systems
also provides new theoretical basis and ideas for the design of PRNGs,
but some information security problems that may arise are of
increasing concern. Thus, the construction of high-performance
PRNGs using neural network chaotic systems has been taken as
an important topic in the research of information security field.

Chaos is unpredictable, irreducible, and sensitive to initial
conditions. In recent years, various constructions of chaotic systems
have been proposed [13–18]. So far, chaotic systems have been widely
used in various fields that already exist, such as synchronization
[19–21], secure communication [22, 23], neural network chaotic
systems [24–32], and PRNGs [33–38]. Among them, PRNGs based
on chaotic systems are the most fundamental applications of chaotic
systems. However, the performance of RPNG is greatly affected by the
chaotic degradation caused by the computational accuracy [39–44]. To
overcome this problem, Chen et al. [39] proposed a PRNG with three
different dimensions of quadratic memory hyperchaotic systems as
multiple entropy sources, and the XOR operation was performed on
the three different dimensions of the entropy sources, and the
generated high-quality random sequences passed the ENT and
NIST 800-22 tests. Zhao et al. [40] designed a new hyperchaotic
system based on a self-turbulent PRNG, where a feedback controller in
the system is used to achieve perturbation of other dimensions, thus
avoiding the transient cycle phenomenon and, ultimately, overcoming
the chaotic degeneracy arising from computational accuracy problems.
As far as the techniques of [39, 40] are concerned, these twoPRNGs are
implemented in software using algorithms based on multi-chaotic
systems and feedback controllers for self-perturbation of other
dimensions, respectively, to overcome the chaotic degeneracy.
However, hardware-based implementations do not guarantee
flexible use. All the above mentioned are applications of PRNG
based on chaotic systems, while the applications of PRNG based on
neural networks have been reported rarely.

In recent years, neural network chaotic dynamics has been
extensively studied [45–49]. Therefore, PRNGs based on neural
network chaotic systems implemented by FPGAs have attracted
the attention of more and more researchers. Dong et al [50]
controlled the input and output of the six-dimensional cellular
neural network generated by each iteration and performed XOR
operations on the random sequences generated by the logic mapping.
Ultimately, the period of the output sequence can be extended to
improve the transient cycle phenomenon and the randomness and
unpredictability of the generated random sequence, and the
experimental results passed the NIST statistical test. In [36], a
novel chaos-based PRNG was designed using an artificial neural
network (ANN)-based 2D chaotic oscillator and a ring oscillator
structure. VHDL coding was used to synthesize the chip using the
XILINX-ISE design tool, and the generated random sequences passed
the NIST-800-22 randomness test, proving that the new FPGA-based
value of the existence of PRNGs. In [37], a hardware-orientedChaotic
Boltzmann Machines (CBMs) algorithm, which includes fixed-point
and shift operations to reduce the hardware resource utilization of the
circuit, is proposed. Thus, CBMs are implemented on FPGA, and the
computational speed of the FPGA-implemented CBMs is compared
with that of the software-implemented CBMs, proving that the FPGA

implementation of CBMs outperforms the other solutions. As far as
the hardware implementation is concerned, FPGA use already
established logic modules and reprogrammable wiring resources to
implement the required hardware functions [50]. At the same time,
FPGA can take full advantage of hardware parallelism, enablingmore
tasks to be performed in a fixed cycle as opposed to sequential
execution, reducing design and test cycle costs and increasing the
diversity and flexibility of PRNGs based on neural network chaotic
systems [37, 38]. But so far, there is no research on PRNG of chaos
system based on FPGA Hopfield neural network.

In this work, in order to reduce the impact of chaotic degradation
caused by FPGA implementation on the quality of random sequence
generation and to improve the randomness of random numbers
generated by PRNG, a PRNG with a feedback controller based on
Hopfield neural network oscillator containing a feedback controller is
designed in this paper. Among them, a feedback controller is used to
reduce the chaotic degradation phenomenon and improve the quality
of random sequences. First, the dynamical behavior of the three-
neuron Hopfield neural network system with one neuron exposed to
electromagnetic radiation was analyzed, and the neural network
model was implemented using FPGA, and the experimental results
were consistent with the software simulation results. Second, a PRNG
with a feedback controller based onHopfield neural network oscillator
containing a feedback controller was designed to post-process the
generated random numbers to generate high-quality random
sequences, and compared with PRNG based on Hopfield neural
network chaotic oscillator, the randomness and security of random
sequence are analyzed. Finally, a PRNG-based image encryption and
decryption system was implemented on FPGA, and passed the
simulation and security analysis on matlab platform.

The rest of this paper is presented as follows. In Section 2, the
mathematicalmodel of theHopfield neural network chaotic system is
analyzed, simulation results of the FPGA-based model are given, and
the FPGA implementation is used. In Section 3, the flow structure of
the PRNG proposed in this paper is introduced, the PRNG is
implemented on FPGA, and the FPGA-based experimental results
with chip statistics are out. In Section 4, the randomness and security
of the random sequences generated by the PRNG are analyzed. In
Section 5, the flow of implementing PRNG-based image encryption
and decryption system on FPGA is presented, and the engineering
application results are shown. Finally, Section 6 concludes the paper.

