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The brain network is one specific type of critical infrastructure networks, which supports
the cognitive function of biological systems. With the importance of network reliability in
system design, evaluation, operation, and maintenance, we use the percolation methods
of network reliability on brain networks and study the network resistance to disturbances
and relevant failure modes. In this paper, we compare the brain networks of different
species, including cat, fly, human, mouse, and macaque. The differences in structural
features reflect the requirements for varying levels of functional specialization and
integration, which determine the reliability of brain networks. In the percolation
process, we apply different forms of disturbances to the brain networks based on
metrics that characterize the network structure. Our findings suggest that the brain
networks are mostly reliable against random or k-core-based percolation with their
structure design, yet becomes vulnerable under betweenness or degree-based
percolation. Our results might be useful to identify and distinguish brain connectivity
failures that have been shown to be related to brain disorders, as well as the reliability
design of other technological networks.
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INTRODUCTION

Network reliability measures the ability of a network to perform prescribed functions against disturbance.
Whether it is a power grid, a transportation network, a brain network, or other functional networks, the
losses caused by network failures are huge. The northeast blackout of 2003 in North America, with an
estimated 50million people affected [1], was a large-scale power grid paralysis due to a line trip. And traffic
congestions due to network failure usually generate substantial costs every year, together with traffic
accidents and disasters [2]. Recent studies have demonstrated that the structural properties of the network
largely determine system reliability and resilience under various damage [3–5]. This is also true for brain
networks, which are the critical infrastructure for complex biological systems. Many brain disorders, such
as Alzheimer disease (AD), amyotrophic lateral sclerosis (ALS), and schizophrenia, etc., have been found
related to network connectivity alterations [6], causing physical or psychological pain to patients and their
families. Network reliability is of great significance to understand the design principle and failure
mechanism of these complex systems.

Accordingly, the network reliability of technological networks is mainly focused on, such as
transportation networks, communication networks, and power grids [7]. The study of network
reliability involves two-terminal [8], k-terminal [9, 10], and all-terminal [11, 12] network connectivity,
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which are defined as the probability that a subset of nodes are able to
communicate with each other, and measured as integrity for many
networks without distinguishing specific function. In addition,
dedicated evaluation methods of reliability are proposed to
address specific characteristics of the network. In the
transportation network, network reliability mainly considers road
destination reachability and commuter travel time. For example,
connectivity reliability (CR) refers to the probability of network nodes
staying connected, which is a static evaluation of the road network
structure [13]. Travel time reliability (TTR), or congestion delay index
(CDI), considers the probability of travel time from origin to a
destination within a specified interval. And capacity related reliability
(CRR)measures the probability that the traffic capacity can support a
certain level of traffic demand [14]. In communication networks, note
that CRR is also used in evaluating network reliability, with
heterogeneous link capacities [15], to sustain the transmission
requirements. Diameter-constrained reliability (DCR) is another
probability metric about the maximum delay requirements after
random failures, which limits the terminal set and path length
[16]. In power grids, indicators for measuring network reliability
proposed by the European Network of Transmission System
Operators for Electricity (ENTSOE) [3] include energy not
supplied (ENS), which is an estimation of the supply of energy
that final consumers cannot obtain due to incidents. Total loss of
power (TLP) is a measure of generation shortfall. And restoration
time (RT) refers to the time it takes for the system to recover from the
disturbance. The aforementioned research methods of network
reliability have similarity to some extent: based on probability
tools, they concern the state or efficiency of operative path
“connectivity.”

In this paper, we focus on the reliability of the brain network.
The anatomic connections between the cerebral cortex regions
form the structural network on which the neural activities unfold.
Functional networks are formed by the dynamical interaction of
neural activities among cortical areas [17]. At present, many
studies aim at the structural and functional characteristics of
brain networks [18], which establish anatomical or functional
correlations, calculate features with neurological significance, and
reveal the organization principles or operating rules of the brain
from the unique perspective of complex networks. The
organization of a structure and function network is
interdependent. The topology, synchronization, and other
dynamic properties of functional networks are strongly
influenced by small world and other structural connectivity
indicators. On the contrary, the dynamics can adjust the
structure network topology in a slower timescale [19]. The
coupling of the brain structure and functional network may
lead to cascading failure between the two networks, which can
be summarized by a universal model [20]. For example, in human
brain networks [6], densely connected modules are formed by
geometrically close neural elements, promoting the specific
function of the local area. And the formation of long-range
connections between these modules promotes the scheduling
and integration of global function. It is suggested that this
“modularity” or “integration” nature changes in the brain
connectome with neuropsychiatric disorder. Functional
separation refers to the processing of neurons between

