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Particle condensates in general magnetic mirror geometries in high-temperature plasmas
may be caused by a discrete resonance with thermal ion-acoustic background noise near
mirror points. The resonance breaks the bounce symmetry, temporally locking the
particles to the resonant wavelength. The relevant correlation lengths are the Debye
length in the parallel direction and the ion gyroradius in the perpendicular direction.
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1 INTRODUCTION

The notion of condensate formation under high-temperature collisionless plasma conditions has
come into use recently in relation to evolving structures known as mirror modes (cf., e.g., Refs. 1–3,
for their linear theory). There is a wealth of publications on mirror modes, observational and
theoretical, focussing on ion and electron modes, linear and non-linear, including many different
effects such as finite Larmor radii, electron anisotropy, dependence on composition and external
conditions, coupling to other modes and importance in turbulence and particle acceleration, and
evolution of mirror modes into chains. Listing all of them here is not the right place (a long though by
no means exhaustive list can, for instance, be found in a recent study [4], dealing with observation of
chains of electron mirror modes). Still, the theory of mirror modes is not completely understood, in
particular the role of electrons in their evolution. Generally, the notion of mirror modes has been
attributed to the ion mode, partly for historical reasons because of lack of high-resolution
instrumentation and partly because electrons have been believed to contribute just a minor
modification. The self-consistent separate evolution of electron mirror modes, as observed in [4,
5] is therefore important as it shows that they indeed can evolve independently, on the ion mode
completely separate from it [4] or inside it [5], both times on typical electron scales. Their large
amplitudes require conditions which go beyond linear theory and are not covered by the non-linear
attempts hinted at above. Here, we refer to our suggestion that electron dynamics in mirror
geometries may be responsible for them by generating a condensate. This applies to both ion and
electron mirror modes separately. Whether it also applies to isolated magnetic holes which have
occasionally been observed in the solar wind (first in Refs. 6–10) and at the magnetopause (first in
Refs. 11, 12), followed by many others, is a different question.

Condensates, if present, provide the basis for a semi-classical phase transition in dilute
collisionless plasmas which explains the observed partial Meissner effect under the prevalent
high temperatures [13, 14]. The question of how precisely such condensates form has, however,
been left open so far. At low temperatures near the Fermi boundary, condensate formation via
Cooper–Schrieffer pairing of electrons, mediated by interaction with phonons, is at the heart of solid-
state physics (cf., e.g., Ref. 15) where it leads to metallic superconductivity [16]. Dilute plasmas at
their high temperatures are already ideal conductors. By analogy to Cooper–Schrieffer pair
formation, pairing might ignite condensation of particles. However, in high-temperature

Edited by:
George Livadiotis,

Southwest Research Institute (SwRI),
United States

Reviewed by:
Nicholas V. Sarlis,

National and Kapodistrian University of
Athens, Greece

Georgios Nicolaou,
Southwest Research Institute (SwRI),

United States
Ehsan Saberian,

University of Neyshabur, Iran

*Correspondence:
Wolfgang Baumjohann

Wolfgang.Baumjohann@oeaw.ac.at

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Space Physics,
a section of the journal

Frontiers in Physics

Received: 23 May 2021
Accepted: 22 June 2021
Published: 21 July 2021

Citation:
Treumann RA and Baumjohann W
(2021) Condensate Formation in

Collisionless Plasma.
Front. Phys. 9:713551.

doi: 10.3389/fphy.2021.713551

Frontiers in Physics | www.frontiersin.org July 2021 | Volume 9 | Article 7135511

BRIEF RESEARCH REPORT
published: 21 July 2021

doi: 10.3389/fphy.2021.713551

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2021.713551&domain=pdf&date_stamp=2021-07-21
https://www.frontiersin.org/articles/10.3389/fphy.2021.713551/full
https://www.frontiersin.org/articles/10.3389/fphy.2021.713551/full
http://creativecommons.org/licenses/by/4.0/
mailto:Wolfgang.Baumjohann@oeaw.ac.at
https://doi.org/10.3389/fphy.2021.713551
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2021.713551


plasmas, this is probably unrealistic in view of the weak
resonantly generated localized attracting electric fields but may
be important in superdense quantum plasmas causing
superconductivity there. Condensates in dilute classical
plasma, if forming, indicate macroscopic correlations and
organization. Re-treating the condensate problem here yields
that, under suitable magnetic mirror conditions realized in
space plasmas, discrete particle resonance with thermal ion-
sound noise suffices to generate condensates. Reference to pair
formation is a possible secondary higher order effect though also
weakly contributing to condensate formation.

1.1 Magnetic Mirror Geometry
Magnetized high-temperature plasmas are abundant in space and
the universe in general. Normally, there is little spectacular about
them. However, when forming condensates, they may evolve
toward self-interaction, phase transition, and semi-classical
macrostates.