2 SYSTEM INTRODUCTION AND
IMPLEMENTATION BASED ON FPGA
2.1 The System Model and Dynamic
Analysis of Hopfield Neural Network
2.1.1 The State Model of the System
More and more attention has been paid to the research of multi-
dimensional chaos systems based onHopfield neural networks.Many
different chaotic systems based on Hopfield neural networks have
been successfully introduced, such as [24, 29]. Recently, Lin et al. [29]
proposed a three-neuron Hopfield neural network system with one
neuron exposed to electromagnetic radiation. Under different control
parameters, the system shows rich chaotic dynamic behavior, and the
corresponding lyapunov exponents simulation results further verify
this result. This system is given by the following equation

Frontiers in Physics | www.frontiersin.org June 2021 | Volume 9 | Article 6906512

Yu et al. PRNG based on neural network

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


⎧⎪⎪⎪⎨⎪⎪⎪⎩
_x � −x − a tanh(y) + b tanh(z) + cxQ(w)
_y � −y + d tanh(x) + e tanh(y) − f tanh(z)
_z � −z + g tanh(x) + h tanh(y)
_w � mx − nw

(1)

Q(w) � α − β|w| (2)

In Eq. 1, x, y, z and w are system variables, where x, y, and z
represent the membrane voltages of three neurons respectively,
x describes the magnetic flux of neurons exposed to
electromagnetic radiation, and tanh(i) is a hyperbolic tangent
function, which is the neuron activation function and represents
the input voltage of neuron i � (x, y, z,w). Q(w) is memory
conductance of a flux-controlled memristor, which represents
the coupling relationship between the coupling of magnetic flux
and membrane potential in neurons exposed to electromagnetic
radiation. α and β are two electromagnetic radiation parameters.
Therefore, Eq. 1 represents the state equation of three neuron
Hopfield neural network, where neuron x is exposed to
electromagnetic radiation.

2.1.2 Discrete Model of System
The discretization process of the neural network model is the key
to realize the neural network model on FPGA. According to the
equation obtained after the discrete processing, we can determine
the number of registers, adders, subtractors, multipliers,
comparators, and other modules needed in the hardware
implementation. In this study, the whole discretization process
is accomplished by RK4 numerical algorithm. The mathematical
equation of this numerical algorithm is given by Eq. 3.

x(i + 1) � x(i) + 1
6
(Kx1 + 2Kx2 + 2Kx3 + Kx4)

Kx1 � Δh[ − x(i) − 3.5 tanh(y(i)) + 0.5 tanh(z(i)) + 2.5x(i)(0.24 − 0.7|w(i)|)]
Kx2 � Δh[ − (x1(i) + Kx1

2
) − 3.5 tanh(y(i)) + 0.5 tanh(z(i)) + 2.5(x1(i) + Kx1

2
)(0.24 − 0.7|w(i)|)]

Kx3 � Δh[ − (x1(i) + Kx2

2
) − 3.5 tanh(y(i)) + 0.5 tanh(z(i)) + 2.5(x1(i) + Kx2

2
)(0.24 − 0.7|w(i)|)]

Kx4 � Δh[ − (x1(i) + Kx3) − 3.5 tanh(y(i)) + 0.5 tanh(z(i)) + 2.5(x1(i) + Kx3)(0.24 − 0.7|w(i)|)],
y(i + 1) � y(i) + 1

6
(Ky1 + 2Ky2 + 2Ky3 + Ky4)

Ky1 � Δh[ − y(i) + 0.7 tanh(x(i)) + 3.4 tanh(y(i)) − 1.6 tanh(z(i))]
Ky2 � Δh[ − (y(i) + Kx1

2
) + 0.7 tanh(x(i)) + 3.4 tanh((y(i) + Ky1

2
)) − 1.6 tanh(z(i))]

Ky3 � Δh[ − (y(i) + Kx2

2
) + 0.7 tanh(x(i)) + 3.4 tanh((y(i) + Ky2

2
)) − 1.6 tanh(z(i))]

Ky4 � Δh[ − (y(i) + Kx3) + 0.7 tanh(x(i)) + 3.4 tanh((y(i) + Ky3)) − 1.6 tanh(z(i))],
z(i + 1) � z(i) + 1

6
(Kz1 + 2Kz2 + 2Kz3 + Kz4)

Kz1 � Δh[ − z(i) + 0.95 tanh(x(i)) + 2.5 tanh(y(i))]
Kz2 � Δh[ − (z(i) + Kz1

2
) + 0.95 tanh(x(i)) + 2.5 tanh(y(i))]

Kz3 � Δh[ − (z(i) + Kz2

2
) + 0.95 tanh(x(i)) + 2.5 tanh(y(i))]

Kz4 � Δh[ − (z(i) + Kz3) + 0.95 tanh(x(i)) + 2.5 tanh(y(i))],
w(i + 1) � w(i) + 1

