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In the solar coronal numerical simulation, the coronal heating/acceleration and the
magnetic divergence cleaning techniques are very important. The
coronal–interplanetary total variation diminishing (COIN-TVD) magnetohydrodynamic
(MHD) model is developed in recent years that can effectively realize the
coronal–interplanetary three-dimensional (3D) solar wind simulation. In this study,
we focus on the 3D coronal solar wind simulation by using the COIN-TVD MHD
model. In order to simulate the heating and acceleration of solar wind in the coronal
region, the volume heating term in the model is improved efficiently. Then, the influence
of the different methods to reduce the ∇ · B constraint error on the coronal solar wind
structure is discussed. Here, we choose Carrington Rotation (CR) 2199 as a study
case and try to make a comparison of the simulation results among the different
magnetic divergence cleaning methods, including the diffusive method, the Powell
method, and the composite diffusive/Powell method, by using the 3D COIN-TVD MHD
model. Our simulation results show that with the different magnetic divergence
cleaning methods, the ∇ · B error can be reduced in different levels during the solar
wind simulation. Among the three divergence cleaning methods we used, the
composite diffusive/Powell method can maintain the divergence cleaning constraint
better to a certain extent, and the relative magnetic field divergence error can be
controlled in the order of 10−9. Although these numerical simulations are performed for
the background solar corona, these methods are also suitable for the simulation of
CME initiation and propagation.

Keywords: MHD simulation, corona heating and acceleration, magnetic divergence cleaning, solar wind, volumn
heating

INTRODUCTION

The 3D COIN-TVD MHD model which was proposed in [1–3] and was improved in [4–8] in recent
years can effectively realize the coronal–interplanetary 3D solar wind simulation. This model uses the
TVD Lax–Friedrichs (TVD-LF) scheme uniformly in the corona region and the interplanetary space
region, and a combination of Open Multi-Processing (OpenMP) based on shared memory and
Message Passing Interface (MPI) based on distributed memory has been successfully used to study the
solar wind background from the corona to the interplanetary space.
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The solar energy is stored in the solar nucleus, and the generated
radiant energy spreads from the inside to the outside. The solar
temperature should theoretically decrease with the increase of the
heliocentric distance. However, the temperature of the upper
atmosphere corona is much higher than that of the lower
atmosphere (photosphere). The reason for the abnormal warming
of the atmosphere has not yet been investigated. Therefore, coronal
heating/acceleration is a central issue in the solar coronal simulation
and has been discussed by many researchers (e.g., [9–16]). Parker
proposed a basic theory for the problem of heating an expanding
solar corona [17–19]. Later, various methods for solar wind
acceleration and coronal heating have been developed. For
example, the Alfvén wave heating method (AHM) can accelerate
solar wind through the exchange of momentum and energy between
large-scale Alfvén wave turbulence and solar wind plasma [10]. The
turbulent heating method (THM) assumes that the turbulent free
energy is transformed into the energy accelerated by the solar wind
when the turbulent free energy changes with the heliocentric distance
[10]; By adding momentum and energy source terms to the MHD
equations [16], the volume heating method (VHM) has been widely
used in solar wind simulation (e.g., [15, 20, 21].

In the MHD simulation, the divergence of the magnetic field
should be strictly controlled to zero. The nonzero divergence of
the magnetic field can lead to the ∇ · B error during the
calculation. When this occurs, numerical instability may
develop and the simulation can break down. Therefore,
scientists have proposed many methods to control the
divergence of the magnetic field, such as the generalized
Lagrange multiplier (GLM) method [22–24], the CT method
[21, 25–27], the projection method [28], the vector potential
method [29, 30], the Powell method [31, 32], the diffusion
method [7] and the globally solenoidality-preserving (GSP)
method [33].

In this study, we adopt the COIN-TVD model to simulate the
coronal solar wind. Similar to [20, 21], we use the volume heating
sources to model the solar wind heating/acceleration process in
the simulation.