functional related areas in a community. There are two kinds
of integration processes in the network, one is based on the
efficiency of global communication, the other is based on the
ability of network integration of distributed information [21]. For
example, AD patients appear to have modular reorganization in
the resting state networks [22], and patients with schizophrenia
appear to have reduced density of rich club connections [23],
which play a significant role in brain integrative processes, etc.
These studies reflect that fact that brain disorders are also strongly
related to network structural reliability.

Here, we introduce themethods of engineering network reliability
into brain network analysis and provide information on how the
structural features affect the reliability, aiming at the failure mode of
the brain network through the percolation method [24]. The
percolation theory [25, 26] is originally used for the diffusion of
forest fires or the distribution of oil and gas in porous stones. It has
successfully been applied to describe a large variety of natural systems,
such as the complex Earth system [27]. It is generalized for the shift of
the network state between connected and disconnected at a critical
point. We suppose that the critical state represents some inherent
properties of the brain network, including the vulnerability of the
brain network to varying degrees of external damage. Our study of
the percolation process guides us to locate the vulnerable point that
causes brain disorder, determine the stage of brain disease, and
identify possible common characteristics of different brain disease
manifestations.

STRUCTURE OF THE BRAIN NETWORK

To decompose the structure of the network intuitively, we show
community topology of structural brain networks of different
species in Figure 1, including fly, cat, mouse, macaque, and
human. This community structural feature is shared by all of
these brain networks. Comparatively, the cat and macaque
networks belong to small-scale networks (dozens of nodes,

FIGURE 1 | Community topology of brain structural networks for
different species, including cat, fly, human, mouse, and macaque. Among
them, the networks of cat, fly, mouse, and macaque are from the Network
Repository [28] http://networkrepository.com.
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hundreds of edges), the human network belongs to medium-scale
networks (hundreds of nodes, thousands of edges), and the fly
and mouse networks belong to large networks (∼tens of
thousands of edges). The number of network nodes and edges
is shown in Table 1. This may be due to the different anatomical
resolution of different species. Note that the mouse network is
densely connected, while the human network shows a clearer
modular pattern with a few connections between different
communities. These structural properties can determine the
reliability and failure mode of the brain network to some extent.

Next, we calculate the distributions of topological features to
compare different species networks, from micro and macro
perspectives (shown in Figure 2), as well as the meso

perspective (shown in Figure 3). Degree defines the number
of adjacent edges belonging to a given node from a micro
perspective. The degree ki of node i can be calculated
according to the adjacency matrix of the network (see Eq. 1).

ki � ∑
n

j�1
Aij (1)

As shown in Figure 2A, degree is normalized by N − 1 to
facilitate comparisons between species brain networks of different
scales, whereN is the number of nodes in the network. For degree
distribution, most nodes in fly, human, and macaque networks
have a low degree. For mouse and cat networks, degrees in the
mouse network are generally high. Betweenness centrality cB
measures the extent to which all-pairs shortest paths pass
through a given node i (see Eq. 2) from a macro perspective.

cB(i) � ∑
st

gst(i)
gst

(2)

where gst is the number of shortest paths between s, t and gst(i) is
the number of those path passing through node i. The
betweenness is normalized by N p (N − 1)/2, as shown in

FIGURE 2 | Distributions of topological features in different species brain networks. (A) Degree distribution normalized by N − 1. (B) Betweenness distribution
normalized by N p (N − 1)/2. (C) Closeness distribution normalized by 1/(N − 1). (D) Clustering coefficient distribution.

TABLE 1 | Overview of brain structure networks in different species.