6
(Kw1 + 2Kw2 + 2Kw3 + Kw4)

Kw1 � Δh[1.9x(i) − 1.5w(i)]
Kw2 � Δh[1.9x(i) − 1.5(w(i) + Kw1

2
)]

Kw3 � Δh[1.9x(i) − 1.5(w(i) + Kw2

2
)]

Kw4 � Δh[1.9x(i) − 1.5(w(i) + Kw3)]
(3)

where the step size of each iteration is Δh � 0.001, and
Kj1,Kj2,Kj3,Kj4(j � x, y, z,w) respectively represent the slopes
of four points in one iteration. In an iterative process,
(x(i), y(i), z(i),w(i)) provide data for the system, while
(x(i + 1), y(i + 1), z(i + 1),w(i + 1)) obtain data to provide
data for the next iteration.

In Eq. 1, the hyperbolic tangent function, which is superior to
the sigmoid activation function, is taken as the neuron activation
function. Look-up table has always been a traditional way to realize
the hyperbolic tangent function, but its implementation on FPGA
is very challenging due to the limitation of hardware quantity.
Kwan et al. [49] introduced a simple sigmoid-like second-order
piecewise activation function, which can be implemented directly
in hardware and is close to hyperbolic tangent function. Therefore,
the tanh-like bipolar function and the simple sigmoid-like second-
order piecewise function are given by

tanh(i) � Gs(i) �
⎧⎪⎨⎪⎩ 1, L≤ i

Hs(i),−L< i< L
−1, i≤ − L

(4)

Hs(i) � { i(μ − θi), 0≤ i< L
i(μ + θi),−L< i< 0 (5)

Here μ � 1 and θ � 0.25 represent the slope and gain ofHs(i), and
L � 2 determines the length of the middle area. Eq. 3, Eq. 4 and
Eq. 5 provide a guarantee for the implementation of neural
network system model on FPGA with RK4 numerical algorithm.

2.1.3 Dynamic Analysis of the System
In this paper, because the ODE45 function on the Matlab
platform is basically the same as the RK4 algorithm in the
discrete process, the dynamics analysis of the neural network
chaotic system is completed on the Matlab platform on the basis
of the ODE45 function and Eq. 4.

When the system parameters are set as a � 3.5, b � 0.5, c �
2.5,d � 0.7, e � 3.4, f � 1.6, g � 0.95, h � 2.5,m � 1.9,n � 1.5, α �
0.24,β � 0.7 and the initial condition is selected as
(0.1, 0.1, 0.1, 0.1). The step size of each iteration is Δh � 0.001.
The Lyapunov exponential spectrum of Eq. 1 with respect to
parameter a, as shown in Figure 1. It is clear from the
Figure 1A that there is a positive Lyapunov exponent in the
system and that when a � 3.5, the Lyapunov exponent is
LE1 � 0.324,LE2 � 0.009,LE3 � −0.378,LE4 � −1.675. It can be
seen from Figure 1B that on the lyapunov exponent, LE1 is
greater than 0, LE2 is equal to 0, LE3 and LE4 are less than 0.
When a dynamical system obtains a correct initial condition, the
orbit of the system tends to a certain steady state as time passes. This
special steady-state is called the attractor of the system. In this paper,
the phase diagram of the system is simulated by Matlab which is
shown in Figure 2. Figure 3 shows the time series of state variables x
and w. In order to further explore the dynamic behavior of neural
network chaotic system, when the parameters of neural network
chaotic system remain unchanged, the attractor basin of its initial
state change is considered to verify the multi stability of the system.
Setting the initial state of x and z as 0, we can draw the attractors of y
and w initial plane, in which red, blue and yellow represent different
types, different structures and different amplitudes of attractors.
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Similarly, the basins of attraction of the initial planes x and z can be
drawn in the graph, as shown in Figure 4. Therefore, the Hopfield
neural network chaotic system has rich dynamic behavior.

2.2 Implementation of Hopfield Neural
Network System on FPGA
In this paper, a three-neuron Hopfield neural network system with
neuron x exposed to electromagnetic radiation is implemented on
the Vivado 2018.3 design platform, and the required modules, such
as adders, subtractors, multipliers and comparators, are obtained or
created using the IP-CORE generator developed for the platform.
The source files of the RK4 numerical algorithm and Eq. 1 are
constructed using the requiredmodules and VerilogHDL hardware
language under IEEE 754-1985 high precision 32-bit floating point
standard. The flow block diagram of the FPGA-based neural
network chaotic oscillator has been shown in Figure 5.