Consider the well-known bounce motion of charged particles
in magnetic mirror geometry (cf., e.g., Refs. 17–19) under
conservation of their orbital magnetic moments μ � E⊥/B(s),
where E � p2/2m is the particle energy, p � mv the
momentum, and B(s) the stationary magnetic field which
converges with the increasing parallel coordinate s from s0 � 0
toward s � sm, the mirror point along the field (cf., e.g., [20]). We
also assume the presence of a background spectrum of thermal
noise [21–23]. This may be broad band, but for being specific, we
by analogy to solid-state physics assume that it consists of
phonons which in plasma are ion-sound waves with
dispersion ω(k) ≈ kcs/(1 + k2λ2D)1/2 (cf., e.g., Ref. 24). Usually,
the wave number k is much smaller than the inverse Debye length
λ−1D , kλD ≪ 1 corresponding to long waves propagating at sound
speed cs ≈

�����
Te/mi

√
, with Te being the electron temperature (in

energy units) and mi being the ion mass. In addition to their
cyclotron gyration, the energetic particles perform a bounce
motion at frequency ωb along the magnetic field with rapidly
decreasing parallel speed until bouncing back from their mirror
location sm according to

v‖(t) � v‖0cos ωbt, v‖0 �
������
2E0/m√

cos α0, (1)

s(t) � smsinωbt, ω2
b � (2π/τb)2 � μB′′

0/m, (2)

with α0 being the initial pitch angle, B(s) − B0(0) ≈ 1
2B

′′
0(0)s2, and

′ � z/zs. The mirror point sm � v‖0/ωb is reached at time t � τb/4,
which shows that the one-sided volume s> 0 is filled with a
continuum of mirror points sm(s, α0) whose locations along the
field are a function of energy and the initial pitch angle
distribution f (E, α0) which we here leave unspecified.
Conservation of the magnetic moments implies that
v‖(s ≈ sm)≪ v⊥ close to sm becomes about zero, and
E⊥(s ≈ sm) ≈ E0. (As a side remark, we note that, in quantum
physics, such a bounce motion implies a harmonic bounce

spectrum Eb � (ℓ + 1
2)Zωb which abolishes the volume

degeneracy of the Landau levels ELn � (n + 1
2)Zωce [25] with

harmonic numbers ℓ � 1, 2, . . . <ωce/ωb and cyclotron
frequency ωce ≫ωb.)

One immediate consequence of the mirror process is that
given an initial velocity distribution in the equatorial plane of the
magnetic mirror bottle, the magnetic minimum at location s � 0
on any field line (magnetic flux tube), there will be a continuous
distribution of mirror points sm(s) arising along the magnetic flux
tube that starts in the equatorial plane. For instance, if the parallel
particle velocities in the magnetic field minimum s � 0 are subject
to a Maxwellian distribution fM(v‖0), then it is easy to show by
using the above expressions for the bounce motion that, for a
given parallel velocity ωbsm � v‖0 � v0cosα0, the distribution of
mirror points with s along any particular field line becomes
trivially

f‖M[sm(s)]∝ exp[ −mω2
bs

2
m

2Te‖
(1 − s2

s2m
)]. (3)

It shows that the location of the mirror point is fixed by the
Maxwellian, depending on v0 and pitch angle α0 in the field
minimum, and the distribution in velocity maps continuously
to a distribution of mirror points along s. For the full
distribution as a function of the initial energy, this
expression has to be integrated over the initial velocity
distribution including the pitch angle distribution on α0
but not over space in order to construct the distribution of
sm(s, E0). Mirror points thus fill the entire volume of the
mirror bottle along each flux tube that crosses the equator
with the given continuous distribution as a function of the
location along a flux tube and initial energy distribution.
Since each mirror point inhibits the mirroring electrons to
propagate up to larger s, the electron distribution gradually
dilutes toward increasing s and magnetic field. This will have
to be kept in mind when discussing the generation of the
condensate below.

LetN mlm be the number of electrons which arrive at the mirror
point smlm. This number is

N mlm � N 0 − ∑lm−1
l�1

N ml. (4)

The sum (or integral) over all mirror points at smaller s
removes the mirroring electrons from contributing to the next
mirror point. At every mirror point sml along s, the fraction Δc of
those electrons having their mirror points at sml , which resonate
and become locked to the wave, contributes to the condensate.
Their fraction Δc is an about constant property of the resonance.
The number of electrons contributed by every field line to the
condensate is thus given by

N c ≈ lmΔc, (5)

where lm is the number of mirror points along the field line in the
magnetic mirror configuration, which presumably is a
comparably large number. Let the length of the field line in
the mirror configuration be LB and the parallel correlation length
ξ‖ ≪ LB, then lm ≈ LB/ξ‖ ≫ 1. Below, we show that ξ‖ ∼ λD is of
the order of the Debye length λD. Determination of Δc on the
contrary requires precise knowledge of the locking/trapping
process.
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1.2 Discrete Wave-Particle Interaction
Potential
The underlying model is sketched in Figure 1. The presence of a
thermal ion-sound background noise propagating at speed cs as,
for instance, in the magnetosheath (see 21, 23) introduces an
important subtlety. Propagation at long wavelengths λ≫ λD is
mainly along the magnetic field with k ≈ k‖. There is no purely
perpendicular propagation, but propagation at larger oblique
angles k⊥ > k‖ is of slightly shorter wavelength [24]. The ion-
sound background enables the bouncing particles to fall into
discrete particle resonance whenever their parallel bounce speed
becomes comparable to the ion-sound speed v‖ ≈ cs giving rise to
an electric interaction potential (cf., e.g., Refs. 26, 27)