Species Number of nodes Number of links

Cat 65 730
Fly 1781 9,016
Human 360 6,462
Mouse 91 582
Macaque 213 16,242
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Figure 2B. It is suggested that the distributions of different
species networks seem to follow a scale free distribution, with
the mouse network showing certain deviation. The macaque
network has the largest betweenness due to its heterogeneous
structure, given its relatively small degree and a few large degree
nodes. And the betweenness of the mouse network is the smallest,
due to its dense connections. Closeness centrality is another
important topological metric from a macro perspective, which
is defined as the inverse of the average distance from a given node
to others (see Eq. 3).

ci � n − 1

∑n−1
j�1 dij

(3)

where dij is the shortest path length between i and j. The closeness
distributions of all species networks, normalized by 1/(N − 1), are
shown in Figure 2C. It is shown that the nodes in themouse network
have the highest closeness, and the lowest closeness is in the fly
network. The clustering coefficient measures the fraction of two
neighbors of a given node that are also connected (see Eq. 4).

Ci � 2Ei

ki(ki − 1) (4)

where node i has degree ki, and Ei are edges that actually exist
between those ki neighboring nodes. As shown in Figure 2D,
the distribution of the human network is symmetrical with
a characteristic value around 0.6. The macaque network has
the largest mean value compared with other distributions,
showing strong local connections. Therefore, the structural
properties of the network are not completely measured by a
single metric, and need comprehensive consideration from
different angles.

In the case of the meso perspective, we calculate the rich club
coefficient of these species networks with normalization to the
null model [29]. The rich club phenomenon, existing in scientific
collaboration networks and air transportation networks, is also
studied to understand global efficiency in both unweighted and
weighted structural brain networks of the human connectome
[30], while brain network comparison with other species are
rarely involved. Rich club coefficient Φ(k) (see Eq. 5), which
quantifies the proximity between nodes with high degrees, is
defined as the ratio of the actual number of edges between nodes
with degree > k to the total edges.

Φ(k) � 2E> k

N> k(N> k − 1) (5)

FIGURE 3 | Rich club coefficient, normalized by the null model. (A)Cat brain network. (B) Fly brain network. (C)Human brain network. (D)Macaque brain network.
(E) Mouse brain network.
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Considering that nodes with high degrees have higher
probability of interconnection with each other by definition,
we usually need a null model to obtain normalized rich club
coefficient ρran(k) (see Eq. 6) by comparing original rich club
coefficient Φ(k) with rich club coefficient Φran(k) of the random
network (null model) [23, 31].

ρran(k) �
Φ(k)
Φran(k) (6)

The null model is created by performing a link shuffle to
randomize the original network, keeping the same degree
distribution. ρran(k) greater than 1 reflects the rich club
phenomenon of a network. As shown in Figure 3, the rich club
phenomenon is significant in the human network (Figure 3C),
indicating that nodes with high degrees tend to connect with each
other, which may enable global functional communication and
integration of distributed brain regions. Our results suggest also
that brain networks of other species do not show significantly
similar routing principles of integration. It is found that cat and
fly networks display a very weak rich club effect (Figures 3A,B), and
rich club coefficients in macaque and mouse networks are almost
close to 1 (Figures 3D,E).We suppose that the human brain network,
compared to other species, has more complicated and diverse
functions with higher integration requirements, leading to a much
higher rich club coefficient. Meanwhile, the structural properties may

affect the reliability of the brain network, which will be discussed in
the next section. Actually, networks with rich clubs are usually more
vulnerable [32], because the removal of a few rich club members can
destroy the overall global connectivity. Here we focus on the
connectivity performance of the brain network under different
disturbances, through percolation analysis.

PERCOLATION ON THE BRAIN NETWORK

In this section, we perform different types of percolation analysis,
including degree-based percolation, betweenness-based
percolation, k-core-based percolation, and random percolation.
Percolation of different types may represent different external
disturbances [33]. We remove nodes from the network with a
fraction q according to the network structural features concerning
degree, betweenness, and k-core. When the removal fraction is
tuned increasingly from zero to unit, at a certain critical
probability qc, the state of the network shifts from connected
to disconnected, and this critical phenomenon is called
percolation. In the percolation case, we have no giant cluster
for q> qc and one giant cluster at least for q< qc. The critical
probability qc for networks with different topological properties
may be different, determined by the structure of the network. We
analyze the performance of networks during the percolation
process, to reveal how the brain networks of different species

FIGURE 4 | Percolation on species brain networks under four forms of disturbances. (A) Percolation based on betweenness. (B) Percolation based on degree. (C)
Percolation based on k-core. (D) Random percolation.
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respond to disturbance. When different external types of
disturbances are applied to the network, the reliability and
failure modes of the network could be uncovered.