As shown in Figure 5, the Hopfield neural network chaotic
oscillator has four input signals and five output signals. Start and
Clk are 1-bit input signals, which are used to synchronize each
module unit. Δh and the initial value (X0,Y0,Z0,W0) are both
32-bit input signals, where Δh � 0.001 is a parameter representing
the step size. These two input signals are obtained from the outside
and can be easily modified. The four 32-bit output signals
(X Out,Y Out,Z Out,W Out) are input to the floating to fixed

unit and used as the initial values of the next iteration of the Hopfield
neural network chaotic oscillator. The floating to fixed unit converts
the input 32-bitfloating point number into 14-bit fixed-point number.
The DAC unit converts the output signal of the floating to fixed unit
into an analog signal, and then outputs the analog signal (x,w) to
Xilinx ZYNQ-XC7Z020 chip. The validity of the output signals (x,w)
is determined by the XYZW Ready signal of 1-bit. The simulation
result of vivado simulator are shown in Figure 6. Then, the Xilinx
ZYNQ-XC7Z020 chip is connected to the computer and oscilloscope
respectively, and the bitstream file generated by vivado2018.3 platform
is transmitted to the chip. The result of oscilloscope is shown in
Figure 7. The results show that the phase diagram of the Hopfield
neural network with neuron x exposed to electromagnetic radiation
based on FPGA is consistent with its MATLAB simulation phase
diagram, which verifies the validity of the FPGA.

3 DESIGN AND FPGA IMPLEMENTATION
OF PRNG

3.1 Design of PRNG
In this part, PRNG based on three-neuron Hopfield neural network
with neuron x exposed to electromagnetic radiation is composed of
entropy source, feedback controller unit, sampling quantization unit
and post-processing unit. The structure of PRNG is shown in

FIGURE 1 | Eq. 1 sets the parameters as a � 3.5, b � 0.5, c � 2.5,d � 0.7, e � 3.4, f � 1.6, g � 0.95, h � 2.5,m � 1.9, n � 1.5, α � 0.24, β � 0.7 and the initial
condition is selected as (0.1, 0.1,0.1, 0.1). (A) is the spectrum of Lyapunov exponent with parameter a ∈ (3, 5), (B) is the spectrum of Lyapunov exponent with time.

FIGURE 2 | Phase diagram of the Hopfield neural network chaotic system. (A) x − w plane phase diagram; (B) y − w plane phase diagram.
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Figure 8. In the entropy source unit, the lyapunov exponent of the
first dimension of Eq. 1 is the largest, indicating that the sensitivity of
neuron x is higher, and the change of neuron x will cause the change
of other neurons and the magnetic flux passing through neurons.

Therefore, in order to solve the chaotic degradation problem brought
by FPGA implementation, the magnetic fluxw of neuron x is used as
a judgment condition in the feedback controller to selectively interfere
with neuron x. The specific steps are as follows.

FIGURE 3 | Display the time series diagram of state variables x and w. (A) the time series of state variables x (B) the time series of state variables w.

FIGURE 4 | The basin of attraction on the plane: (A) is the basin of attraction on the x(0) − z(0) plane; (B) is the basin of attraction on the y(0) − w(0) plane.

FIGURE 5 | The flow block diagram of the FPGA-based Hopfield neural network system.
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Step 1. Acquire the 32-bit output signal of the magnetic flux
W OUT and the 32-bit output signal of the neuron X OUT.
Step 2. Take the 16th and 17th bit of W OUT for XOR
operation to get 1-bit output w′. If w′ is equal to 1, let
X1 OUT � X OUT + 0.0002; Otherwise, let X1 OUT �
X OUT − 0.0002.

The output of the feedback controller is given to the
sampling quantization unit and used as the input value of
the next iteration of the Hopfield neural network oscillator. By
using this feedback controller, the period of the random
sequence generated by the PRNG can be greatly extended,
and the quality of the pseudo-random sequence can be
improved.

In the sampling quantization unit, according to ieee 754-
1985 high-precision 32-bit floating-point standard, in each
iteration, bits between 0 and 15 are taken from the four
output signals (X1 OUT ,Y1 OUT ,Z1 OUT ,W1 OUT) of the
feedback controller unit, and four random sequences
(X,Y ,Z,W) are obtained by quantization. These four random
sequences form a random sequence in order from the first to the
fourth dimensions and output the random sequence to the post-
processing unit. The post-processing unit can greatly improve the
randomness of the random sequence. In this paper, the initial
state of the post-processing unit is shown in Figure 9, which
consists of 32 registers and 15 XOR comparators. Among them,
the first 16 registers are all 0, and the last 16 registers

FIGURE 6 | The behavior simulation results given by the vivado platform simulator.

FIGURE 7 | The oscilloscope shows the experimental results of (A) FPGA-based x − w plane phase diagram; (B) FPGA-based y − w plane phase diagram; (C) and
(D) indicate the experimental setup of (A) and (B), respectively.
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(k0, k1, k2,/, k14, k15) are obtained from the random sequence
output by the sampling quantization unit in order. The registers
are shifted forward one bit at a time, and the XOR operation is
completed sequentially. Eventually, every 16 shifts, the last 16-bit
of the registers need to be added from the random sequence
again. 15 XOR comparators will self-XOR the first 16-bit to
generate a 1-bit random number. Until all random sequences are
post-processed. Thus, the PRNG generates 64-bit random
numbers in each iteration.