Φ(x, t) � − e

(2π)3ϵ0 ∫ eik·x−iωtδ(ω − k‖v‖)
k2ϵ(k,ω) dk dω, (6)

where k � (k‖, k⊥) and x � (s, x⊥). For the mirror-trapped
energetic bouncing particles, this happens close to the mirror
points s ≈ sm. The inverse of the response function ϵ(ωk , k) can
for a large class of waves ω(k) � ωk satisfying the dispersion
relation ϵ(ωk , k) � 0 be written as

ϵ(ω, k)−1 � k2λ2D
1 + k2λ2D

(1 + ω2
k

ω2 − ω2
k

). (7)

For ion-sound waves in a magnetic field, one has generally

ω2
k �

k2‖c
2
sΛ(ηi)

Λ(ηe) + k2λ2D
(1 + 3Ti

Te
k2‖λ

2
D), Λ(η) � I0(η)e−η, (8)

where I0(ηe,i) is the zero-order modified Bessel function and ηe,i �
1
2k

2
⊥r

2
ce,i with gyroradius rce,i of electrons and ions. One usually

assumes k⊥rce ≪ 1 yielding Λ(ηe) ≈ 1, which for ions is barely
satisfied in our case but still will be assumed below. Also usually,
one assumes Ti ≪Te which simplifies the expressions.

In Equation 7, the unity in the brackets accounts for Debye
screening which here is of no interest. The test particle itself does not
feel the screening which is important only for its environment, in

particular, and outside the Debye sphere. The resonance in the
second term plays a role only near the mirror point s ≈ sm where the
electron has very low speed v‖ ≈ cs comparable to the ion-sound
velocity ω ≈ k‖v‖. Here, the particle energy is adiabatically
transferred to gyration at cyclotron frequency ωce. In the vicinity
of all resonant particle mirror points, the resonant term dominates
the Debye screening (the unit in the brackets). The precise form of
the potential felt by other particles of same sign is generally repulsive,
but under restrictive conditions, it can also become weakly attractive
[26, 28] at an approximate distance ξD ≈ 1.5λD [14] in the wake of
the moving particle outside the Debye sphere surrounding each of
the bouncing particles. Clearly, ξD then plays the role of a
“correlation length” providing the chance for transient electron
pairing, the classical equivalent of Cooper–Schrieffer pair
formation, which is interesting but of secondary importance in
the non-solid classical state where spin compensation becomes
spurious. The number of paired particles always remains small,
and pairing is of minor importance in the dynamics of the plasma.

2 THE CONDENSATE

Themain effect on the bouncing particles is the resonance near sm
where the parallel particle energy becomes very small matching
its resonance energy Eres ≈ 1

2mc2s . The resonance temporarily
violates the bounce invariance and locks the electrons to the
ion-acoustic wave, mainly by trapping the electrons temporarily,
thus for a while removing them from bouncing back into the
equatorial weak field region:

dv‖(s)
dt

|s ≈ sm � − e
m

z

zs
Φ(s)|s ≈ sm − ω2

b(s − sm), ω2
b �

μB′′
0

m
.

(9)

Transformed to the mirror point location sm, one has v‖(sm) �
cs � const. The mirror force vanishes at s � sm while the particle is
still carried ahead by the emerging resonant electric potential field
that is induced by the ion sound. In resonance, the electron
assumes the speed of the wave and rides together with the wave
further up the field being briefly fixed to the wave by the resonant
potential. This could also be interpreted as trapping of the low-
energy bouncing particle in the ion-sound wave potential near the
mirror point as discussed in another subsection further down.
Here, we first stick to the discrete wave-particle resonance.

2.1 Interaction Potential
We previously solved the above integral (Eq. 6) for the potential
Φ when focussing on the general possibility of pair formation
[31]. Introducing the inverse response function, it can be
written as

Φ(x, t) � eλ2D
(4π)2ϵ0 ∫ωkexp[ik‖(s − v‖t)]J0(k⊥ρ)

1 + k2⊥λ
2
D + k2‖λ

2
D

[δ(ω − k‖v‖)
ω − ωk

− δ(ω − k‖v‖)
ω + ωk

]dk‖dk2⊥dω,
(10)