In Governing Equations of Coronal Interplanetary-Total
Variation Diminishing Model, we introduce the equations of
the COIN-TVD MHD model. Mesh Grid System and
Numerical Scheme describes mesh grid system and boundary
conditions. Volume Heating Method and Magnetic Field
Divergence Cleaning Methods presents the VHM method and
three magnetic field divergence processing methods. Numerical
Results shows the results of numerical simulation and
comparisons of three methods for processing magnetic field
divergence. In Conclusions and Discussions, we make the
conclusion and discussion.

GOVERNING EQUATIONS OF
CORONAL–INTERPLANETARY TOTAL
VARIATION DIMINISHING MODEL
The ideal MHD equations are used to simulate the coronal solar
wind. Under the Corotating coordinate system, equations can be
written as:

zρ

zt
+ ∇ · (ρv) � 0 (1)

(zρv
zt

) + ∇ · [(P + B2

2μ0
)I + ρvv − BB

μ0
] � −ρGMs

r2
r
r
+ ρf (2)

zB
zt

+ ∇ · (vB − Bv) � 0 (3)

zP
zt

+ ∇ · (ρv) � −(c − 1)P∇ · v (4)

where ρ is the mass density, v is the plasma velocity, B is the
magnetic field, P is pressure, μ0 is the magnetic permeability of
free space, I is the unit tensor, G is the gravitational constant,Ms

is the solar mass, f � −ω × (ω × r + 2ω × v) is the additional
fictitious force densities, in which ω is the angular velocity of the
rotation, and c is the polytrophic index, which is set to be 1.05 in
this study.

MESH GRID SYSTEM AND NUMERICAL
SCHEME

Mesh Grid System
In the spherical coordinate, the range of the calculation area is
expressed as 1Rs≤ r ≤ 22.5Rs, −π

2 ≤ θ ≤ π
2, and 0≤∅≤ 2π, where r

is the radial distance from the solar center to the solar surface, θ is
latitude, and ∅ is longitude. To avoid the singularity, the
computation domain is divided into six identical component
meshes to envelop a spherical surface with partial overlap on their
boundaries [34]. The following grid partitions are employed; the
grid mesh is built in the form of 224(r) × 180(θ) × 360(∅). The
radial direction uses a proportional grid, the radial step length
increases from 0.0161RS at the inner boundary of 1RS to 0.3636RS

at the outer boundary near 22.5RS, and the total number of grids
at r-direction is 224. In the latitudinal and longitudinal directions,
the grid resolution is Δθ � Δ∅ � 1+.

Numerical Scheme
In the COIN-TVD model, all of the physical quantities are
computed from the TVD-LF numerical scheme in a face-
centered grid structure (e.g., [7, 8]). And this scheme is
performed in the six-component mesh grid system.

The inner boundary is located on the surface of the Sun, where
the inner boundary setting depends on local fluid conditions (e.g.,
[2]; 2007, [16, 21, 33]). When vr > 0, ρ � ρ0, and T � T0, B � B0,
and ∇ · (ρv) � 0; when vr < 0, zρ/zr � 0, zT/zr � 0, B � B0, v � 0.

The Carrington Rotation (CR) 2199 is chosen for
background establishment. The initial magnetic field B0 is
given by using the potential field source surface (PFSS)
model [35, 36], the spherical harmonics coefficients were
used to obtain the initial PFSS solution is 6. And other initial
parameters, such as plasma density ρ0, temperature T0, and
velocity v, are calculated by Parker’s solar wind flow solution
[17]. The temperature and the number density on the solar
surface are set to be 1.5 × 106 K and 1.67 × 108 cm−3,
respectively. The boundary condition of the magnetic field at
the inner surface also remains fixed all through the simulation.
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The parameters at the outer boundary are set according to the
projected characteristic boundary conditions e.g., [32, 37, 38].