3.2 FPGA Implementation of PRNG
On the Vivado 2018.3 platform, the simulation results of Hopfield
neural network based chaotic oscillator PRNG with feedback
controller proposed in this paper on FPGA are shown in
Figure 10. Completed by Verilog HDL code. According to the
implementation time report, FPGA runs at a clock frequency as
high as 109.337 MHz, with a minimum running period of
9.146 ns. The data rate of PRNG can reach 16.20 Mbit/s.
Table 1 shows the statistics of Xilinx ZYNQ-XC7Z020 chip of
PRNG based on FPGA. Finally, the generated bitstream file is
output to the oscilloscope, as shown in Figure 11.

4 SAFETY ANALYSIS

4.1 Dynamical Degradation
In hardware implementation, chaos degradation caused by
calculation accuracy will greatly affect the randomness of PRNG.
For example, the short period phenomenon may appear in chaotic
simulation, which results in periodicity of random sequence, and
finally leads to the failure of random sequence test. At present, NIST
800.22 test suite is the most commonly used randomness test
standard, which can use 15 test methods to evaluate a large
number of random sequences. Therefore, to determine the
randomness of the PRNG with a feedback controller based on
the Hopfield neural network chaotic oscillator, we tested its
generated random sequences using the NIST 800.22 test suite. In
this paper, the PRNG discarded the first 50,000 bits of the random
sequence and put the resulting 100 1-MIT test random sequences
into the NIST 800.22 test suite. The test results of the random
sequences generated by the PRNG based on the original Hopfield
neural network chaotic oscillator and the random sequence generated

by the PRNGbased on theHopfield neural network chaotic oscillator
with a feedback controller are shown in Table 2 (a) and (b),
respectively. By comparison, three items in the test result (a) show
that the p valve is less than 0.01, and when the p valve is within the
range of [0.01,1], it means that the test passed. Therefore, three items
in (a) failed NIST 800.22 test suite. Test result (b) shows that all 15
tests have passed, and the random sequence has good randomness. It
can be seen that the feedback controller can greatly reduce the impact
of chaos degradation on random sequences.

4.2 Key Space Analysis
The size of key space is an important index to determine the security
of encryption system, and it is very important to choose the right key
space. Large key space can improve encryption strength and better
resist key analysis. The small key space can not resist exhaustive
attack, and the password is easier to be cracked. Usually, when the
key space is greater than 2128, the security of the cipher system can be
ensured and the exhaustive attack can be resisted. In this paper, the
Hopfield neural network chaotic oscillator and a feedback controller
are used to construct PRNG. According to the IEEE 745-1985
floating point standard, the system key consists of the initial
conditions (x0, y0, z0,w0) and the system parameters
(a, b, c, d, e, f , g, h,m, n, α, β) of the Hopfield neural network
chaotic oscillator, totally 512-bits. Therefore, the key space of the
system is 2512, which is much larger than 2128, and there is enough
space to resist the exhaustive attack.

4.3 Key Sensitivity Analysis
It is well known that chaotic systems are very sensitive to
parameters and initial conditions. Therefore, the proposed
PRNG with feedback controller based on Hopfield neural
network chaotic oscillator should maintain the same sensitivity.
Key sensitivity test is used to analyze the impact of small changes in
initial conditions or parameters on the corresponding output.
When PRNG has high sensitivity, small changes in the input
will lead to huge differences in the corresponding output. In this
test, the initial conditions (x0, y0, z0,w0) � (0.1, 0.1, 0.1, 0.1) and
parameters (a � 3.5, b � 0.5, c � 2.5, d � 0.7, e � 3.4, f � 1.6, g � 0.95,
h � 2.5, m � 1.9, n � 1.5, α � 0:24; β � 0:7) of the chaotic system are
input into the proposed PRNG to generate a 106 bits reference
pseudo-random sequence S1, and then the initial conditions and
parameters are slightly changed as follows.

FIGURE 8 | The structure of PRNG.
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1) By modifying the initial condition x0 � 0.1 to x′0 � 0.1 +
10−8 a new test pseudorandom sequence S2 with 106 bits is
obtained.

2) By changing the parameter a � 3.5 to a′ � 3.5 + 10−8, a new
test pseudo-random sequence S3 with 106 bits is obtained.

The bit change rate has always been considered as an important
index tomeasure the sensitivity of PRNG. The closer the bit change
rate is to 50%, the higher the key sensitivity of PRNG. The formula
of the corresponding bit change rate is as follows:

P � ∑n
k�1

∣∣∣∣Sa(k) − Sb(k)
∣∣∣∣

n
× 100% (6)

where p and N represent the bit change rate and sequence length,
Sa(k) and Sb(k) represent the bit values of the kth bit of the
reference random number sequence Sa and the test random
number sequence Sb. In this paper, S1 is compared with S2
and S3 respectively, and the bit change rate obtained is shown
in Table 3. As can be seen from the table, when the input initial
conditions and parameters of the Hopfield neural network
chaotic oscillator with feedback controller PRNG increase by
only 10−8, the bit change rate is very close to 50%. This shows that

PRNG is highly sensitive to initial conditions and parameters, and
can meet the requirements of security applications. When the
initial input condition x0 and parameter a change by 10−8, the
time-domain waveform of chaotic oscillator neuron x of the
Hopfield neural network disturbed by the feedback controller
is shown in Figure 12. Figure 12A shows the time domain
diagram of neuron x when only initial condition x0 changes,
and Figure 12B shows the time domain diagram of neuron x
when only parameter a changes. Thus, the chaotic oscillator of
Hopfield neural network disturbed by the feedback controller is
very sensitive to the initial conditions and parameters.