FIGURE 1 | The underlying model: schematic of mirror configuration, the
lth mirror point sml , and resonance with an ion-acoustic thermal background
wave with the parallel wave number k‖. The green oval indicates the region of
resonant correlation and coherence which around the particular mirror
point is the Debye length in the parallel direction and at least one ion gyroradius
in the perpendicular direction.
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where the simplified ion-sound dispersion relation ωk ≈ k‖cs has
been used. The zero-order Bessel function results from
θ-integration over the interval [0, 2π] with respect to k⊥ρsinθ
in the exponential when adopting a Bessel representation. In the
ω-integration, the two poles on the real ω-axis must be
surrounded depending on the convergence properties of the
exponential. They are located on the real ω-axis. For s< v‖t
and v‖ > 0, the integration path is deformed into the lower
complex plane, adding a factor iπ to the integral. Otherwise
for s> v‖t, the deformation is into the upper half-plane and the
factor becomes −iπ. Integration with respect to k‖ and
combination of both cases give

Φ(x, t) � − eλ2D
8πϵ0v‖

∫ dk2⊥
ωkJ0(k⊥ρ)

1 + k2⊥λ
2
D + ω2

kλ
2
D/v2‖ sin(ωk

v‖

∣∣∣∣s − v‖t
∣∣∣∣).
(11)

This potential is felt by the particle in interaction with the
wave. One notices again that the electron does not feel its own
screening. For itself, the electron is naked under its clothes. Other
particles outside the Debye sphere find the electron dressed.

Figure 2 shows the transition from the Debye screening
potential of the electron to the trapping potential (yellow
negative potential part) at distance ∼ 1.5λD outside the
screening Debye sphere along the parallel coordinate s.
Electrons of sufficiently low relative speed outside the
Debye sphere of the electron can become trapped in the
negative potential trough. Though the potential is weak,
the trough contains a large number of electrons such that
trapping and pair formation have a finite probability. Pair
formation also depends on the direction of spin, but
temporary trapping of electrons in the trough is always
possible, not forming pairs and thus occupying different
energy levels.

2.2 Locking Potential
The last form was useful in finding the interval where the
potential would become attractive. Finally, integration with
respect to the perpendicular wave number is possible with
some further simplifications [14] yielding

Φ(s, ρ, t) ≈ − e
2

�
2

√
πϵ0

cs
v‖

exp(− �
2

√
ρ/λD)

λD|σ|2 {sin|σ| − |σ|cos|σ|},

σ � −(s − v‖t)/λD. (12)

For small σ < 1, this potential is negative Φ(|σ|)∝ − 1
2 |σ| at

the start of the yellow domain in Figure 2. The radius ρ in the
exponential is of the order of several times λD because the
potential induced by the electron does not extend very far
beyond the Debye sphere in the radial direction. The
exponential is of order 0.01< exp(− �

2
√

ρ/λD)< 0.1. To lowest
order at v‖(s) ≈ cs close to s ≈ sm, the bounce motion is distorted
and the electron becomes quickly locked to the wave. This
happens at time t ≈ π/2ωb − τ which gives ωbτ ≈ cs/v0‖ or for
the mirror point distance sm − δs ≈ csτ ≈ c2s /ωbv0‖. At this
location, λD|σ| ≈ δ(s − v‖t) is small. Expanding the braces in
the expression of the potential yields { . . . } ≈ ∣∣∣∣σ|3/3 which
compensates for

∣∣∣∣σ|2 in the denominator. The potential at
resonance is obtained as

Φ(δs, ρ, τ) ≈ − e |δs − csτ|
6

�
2

√
πϵ0λ2D

e−
�
2

√
ρ/λD →

− e exp(− �
2

√
ρ/λD)

6π
�
2

√
λDϵ0

���
m
mi

√
ωe

ωb

cs
v0‖

. (13)

This potential is switched on when resonance sets on in the
vicinity of the mirror point, acting at least for a time ωbτ. It is
clearly rather weak. However, being fixed to the wave, it moves
with it up the field such that it is felt by the electron whose parallel
kinetic energy at the mirror point becomes the resonant energy.
The potential comes up for the remaining velocity difference
δv‖ ≈ cs − v‖(τb/4 − δτ) and enables locking the electron. The
velocity difference δ(cs − δv‖)|sm is of second order in ωbδτ, where
δτ is the variation of τ caused by the velocity difference. An
estimate gives

(ωbδτ)2 ∼ c2s
v20‖

≈
m
mi

Te

E0cos2α0
≲ 10−4, (14)

which yields a short time variation of roughly δτ ∼ 0.05τb which
can be neglected with respect to τb/4.

2.3 Locking Distance
The locking distance 〈Δs〉 � s1 − sm beyond sm in the increasing
converging magnetic field is determined by the growing mirror
force which ultimately removes the electron from resonance at
location s � s1 and parallel speed v‖(s1) � 0. The locking time
〈Δτ〉 � t(s1) − t(sm) ≈ 〈Δs〉/cs and 〈Δs〉 � s1 − sm can be
estimated putting the left-hand side in Eq. 9 to zero:

〈Δs〉2 ≈ c2s
2ω2

b

, Δτ ≈
�
2

√
ωb

� τb
π

�
2

√ ≈ 0.2τb. (15)

FIGURE 2 | Debye and attractive potentials. The parallel ion-acoustic
wavelength covers the attractive potential for resonant electrons.
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The time the particle remains in resonance after passing its
nominal mirror point is a fraction of the bounce period τb. In this
brief locked slow motion v0⊥ ≫ cs, the magnetic moment is
conserved. The electron becomes perpendicularly heated
〈ΔE⊥〉 ∼ μB′′

0〈Δs〉2/2 ≈ mc2s /2, which is a small amount only,
causing an increase in energy anisotropy E⊥/E‖ of just one
unit only.