VOLUME HEATING METHOD AND
MAGNETIC FIELD DIVERGENCE
CLEANING METHODS
In this section, we introduce the numerical schemes of the volume
heating method and three methods to constrain ∇ · B in MHD
simulation.

Volume Heating Method
Due to the limitations of observation and theory, there is no
mature theoretical model to describe the mechanism of coronal
heating and solar wind acceleration. Here, we use the volume
heating method to solve the issue of coronal heating and solar
wind acceleration. We add the source terms of momentum SM
and energy QE to the MHD Eq. 1, Eq. 2, Eq. 3, and Eq. 4 as
follows:

zρ

zt
+ ∇ · (ρv) � 0 (5)

(zρv
zt

) + ∇ · [(P + B2

2μ0
)I + ρvv − BB

μ0
] � −ρGMs

r2
r
r
+ ρf + SM

(6)
zB
zt

+ ∇ · (vB − Bv) � 0 (7)

zP
zt

+ ∇ · (ρv) � −(c − 1)P∇ · v + (c − 1)QE (8)

According to the work in [7, 39–41], we set energy and
momentum source terms as follows:

QE � Q1(r − 1)e(−r/LQ1)
SM � S1(r − 1)e(−r/LM ) (9)

Here, γ � 1.05, which is the polytrophic index. In the
calculation region, the polytropic index γ need not be set very
large. γ � 1.05 can heat the corona and accelerate solar wind.

Here, r is the heliocentric distance, Q1 and LQ1 are the intensity
and attenuation length of heating, and S1 and LM are the intensity
and decay length of the momentum addition. The parameters LQ1

and LM are set to be 1, Q1 � Q0Ca, and S1 � S0Ca. To test the
influence of the parameter of energy and momentum source terms,
we set two groups of different parameters for comparison. In model
A, we set: Q0 � 6 × 10−10J ·m−3 · s−1, S0 � 7.6 × 10−14N ·m−3 and

Ca � (1−0.8e(−(θb /1)2 )2 )
(1+fs)9/2 and find that the coronal heating and solar wind

acceleration were not obvious. In model B, we adjust the parameters
based on [33], which are Q0 � 6 × 10−8J ·m−3 · s−1, S0 � 7.9 ×
10−14N ·m−3 and Ca � Ca′

maxCa′
, where C’

a � (1−0.8e(−(θb /1)1)1 )
(1+fs)9/2 . Here, fs �

(Rs
Rss
)2

BRs
BRss

is the expansion factor, where Rs is the solar radius, RSS �
2.5RS, andBRS andBRSS aremagnetic field strength at the solar surface
and at RSS, respectively. Inspired by theWang–Sheeley–Arge (WSA)

model [42, 43], the solar wind speed is related to the magnetic field
expansion factor fs and the minimum angular distance θb. As fs
increases, the speed decreases, the high-speed streamoriginating from
the center of the open field region always has large θb, and the low-
speed stream from the coronal hole boundary has a relatively small θb.

Following [20, 44, 45], the source term QE also contains a heat
conduction term, the expression of the heat conduction term is

∇(ξT 5
2∇T ·B
B2 ) · B, ξ is the collisional thermal conductivity parallel to

the magnetic field as given in [46] and the proton and electron
temperatures are equal to T. If we add the heat conduction term
in the QE, the partial differential in the formula decreases the
calculation accuracy. And after the research in [45], many works
(e.g., Feng, 2012, [21]; 2017 [33]) verify that without adding heat
conduction item, the coronal solar wind can also be accelerated
and heated.

Powell Method
The Powell method to maintain the magnetic divergence cleaning
constraint is given as follows.