4.4 Correlation Analysis
Auto-correlation and cross-correlation analysis are important
methods to detect the correlation between two random sequences
of equal length. Among them, auto-correlation is used to detect
the random sequence and its shifted sequence, and cross-correlation
is used to detect adjacent test random sequences. Now there are
two adjacent random sequences X � {X1,X2,/,Xn} and
Y � {Y1,Y2,/,Yn}, Xi and Yi denote the random numbers in
the random sequencesX andY, i � {1, 2, 3,/, n}. So the calculation
formula of correlation is shown in Eq. 7.

RXY � Cov(X,Y)
SXSY

�
∑n

i�1(Xi−X)(Yi−Y)
n−1���������∑n

i�1 (Xi−X)2
n−1

√ ���������∑n

i�1 (Yi−Y)2
n−1

√
� ∑n

i�1(Xi − X)(Yi − Y)������������∑n
i�1 (Xi − X)2√ ������������∑n

i�1 (Yi − Y)2√ (7)

where the correlation coefficientRXY ∈ (−1, 1) . The closer theRXY is
to 0, the more independent the sequence is, and the closer the RXY is

FIGURE 9 | Flow chart of the initial state of the post-processing unit.

FIGURE 10 | Behavioral simulation results of the Hopfield neural network oscillator-based PRNG with feedback controller.

TABLE 1 | Chip Statistics of PRNG with feedback controller based on Hopfield
neural network chaotic oscillator.

Xilinx ZYNQ-XC7Z020 chip statistics Used/utilization %

Number of Slice LUTs 37,977/71.39
Number of fully used LUT-FF pairs 47,195/44.36
Number of bonded IOBs 20/16.00
Operating Frequency (MHz) 109.337
The data rate of PRNG (Mbit/s) 16.20
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to 1 or −1, the stronger the positive or negative correlation between
the sequences. Cov(X,Y) is the covariance of the sequence, and SX
and SY are the standard deviations of the sequence. n denotes the

length of the sequence and X � ∑n
i�1

Xi
n , Y � ∑n

i�1
Yi
n . The calculated

correlation coefficientRXY � 2.07 × 10−4, so it can be considered that
there is no correlation between the two test random sequences. Auto-
correlation detection and cross-correlation detection are shown in
Figure 13. Figure 13A shows the auto-correlation between test
random sequences and its shifted sequences generated by 15 keys,
and Figure 13B shows the cross-correlation between test random
numbers generated by 15 adjacent keys. It can be seen from the figure
that there is no correlation between pseudo-random sequences
generated by PRNG proposed in this paper.

5 DESIGN AND IMPLEMENTATION OF
IMAGE ENCRYPTION AND DECRYPTION
SYSTEM BASED ON PRNG
In recent years, image and video encryption based on chaotic
system has been widely studied and applied [51–56]. As the
main application of chaotic system, PRNG has been paid more

and more attention in the field of image encryption [57–59]. At the
same time, FPGA also provides strong support for the engineering
application of chaotic system [60]. Therefore, as the basis of
different engineering applications based on PRNG, FPGA has
been paid more and more attention. It is understood that the
PRNG with feedback controller based on Hopfield neural network
chaotic oscillator proposed in this paper has a complex
mathematical model and requires a large amount of chip
resources in FPGA implementation. Currently, there is no image
encryption system based on this PRNG implemented by FPGA.

5.1 System Simulation and Security Analysis
5.1.1 System Simulation
In this section, we propose an image encryption system based on
the pseudo-random sequences generated by PRNG, and complete
the simulation and security analysis on matlab platform. The

TABLE 2 | (A) shows the randomness test results of random sequences generated by PRNG based on the original Hopfield neural network chaotic oscillator, and (B) shows
the randomness test results of random sequences generated by PRNG with a feedback controller based on the Hopfield neural network chaotic oscillator.