2.4 Locking Potential Ignoring Pairing
It is instructive to look for a different way of solving Eq. 6 by
ignoring any pairing. Let us return to its already evaluated version
(Eq. 10). We sketch the somewhat lengthy and tedious though
straightforward analytical calculation here and only provide the
final result. Straightforward integration of Eq. 10 with respect to
frequency transforms the integral into one with respect to the
parallel wave number k‖. We insert the ion-sound dispersion
relation (Eq. 8) for ωk and neglect any magnetic effects but in the
denominator of the dispersion relation allow for oblique
propagation k � (k‖, k⊥). One observes that the parallel wave
number cancels in the unsplit quadratically singular term in Eq. 6
when inserting for the wave frequency as it is proportional to

k2λ2D. Defining u ≡ cs/v‖ <
��������
1 + k2⊥λ

2
D

√
for electrons moving

toward sm in the converging field allows to manipulate the
singular denominator to separate k2‖λ

2
D. This leaves us with a

squared singularity for the wave number k‖ which can again be
factorized yielding two separate linear poles in the complex k‖
plane which turn out purely imaginary:

k‖λD pole � ± i
�����������
1 + k2⊥λ

2
D − u2

√
≡ ± iΓ.

∣∣∣∣∣∣ (16)

Depending on the sign of the exponent ik‖(s − v‖t) in the
exponential of the integral in Eq. 10, only either the positive or
the negative pole contributes. For negative sign, it is the positive
exponent, while the negative pole is to be neglected. This
produces a factor −2πi in front of the integral. Using the
imaginary pole in the denominator simplifies it to become just
u2, and only the k⊥-integral remains. To solve it, one observes that
k⊥λD < 1 which allows expanding the root in the argument of the
exponential. The remaining integral is tabulated. Its value at
resonance u2 � 1 is

Φ(σ, ρ) ≈ e
8π2ϵ0λD

|σ|(∣∣∣∣σ 2 + ρ2/λ2D)3/2.∣∣∣∣∣ (17)

This potential is repulsive for any other electron. It applies to
all scales inside the Debye sphere and outside with the exception
of the above inferred narrow attractive region. The same
expression holds at resonance for σ > 0 where the opposite
pole has to be used in the calculation. This simplified form
ignores any attractive potential as the approximation made
suppressed that weak effect. It shows however that a repulsive
potential moves with the electron in resonance with the ion
sound, thus attracting the positive part of the ion-sound wave if
only the particle is in resonance. The potential decreases with
increasing |σ| and ρ as predicted. It maximizes at |σ| ≈ ρ2/3λ2D.

Multiplying with charge e, one obtains an estimate for the
parallel velocity difference δv‖ beyond cs which the potential can
compensate:

(δv‖)2 ≈ e2

4π2mϵ0λD
|σ|(|σ|2 + ρ2/λ2D)3/2 ∼ 102

⎧⎨⎩ ∣∣∣∣σ −2∣∣∣∣
(ρ/λD)−3 (18)

For λD ∼ O(10m), the numerical factor is of the order of
roughly 100 m2/s2. Since both |σ|> 1 and ρ/λD > 1, the value
depends on the ratio of the two quantities in the last
expression. Hence, the potential adjusts roughly for a
difference in field-aligned speed of about

∣∣∣∣v‖ − cs
∣∣∣∣ ∼ 10 m/s.

There is another point to make about the resonance. The
thermal wave spectrum is usually isotropic which implies that
waves parallel and antiparallel will be present in the plasma
volume. Hence, once the mirror force takes over and re-
accelerates the particle down the field, the particle if reaching
its speed −v‖ � −cs can enter another resonance with a wave
propagating anti-parallel to the field. Since the mirror force
rapidly decreases during the particle displacement toward the
magnetic minimum, the particle can stay for longer time in
resonance until reaching the opposite mirror point −sm and
becoming released when having passed it. This is a substantial
fraction of the trapped population in the condensate moving at
constant speed v‖ � cs up and down the field. Effectively, this
process gradually causes parallel cooling and perpendicular
heating of the condensate. The mean parallel temperature
T‖cond of the condensate or its energy is then simply
E‖cond ≈ mc2s /2≪Te⊥. Condensate formation in this case
becomes an efficient way of splitting the population into non-
resonant isotropic and resonant anisotropic parts, the latter
forming the condensate.