Two divergence source terms, −(∇ · B)B and −(∇ · B)v, are
added separately on the right side of Eq. (6) and Eq. (7) to get the
following MHD equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zρ

zt
+ ∇ · (ρv) � 0

(zρv
zt

) + ∇ · [(P + B2

2μ0
)I + ρvv − BB

μ0
] � − ρGMs

r2
r
r
+ ρf + SM − (∇ · B)B

zB
zt

+ ∇ · (vB − Bv) � −(∇ · B)v
zP
zt

+ ∇ · (ρv) � −(c − 1)P∇ · v + (c − 1)QE

(10)

In this way, the divergence of the magnetic field can be
propagated to the boundary to reduce the numerical error of
∇ · B in the computational region [31]. From Eq. 10 with the
source term, the quantity ∇ · B/ρ satisfies the advection equation,
which is,

z

zt
(∇ · B

ρ
) + ∇ · (v · ∇ · B

ρ
) � 0 (11)

This means that the ∇ · B must be transported by the plasma
motions when Powell correction is applied, since the initial and
boundary conditions satisfy ∇ · B � 0, and the ∇ · B will be near
zero for all later times throughout the simulation.

Diffusive Method
The diffusive method is proposed to reduce the error of the
magnetic divergence, in which an artificial diffusivity is added at
each time step as zB

zt � η∇(∇ · B). Under the condition of

Δt ≤ μ (Δx)2
η , where μ ∈ (0, 2), the error of the magnetic

divergence is diffused away at the maximal rate allowed by iterating:

Bk+1 � Bk + μ(Δx)2∇∇ · Bk, k � 0, 1, 2......K (12)

Here, (Δx)2 � 1
1

(Δr)2+ 1
(rΔθ)2+ 1

(r sin θΔ∅)2
.
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For satisfying the condition max⎛⎝∫∫Bnds∫∫ |Bn|ds
⎞⎠≤ 10−2, less than

ten iterations are needed at each time step. This method does not
violate shock capturing property, at least to the second-order
accuracy in smooth regions [8, 47].

Composite Diffusive/Powell Method
We combined the Powell method and the diffusive method
together in the MHD calculation in the composite diffusive/
Powell method for the first time, and this method can further
control the error of the magnetic field divergence.

The composite diffusive/Powell method adds two divergence
source terms, −(∇ · B)B and −(∇ · B)v, to Eq. 6 and Eq. 7 to get
Eq. 10. The divergence of the magnetic field can be propagated to
the boundary, and the quantity ∇ · B/ρ satisfies the advection
equation (Eq. 11). When solving the equation, the error of
magnetic divergence is diffused away at the maximal rate
allowed by iterating Eq. 12.

NUMERICAL RESULTS

In this section, we show the numerical results of the solar coronal
simulation from 1RS to 22.5RS for CR2199, which are obtained by
executing the methods introduced in Volume Heating Method
and Magnetic Field Divergence Cleaning Methods.

It takes about 100 h in physical time to obtain the steady state
in our simulation. Figures 1,2 present the distribution of the
magnetic field lines, the radial velocity, the number density and
the temperature on the meridional plane at Φ � 180°–0° from
model A and model B, respectively. From these figures, it can be
seen that the high latitude areas always have fast speed, high
temperature, and low density. On the contrary, the radial speed is
slower, the temperature is lower, and the number density is higher
at lower latitudes around the heliospheric current sheet (HCS),
and this is the characteristic feature of the solar wind in the
corona [47]. Model B is successful in simulating the acceleration
and heating of the solar wind in the corona, as shown in Figure 2.
Compared with Figure 1, we can find that both the radial speed
and temperature in Figure 2 are higher than those in Figure 1

obviously. This result indicates that the VHM can accelerate and
heat the coronal solar wind, and the parameters S0, Q0, and Ca in
VHM can affect the coronal heating and solar wind acceleration
process significantly.