Statistical test (a) Proportion P-valve Results (b) Proportion P-valve Results

Frequency 1 0.249,284 Success 0.99 0.108,791 Success
BlockFrequency 0.99 0.001030 Failure 0.98 0.401,199 Success
CumulativeSums 0.99 0.080519 Success 0.99 0.759,756 Success
Runs 0.99 0.779,188 Success 0.99 0.494,392 Success
LongestRun 1 0.037566 Success 1 0.719,747 Success
Rank 0.98 0.637,119 Success 1 0.334,538 Success
FFT 1 0.719,747 Success 1 0.991,468 Success
Non Over lapping Template 0.95 0.983,453 Success 1 0.998,821 Success
Over lapping Template 0.97 0.275,709 Success 0.98 0.419,021 Success
Universal 1 0.983,453 Success 0.98 0.032923 Success
ApproximateEntropy 0.92 0.000000 Failure 0.97 0.129,620 Success
RandomExcursions 1 0.982,743 Success 1 0.999,438 Success
RandomExcursionsVariant 1 0.012650 Success 1 0.568,055 Success
Serial 0.94 0.000000 Failure 0.99 0.108,791 Success
LinearComplexity 0.98 0.595,549 Success 0.99 0.897,763 Success

TABLE 3 | The bit change rate of random number sequence S2 and.S3

Δx= x90 − x0 Δa =a9 −a P(%)

S2 10−8 0 49.96%
S3 0 10−8 50.00%

FIGURE 11 | (A) Oscilloscope waveform of PRNG based on FPGA implementation; (B) Experimental equipment.
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encryption and decryption scheme of the image encryption
system is as follows:

Step 1: A 256 × 256 24-bit depth true color image “Baboon” is
selected as the original plaintext image p, and the 256 × 256 24-
bit pixels are divided into three 256 × 256 8-bit depth R, G and
B pixel channels.
Step 2: The generation of the key sequence used for encryption
is consistent with our previous work. In each iteration, a 64-bit
random sequence will be generated and the last 8 bits of the
random sequence will be kept and added to the key sequence.
Finally, three 256 × 256 8-bit key sequences S1, S2 and S3 are
generated.
Step 3: We get the R, G and B pixel channels from step 1 and
the key sequence S1, S2 and S3 from step 2 for XOR processing,
that is, the pixel channels of the encrypted image are
R1 � R⊕S1, G1 � G⊕S2, B1 � B⊕S3. The reverse process of
encryption is the decryption process.

The experimental results of encrypting the original plaintext
image p using key sequences S1, S2 and S3 are shown in Figure 14.
Figures 14A,B represent the original image and the encrypted

image, respectively. When the encrypted image has the correct
key sequence, the original image can be obtained, as shown in
Figure 14C.

5.1.2 Security Analysis
In this section, we will conduct a security analysis to evaluate the
proposed image encryption and decryption system. Security
analysis includes histogram analysis, correlation analysis,
differential key attack analysis, and entropy analysis. The master
key consists of parameters a � 3.5, b � 0.5, c � 2.5, d � 0.7, e �
3.4, f � 1.6, g � 0.95, h � 2.5,m � 1.9, n � 1.5, α � 0.24, β � 0.7
and initial conditions (0.1, 0.1, 0.1, 0.1). Set the PRNG step Δh �
0.001 and iterate (3 × 256 × 256 + 500) times. Finally, the results
discard the results of the first 500 iterations.

1) Histogram analysis: The intensity of the distribution of
the image pixel values can be known from the histogram. In
general, the ideal histogram distribution should be uniform.
Therefore, a high-security image encryption and decryption
system can make the encrypted image have the ideal
histogram distribution. The histograms of the original

FIGURE 12 | (A) is the time domain diagram of neuron x when only initial condition x0 changes; (B) is the time domain diagram of neuron x when only parameter a
changes.

FIGURE 13 | Correlation analysis of 15 sequences for PRNG: (A) Auto-correlation, (B) Cross-correlation.
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plaintext image and its R,G and B pixel channels are shown in
Figures 15A–D. The histograms of the encrypted image and its
R1, G1 and B1 pixel channels are shown in Figures 15E–H,
respectively. The results show that the histogram of the
encrypted image is the ideal histogram distribution, which
prevents the attacker from obtaining information from the
histogram.

2) Correlation analysis: The quality of the image encryption
and decryption system is related to the correlation between
adjacent pixels of the encrypted image. The adjacent pixels of
the original plaintext image have a high correlation. Therefore, a
good image encryption and decryption system can effectively
reduce the correlation coefficient between adjacent pixels. In
this experiment, we randomly selected 10,000 pairs of adjacent
pixels in the horizontal, vertical and diagonal directions to
calculate the correlation coefficients of the original plaintext
image and the encrypted image. The correlation coefficients can
be calculated by Eq. 7, and the results are shown in Table 4. The
results show that the system has the ability to resist statistical
attacks.