2.5 Electron Trapping in Resonance
Let us return to the interesting case of wave trapping of a single
electron that has substantially slowed down near its mirror
point sml . When the electron slows down to the ion-acoustic
wave speed near sml , there is a good chance that the wave
potential is large enough to trapping the electron if only the
wave can compensate for the residual particle energy. We
recall the energy density of long wavelengths’ ion-sound
thermal fluctuations [20, 27]:

W0 ≡ 〈1
2
ϵ0|δE|2〉 ≈

Te

λ3D
. (19)

Figure 3 shows the dependence of the ion-acoustic
background noise spectrum on the normalized wave number.
Throughout the resonant part of the ion-acoustic dispersion
relation with phase velocity ωk/k‖ ≈ cs (indicated in red), the
wave power is practically constant being of valueW0. The energy
difference near resonance v‖ ≈ cs for a single electron in the
parallel wavelength along the field is

mc2s
2

(δv‖
cs
)2

≈
m
mi

Te(δv‖cs )
2

. (20)
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Comparing the last two expressions in the long parallel
resonant wavelength domain k‖λD < 1, we find that the
originally fast electron can become trapped in the background
noise at long wavelengths already at a location where the parallel
speed difference of the electron from the ion sound is of the order
δv‖ < 10cs.

The parallel speed of the electron readily drops to a value
which satisfies this rather weak condition which the long
wavelength of the ion sound provides even at thermal wave
levels. It is thus probable that an electron is trapped in the wave
and stays in resonance as proposed above. A more precise
calculation going beyond this order of magnitude estimate,
which for the purposes of this communication suffices,
requires calculation of the probability of trapping in one of
the thermal background ion-acoustic waves which are
distributed over a wide angular range of propagation with
respect to the magnetic field, excluding perpendicular
propagation. Since almost all electrons participate in
bouncing, the fraction of trapping near mirror points
depends predominantly on the distribution of the thermal
ion-acoustic wave spectrum along the magnetic field covering
the continuous distribution of mirror points. It is thus
reasonable to assume that the trapped particle fraction will
be substantial providing a fairly dense condensate distributed
over the entire fraction of the volume of mirror points inside the
mirror geometry.

This case has an interesting consequence. The parallel ion-
acoustic wavelength is somewhat larger than the Debye length
k‖λD < 1, roughly amounting to λ‖ ≳ 2πλD which for trapping of a
slowed-down electron in half a wavelength offers a good chance.
This length covers a longer space interval than the pairing
distance. It therefore includes any pairs which have formed.
The mutual electron distance N

−1
3

0 is much less than half the
Debye length. In addition to pairs, a substantial fraction of

electrons with sml inside one half wavelength 1
2λ‖ ≳ πλD will

therefore have the chance to become trapped, if only they
meet the right wave phase. They all are mutually correlated,
with parallel correlation length ξ‖ ∼ λD. When becoming trapped,
they contribute to the condensate. One then observe that the
number

lm � LB/ξ‖ ∼ LB/λD, (21)

which in the magnetosheath, for example, has typically at least
LB ∼ 106 m, and λD ∼ 10 m, is of the order of lm ∼ 105 to 106.

Estimating the number of trapped electrons is complicated. It
should involve taking into account the spatial inhomogeneity of
the distribution. Equation 3 suggests that, for a rather crude
estimate, the fraction of electrons having their mirror points
within one half wavelength centered at the mirror point
|sm − s| ∼ ξ‖ ∼ λD is very roughly given by

Δc ≈ 1 − exp( − ω2
b

ω2
e

2sml

λD
) ≈

ω2
b

ω2
e

2sml

λD
, (22)

where λD � ve/ωe (with thermal speed ve and plasma frequency
ωe) has been used and sml + s ≈ 2sml has been approximated.
The frequency ratio ωb/ωe ≪ 1 is a small number which,
however, is compensated by the ratio of the mirror
distance to the Debye length. In order to have an estimate,
let us assume sml ≈ LB/2 in the average, which is a reasonably
conservative assumption. Each mirror point on the field line
contributes a number

Δc ∼
ω2
b

ω2
e

LB

λD
(23)

of non-paired electrons to the condensate which, after summing
up the contributions of all lm mirror points, yields an estimated
average total contribution of the field line of

N c ≈
ω2
b

ω2
e

L2B
λ2D

≈ 4 × 104 (24)

electrons to the condensate. As, for example, magnetosheath
conditions have again been assumed, with plasma frequency
ωe ∼ 50 kHz, the electron cyclotron frequency is about ωc ∼ 5
kHz. The bounce frequency is a fraction of the latter, say,
ωb ∼ 102 Hz only; thus, ωb/ωe ∼ 2 × 10−3, with LB ∼ 106 m
and λD ∼ 10 m.