Then, we present the simulation results of the coronal solar
wind with three magnetic divergence cleaning methods. Figures
3–5, respectively, show the variation in the radial speed, the
number density, and the temperature along heliocentric distance
from 1 to 22.5 Rs with different latitudes of θ � −80° and θ � −10°
at the same longitude ofΦ � 0°, where θ � −80° locates at the open
field region and θ � −10° locates at the HCS region. Comparing
the three figures, we can find that the radial speed in the open field
region is larger than that in the HCS region, the temperature is
higher in the open field, and the number density is smaller in the
high latitude region.

The composite diffusive/Powell method which combines the
diffusive method and the Powell method is our new try to handle
the ∇ · B constraint. From Figures 3–5, we can also see that the
curve from the composite diffusive/Powell method is always in
the middle, so it can generate a stable solar wind structure like the
other two methods.

To quantitatively see how ∇ · B evolves, we define the relative
divergence error [48] as follows:

Error(B) � |∇ · B|Δh
|B| (13)

Here, Δh �
�������������

3
1

(Δr)2+ 1
(rΔθ)2+ 1

(r sin θΔ∅)2

√
is the characteristic length of the

mesh element.
To investigate how the three magnetic divergence cleaning

methods control the ∇ · B error quantitaitvely, we make a
numerical comparison for the Error(B) among the three methods.

Figures 6,7 show the distributions of the Error(B) on the
different meridional planes of Φ � 180°–0° and Φ � 270°–90°,
respectively, for the steady-state solar wind. The three panels in
Figures 6, 7 present the results from the composite diffusive/
Powell method, the diffusive method and the Powell method,
from left to right, respectively. It is obvious that the Error(B)
deduced from the composite diffusive/Powell method is lower
than that from the other twomethods, on both meridional planes.

FIGURE 1 | The distribution of the radial speed VR (km/s) (A), density RO × 108 (/cm3) (B) and temperature TP × 106 (K) (C) on the meridional plane ofΦ � 180°–0°

from 1 to 22.5Rs, deduced from model A. The streamline represents the magnetic field lines.
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This indicates that the composite diffusive/Powell method is the
most effective method among the three methods in dealing with
the magnetic field divergence.

Here, we use the following metric for measuring divergence,
which was also adopted by other research studies (e.g., [33, 47]):

Error(B)ave � ∑M
k�1

|∇ · B|Δh
|B| /M (14)

where M is the total number of grid points in the computational
domain. We know that there are other metrics that can be used to
measure the divergence. As pointed in [49], the metric defined by
Eq. 14 may rely on the spatial resolution. However, in this
simulation, we make the comparison among the three cases
with the same mesh system and the same metric definition;
therefore, the influence of the spatial resolution on the
comparison of the metric by Eq. 14 can be ignored.

Figure 8 shows the evolution of the Error(B)ave with time
deduced from the three methods. It can be recognized that the
value of the Error(B)ave from the composite diffusive/Powell method
is around 10–8.7–10–8.5, from the diffusive method is around
10–8.6–10–8.2, and from the Powell method is around 10–8.6–10–7.1.
The composite diffusive/Powell method has the smallest Error(B)ave,
and this method is a new try to maintain the magnetic divergence-
free constraint. From Figure 8, we can also find that the Error(B)ave

from the composite diffusive/Powell method and diffusive method is
smaller than that from the Powell method obviously. Moreover, the
Error(B)ave from the composite diffusive/Powell method keeps on
decreasing after 60 h and is significantly smaller than that from the
diffusive method near 100 h. Overall, we can find that all the
divergence cleaning methods can keep the related errors under
control, though the divergence errors of the Powell method are
larger than those of the other methods, the divergence errors shown
in Figures 6–8 are indeed small, and the largest worst number is 10–7,

FIGURE 2 | The distribution of the radial speed VR (km/s) (A), density RO × 108 (/cm3) (B) and temperature TP × 106 (K) (C) on the meridional plane ofΦ � 180°–0°

from 1 to 22.5Rs, deduced from model B. The streamline represents the magnetic field lines.