The giant component G (size of the largest connected
component) of the network decreases with the removal
fraction in Figure 4. As the nodes are removed gradually with
a certain order, it will generate various damages to the original
network. Figure 4A is the betweenness-based percolation, we
remove nodes in descending order of betweenness. It is notable
that G, for the macaque brain network, drops comparatively fast
with a certain critical removed fraction around 0.1, which is
because the macaque network has the largest betweenness. When
approaching the critical point, we can observe a sharp decline in
the giant component, whichmay be accompanied by a substantial
or complete loss of network function. Other brain networks also
decrease quickly at their critical point, except for the mouse brain
network. For the strong robustness of the mouse network against
disturbances, where the giant component is decreasing almost
linearly, we can see from Figure 2A that the connections in the
mouse network are particular dense, meaning that the network is
highly connected globally. When one of the nodes is removed,
other nodes can still maintain connections, which constitutes the
high reliability of the mouse brain network. Figure 4B is the
degree-based percolation, we remove nodes in descending order
of degree. As the betweenness-based percolation, we can observe a
similar trend for different species. The cat brain network decreases
faster than the human brain network for degree-based percolation.

Next, we perform k-core-based percolation in Figure 4C.
k-core decomposition is a method to decompose and analyze
the hierarchy structure of the network [34]. When we remove
nodes with a degree less or equal to (k − 1) from the network, all
the remaining nodes with an updated degree larger or equal to k
in the remaining graph are called k-core. Nodes belonging to
k-core, yet not belonging to (k + 1)-core, are defined as k-shell. In
k-core-based percolation, we start with the smallest k-shell and
remove the nodes from the network at each step. Differing from
the above two percolation modes, the percolation based on k-core
shows a distinct failure mode. All species brain networks follow a
linear decrease pattern. This is due to the fact that a higher k-shell
of networks will not become disconnected when small layers are
removed.

In contrast to the above three percolation methods based on
the network structural features, we also perform random
percolation (Figure 4D). Without considering network
topology, we randomly remove a fraction of nodes from the
network at each step. Surprisingly, the change ofG in the network
during the random percolation process is almost uniform
throughout, where every decrement is similar for each removal
fraction. This is possibly because a few highly connected nodes in
each network behave like a backbone and maintain the whole
network.

CONCLUSION

We perform network reliability analysis on a brain network,
which is the critical infrastructure for biological intelligence.

Network reliability pursues the ability to meet the functional
requirements in a specific operating environment. Therefore, the
fragility of the network under disturbance is particularly
important, that a network with high-reliability has the ability
to offset the impact of disturbances and strives to maintain
connectivity. Here, we pay attention to the global and local
connectivity of the brain network, whose loss may cause
biological dysfunction as brain disorders. We analyze the brain
networks of different species, including cat, fly, human, mouse,
and macaque, and explore similarities and differences in
structural features and percolation patterns, which may reflect
the causality from varying levels of functional specialization and
integration.

While the properties of species brain networks are formed
during evolution, one of the core tasks is to ensure high reliability,
against various disturbances. High reliability of the network
suggests balance between global connectivity and local
connectivity. We find that brain networks are mostly reliable
against random or k-core-based percolation with their
structure design, yet they become vulnerable under
betweenness or degree-based percolation. Furthermore, our
study may be useful for building models for the inherent
reliability of the brain network, and help to discover the
operating rules and disease mechanisms that may exist during
the process of operation. Although for the brain or other
biological networks, it may be difficult to artificially revise the
wiring rules of the network, we hope that an identified relation
between the brain organization principles and external
disturbances can help guide the avoidance of brain disorders,
as reference for other technological networks.
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