The above number of condensate electrons along the field line
corresponds to a linear density of Nc‖ ∼ 4 × 10−2 m-1. The
linear density of the non-condensate background in the
magnetosheath amounts to N0‖ ≈ 300 m-1. Hence, the
fraction of condensate to background electrons in the
magnetosheath is roughly

Nc ≈ 1.5 × 10−4N0 m−3 (25)

when assuming a magnetic mirror geometry containing an
approximately homogeneous condensate. This fraction is small
though not unreasonable. The importance of the condensate lies
less in its density than in its property of being correlated and thus

FIGURE 3 | Parallel ion-acoustic wave dispersion relation ω(k‖)/ωi (with
ωi being the ion plasma frequency) for fixed k⊥ and ion-acoustic thermal
background noise spectrum Wk /W0 as a function of k⊥λD. (Note that, on the
abscissa, k stands for both, k‖ when referring to the dispersion relation
and k⊥ when meaning the spectral density.) The resonant part of the
dispersion relation is shown in red. The spectral density (green) of the ion-
acoustic background noise is constant over the resonant range and decays
like Wk ∝ [1 + k2⊥λ

2
D(1 + k2‖ /k2⊥)]

−1
for fixed k‖. For resonant electrons, it is

constant over several parallel wavelengths and with k⊥λD ∼ λD/rci <1 up to a
perpendicular distance of the ion gyroradius rci .
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behaving coherently, which is at the base of Ginzburg–Landau (GL)
theory [15, 16, 29, 30] of superconductivity. It is thus interesting that
a similar effect is found in high-temperature plasmas in the presence
of a magnetic mirror symmetry. Locking of resonant electrons by
electron trapping in ion-acoustic waves is thus a rather promising
process for condensate formation and its consequences. In a more
elaborate theory, one should however in addition take into account
the effect of the trapped electrons on the evolution of the ion-
acoustic wave. Such processes have been widely considered for long
time in non-linear plasma theory [32, 33]. They could be applied
directly here as they contribute to non-linear growth of the wave
which possibly reinforces electron trapping and may be capable of
amplifying the condensate formation and its macrophysical effect.

2.6 Correlation Lengths
The important property of the condensate is its internal correlation
length ξ which causes the condensate to behave approximately like a
single particle occupying the same energy state. Quantum
mechanically spoken, it has a unique common wave function ψ
which is used in Ginzburg–Landau (GL) theory and generally in the
theory of superconductivity [15] where it is called the order
parameter. It satisfies the first GL equation and its semi-classical
version in application to mirror mode physics [14]. As noted above,
pairing at ξD ≈ 1.5λD provides one such correlation length between
the rather small, and in fact tiny, number of paired electrons even
though by the argument of Section 2.5 a substantial fraction of
electrons will have their mirror points in close contact with the wave
and develop an attractive potential. Nevertheless, the probability of
pairing in the classical environment, where spin interactions play no
role, will be small and thus by multiplication with the former
probabilities reduce the importance of pairing.

Of greater importance is the role played by the perpendicular
ion-sound wavelength. Propagating obliquely with respect to the
magnetic field, the perpendicular ion-acoustic wavelengths satisfy
the condition k‖ < k⊥ < r−1ci [20, 34].Wavelengths perpendicular to
the magnetic field exceed the ion gyroradius. A substantial
number of bouncing electrons with magnetic mirror points sm
located along this long perpendicular wavelength λ⊥ are
simultaneously in resonance v‖ ≈ ω/k ≈ cs with the same ion-
acoustic wave. They become trapped and locked to the wave by
the resonance mechanism all together simultaneously moving at
the same parallel speed v‖ ≈ cs along with the wave parallel to the
magnetic field. The entire set of these bouncing electrons is thus
temporarily for their trapping time correlated not merely along
the magnetic field but also in the perpendicular direction. The
interparticle distance N−1/3

0 ≪ rci is very small compared with any
of these correlation lengths. Hence, in addition to the parallel
coherence length ξ‖ ∼ λD, the distance k−1⊥ ∼ r−1ci acts as the
relevant average perpendicular correlation length
ξ⊥ ∼ k−1⊥ ∼ 〈rci〉. All those particles behave coherently.

2.7 Ginzburg Ratio
In the further evolution of the condensate, the important
quantities are the magnetic penetration depth λL � �����

N0/Nc
√

λi,
the London scale, and the correlation lengths ξ. Here, λi � c/ωi is
the ion skin depth. Since the condensate density Nc <N0 is less
than the ambient density, the London length is large. Inserting the

number obtained above from particle trapping, we find that
λL ∼ 10−2λi which for the magnetosphere immediately suggests
that mirror bubbles will only partially become depleted of the
magnetic field. This is in excellent agreement with the
observation. Of utmost importance is, in addition, the so-
called Ginzburg ratio κG � λL/ξ⊥. It determines whether the
macroscopic condensation effect is local or whether it affects
the entire volume.

The realistic case is of course the former where κG > 1 which is
realized in plasmas where the penetration depth of the magnetic
field λL ≫ rci by far exceeds the ion gyro-radius, a situation
realized in the magnetosheath and in any other observation of
mirror modes. For the parallel correlation length, ξ‖ � λD is
anyway trivially given.