FIGURE 3 | The distribution of radial speed VR (km/s) along heliocentric distance with different latitudes of θ � −80° (A) and θ � −10° (B) at the same longitudeΦ � 0°

from three divergence methods.
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shown as the orange and red colors in Figures 6,7. The Error(B)ave

from the Powell method is about 10–7.3, from the diffusive method is
10–8.4, and from the composite diffusive/Powell method is 10–8.7 near
100 h. The composite diffusive/Powell method is the best method to
reduce the error of magnetic divergence among the three methods in
this research.

CONCLUSIONS AND DISCUSSIONS

In this study, by using the 3D COIN-TVD MHD model, we
simulate the solar wind in the coronal region, in which the
divergence cleaning and coronal heating/acceleration methods
are included. The volume heating method is an effective way for
coronal heating, in which the parameters can be adjusted

according to the WSA model in the simulation of the
coronal solar wind. In the COIN-TVD MHD model,
increasing the parameters S0 and Q0 of the energy and
momentum source terms can make the solar wind accelerate
more obviously.

For the divergence cleaning methods, here we choose the
diffusive method, the Powell method and the composite
diffusive/Powell method. We compared the numerical
characteristics of the combination of each method for
handling the divergence of the magnetic field and the COIN-
TVDMHDmodel in the solar coronal simulation. The numerical
results show that all of them can produce large-scale structured
solar wind and reduce the divergence of the magnetic field more
or less. The difference between the three divergence cleaning
methods is summarized as follows:

FIGURE 4 | The distribution of densityRO (/cm3) along heliocentric distance with different latitudes of θ � −80° (A) and θ � −10° (B) at the same longitudeΦ � 0° from
three divergence methods.

FIGURE 5 | The distribution of temperature TP × 106 (K) along heliocentric distance with different latitudes of θ � −80° (A) and θ � −10° (B) at the same longitudeΦ �
0° from three divergence methods.
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1) The Powell method is relatively simple to apply. It only needs
to add two items to the source term of the MHD equations.
In this study, the Powell method can reduce the error of the
relative magnetic field divergence, but it is less effective than
the other two methods in dealing with magnetic divergence.

2) The diffusive method also has a good effect on reducing
magnetic field divergence error in this study. It reduces the
error of divergence by adding a source term in the induction
equation and the ∇ · B error is diffused away by iterating
Bk+1 � Bk + μ(Δx)2∇∇ · Bk. If it is coupled with different
numerical schemes, the effects of controlling divergence
error are different. In this study, the diffusive method is
not as good as the composite diffusive/Powell method in
controlling the divergence of the magnetic field, but better
than the Powell method.

3) The composite diffusive/Powell method is a preliminary new
try in this study, and it combines the Powell method and the
diffusive method during the simulation. It has been proven

FIGURE 6 | The distribution of Error(B) on the meridional plane ofΦ � 180°–0° from 1 to 22.5RS, from composite diffusive/Powell method (A), diffusive method (B),
and Powell method (C), respectively.

FIGURE 7 | The distribution of Error(B) on the meridional plane of Φ � 270°–90° from 1 to 22.5RS, the results from composite diffusive/Powell method (A), diffusive
method (B) and Powell method (C), respectively.

FIGURE 8 | The temporal evolution of the Log10Error(B)
ave from the three

divergence cleaning methods.
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that this composite method is the most efficient way to
reduce the relative divergence errors among the three
methods we used. Moreover, it also ensures the
conservation of the MHD equations during the simulation.

In addition to the methods we mentioned, there are many
other methods to simulate the coronal heating and the solar
wind acceleration process and to control the divergence of
the magnetic field. For example, both the Alfvén wave
heating method and the turbulent heating method are
effective for coronal heating. The Powell method can also
company with other methods to control the magnetic
divergence, which may be implemented in the future.
Moreover, although these simulations are performed for
the background solar corona, these methods can also be
used for the simulation of CME initiation and propagation
in the interplanetary space.
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