3) Differential key attack analysis: Differential key attack
analysis is an important method to evaluate the resistance of
image encryption and decryption systems to attacks. Among
them, number of pixel change rate (NPCR) and unified
average changing intensity (UACI) are used as metrics for the
analysis. Suppose we generate two key sequences S1 and S2
respectively using the correct key and the wrong key with the
parameter increased by 10−8. The original plaintext image is
encrypted by S1 and S2 to obtain two encrypted images T1

and T2, and the pixel values of T1 and T2 are represented by
T1(i, j) and T2(i, j). the mathematical formulas of NPCR and
UACI are given by Eqs. 8–10

NPCR � ∑N
i�1

∑M
j�1

D(i, j)
N ×M

× 100% (8)

D(i, j) � { 1,T1(i, j)≠T2(i, j)
0,T1(i, j) � T2(i, j) (9)

UACI � ∑N
i�1

∑M
j�1

∣∣∣∣T1(i, j) − T2(i, j)∣∣∣∣
256 × N ×M

× 100% (10)

Where, N and M denote the number of pixels in the width and
length of the encrypted image. The calculation results are shown
in Table 5, and the results are ideal.

4) Entropy analysis: Judging the security of an image
encryption and decryption system requires the help of
information entropy. When the information entropy of an
encrypted image is close to 8, we say that it achieves the ideal
information entropy and indicates that the encryption and
decryption system has good security. The formula for
calculating information entropy is as follows.

H(t) � ∑2N−1
i�0

P(ti)log2
1

P(ti), (11)

The results are shown in Table 6, and the entropy value of the
encrypted image is close to 8, reaching the ideal information
entropy.

5.2 FPGA-Based Image Encryption and
Decryption System
In this section, we design and implement a PRNG with a
feedback controller image encryption system based on the
Hopfield neural network chaotic oscillator on FPGA. All
experiments also adopt 32-bit IEEE 754-1985 floating-point
standard, design and simulation on Vivado 2018.3 platform
using Verilog HDL hardware language and developed IP-core
generator, and finally, completed on Xilinx Zynq-XC7Z020
chip. The key sequence generation and image encryption and
decryption processes are consistent with the simulation
process. Figure 16. is the flow chart of implementing PRNG
based image encryption system on FPGA. As shown in
Figure 16, the image encryption system on FPGA consists
of four parts: chip data RAM, the key sequence, data
encryption module and VGA display controller. Where the
image data and random sequence accessed in the chip are
provided by the software Image2Lcd and the PRNG proposed
in this paper, respectively. The encrypted image data will
be stored in the chip and processed with the random
sequence again. The image decryption system consists of

FIGURE 14 | (A) original image; (B) encrypted image; (C) decrypted image.
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three modules: the key sequence, the data decryption module
and the VGA display controller. In this experiment, the
Image2Lcd software is used to divide the 256 × 256 24-bit
depth true color image “Baboon” into three 256 × 256 8-bit
data and store them in the chip data RAM. In the data
encryption module, the image data is XORed with the
random sequence, and the calculated data is transmitted to
the display through the VGA display controller to complete
the image encryption. Figure 17. shows the experimental
results based on FPGA. As shown in Figure 17A, the
encrypted image is obtained by processing the data of the
original image and the key sequence. Figure 17B shows that
when the encrypted image data is processed with the correct
key sequence, the original image before encryption can be
obtained. The experimental results verify the value of the
proposed PRNG in engineering application.

6 CONCLUSION

In this paper, a PRNG with a feedback controller based on the
improved Hopfield chaotic neural network oscillator is
proposed and well implemented on FPGA. Among them, the
magnetic flux of neurons is taken as the judgment condition,
and the feedback controller is used to add the corresponding
interference factor to the neurons with the highest Lyapunov
exponent, so as to reduce the influence of chaos degradation on
the generated random numbers and improve the randomness of
the random sequence. The post-processing unit consists of 32
registers and 15 XOR comparators. From the chip statistics, it
can be seen that the PRNG can be implemented on FPGA and
the output data rate can be up to 16.2 Mbit/s. The performance
of the PRNG was tested. The security analysis and FPGA
implementation of the image encryption and decryption
system based on PRNG show that PRNG has good
randomness and engineering application value. Existing
feedback controllers and post-processing algorithms will be
improved in the future to further improve the randomness of
the PRNG and reduce the impact of chaotic degradation.

FIGURE 15 | The histogram simulation results of the original image and encrypted image. (A) original image; (B), (C) and (D) are histograms of R, G and B pixel
channels of the original image, respectively; (E) encrypted image; (F), (G) and (H) are histograms of R, G and B pixel channels of the encrypted image, respectively.

TABLE 4 | Correlation coefficient analysis results.

Image Horizontal Vertical Diagonal

Original image 0.8650 0.8975 0.8372
Encrypted image −0.0076 −0.0019 0.0132

TABLE 5 | NPCR and UACI detection results of two encrypted images.

Image Baboon

NPCR (%) 99.5575
UACI (%) 33.3993

TABLE 6 | The results of information entropy about R, B,G and total pixel channel
of original plaintext image and encrypted image.

Pixel channel Original image Encrypted image

R 7.6959 7.9975
G 7.3907 7.9974
B 7.6985 7.9972
Total 7.7050 7.9992
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FIGURE 16 | The structure of image encryption and decryption system based on FPGA.

FIGURE 17 | The results of image encryption and decryption based on PRNG with feedback controller. (A) the original and encrypted image on the FPGA. (B) the
encrypted and decrypted image on the FPGA.
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