The identification of ξ‖ � λD and in particular ξ⊥ � rci as the
relevant correlation lengths in condensate formation thus
warrants that any effects the condensate will be responsible for
modify the properties of the plasma locally only. For the
identification of two such effects in magnetic mirror modes
(cf., e.g., Refs. 4, 35–38, 45) observed in the magnetosheath
and solar wind, in particular the partial Meissner effect and its
related phase transition, we refer to our previous work [5]. The
present note completes the theory by presenting the probable
mechanism of condensate formation which in high-temperature
plasmas to some extent is a surprise and possibly of farther
reaching consequences showing that, under particular purely
classical conditions, macroscopic effects similar to microscopic
quantum states can arise and can be considered to resemble
macroscopic quantum effects as they are subject to further
affecting the dynamics.

3 CONCLUSION

Single particle resonance near mirror points is a process which so
far has been overlooked while possibly being capable of
substantially changing the physics locally. In the always given
presence of ion-sound background noise in high-temperature
collisionless plasmas, it naturally will happen to a substantial
fraction of the bouncing electrons, which should lead to the
generation of a condensate as has been described in Section 2. In
magnetic mirror geometries, condensate formation should
therefore be a general effect if only a thermal wave
background noise is present. This background noise can also
be of different than of ion-acoustic nature. For instance, in the
topside auroral ionosphere where in the geomagnetic mirror
geometry particles bounce back and forth, it should as well
take place either with ion-acoustic background noise or with
any Alfvén waves present whose phase velocity may match the
parallel bouncing velocity of the energetic particles near their
mirror points.

The possibility for a correlated particle condensate under some
peculiar conditions in high-temperature collisionless plasmas
may be unusual. It will strongly become supported by trapping
the slowed-down parallel electrons in the thermal wave field as has
briefly been discussed above. In all cases, it requires the presence of
magnetic mirror geometries. Formation of a condensate has
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macroscopic consequences for the local plasma behavior. In solid-
state quantum physics in analogy, it lies at the basis of the
microscopic BCS theory of superconductivity [16].
Phenomenologically, its dynamics can in both cases be treated
within GL theory which here, in the semi-classical approach,
naturally applies [14] when investigating the evolution of mirror
modes in the magnetosheath.

Condensate formation affects a non-negligible fraction of the
particle population which is correlated along the magnetic field over
roughly few Debye lengths, and perpendicular to the magnetic field
over one perpendicular wavelength of the ion-acoustic wave,
corresponding to at least one ion gyroradius. In mirror modes,
the presence of the condensate causes the evolution of chains of
mirror bubbles according to the intervention of the Ginzburg ratio
κG. Interacting bubbles oscillate at Josephson frequency [39, 40]
which in the magnetosheath is expected to be in the infrared or sub-
millimeter range [13], oscillation presumably there being too weak
for detection however.

Secondary effects like emission of observable radiation (cf., e.g.,
Ref. 41) in cyclotron harmonic bands (see, e.g., Refs. 19, 42, for recent
observations) are possible because of the large perpendicular
anisotropy the condensate contributes. Application to
reconnection, which evolves as well in the presence of a thermal
background of ion-acoustic waves, will be investigated elsewhere,
bearing in mind that, under rather weak conditions, the linear
collisionless tearing mode should provide the required initial
magnetic mirror geometry. This requires a rather weak tearing
instability the conditions for which must be checked first. The
possibility that a thermal background of tearing mode
fluctuations might suffice to provide a background of mirror
geometries can be abandoned [43] because of the extremely low
magnetic fluctuation level it can merely provide.

In astrophysics, magnetic mirror geometries are abundant in
all kinds of magnetic stars, offering a wide field for condensates to
develop and play a role, in particular in the generation of
radiation. Aside from these, application to solid-state physics
is the most interesting, however. Immersing prospective
superconducting materials into sufficiently strong magnetic
mirror geometries at varying temperatures might support
condensate formation at increased temperatures and thus
cause higher temperature superconductivity. This is an
interesting problem which will be considered elsewhere.

Large amplitude mirror modes have long been measured
magnetically as well as in pressure balance for long time (see
the cited literature and the references therein). Also, ion-sound
waves are continuously present and have been observed regularly
since their first detection [21] where they already had been
identified as thermal background noise. Mirror points are
distributed all over the magnetic mirror bottle. Hence, the
condensate is as well distributed. Its properties are, however,
probably, very difficult to extract from the data. As they are only a
fraction of the electron population, this fraction has large
anisotropy and all its energy in the perpendicular direction.
Extraction from the total electron distribution is thus an
intricate experimental problem. In fact, this is the same
problem as in metallic superconductivity where the condensate
has never been “seen,” just its Meissner effect.

Thus, the important question arises concerning the experimental
observability of the condensate. Condensate formation takes place in
the vicinity of the mirror points sm. These are homogeneously
distributed over the mirror bottle, depending on the pitch angle
distribution function in its center, the field minimum. Thus,
condensate particles will be present in the whole mirror volume.
They by themselves obey a high thermal anisotropy of the order of the
ratio of ion to electron mass ∼ mi/m resulting from the reduction of
their parallel velocity to the velocity of the ion-acoustic wave v‖ ∼ cs.
This is their only signature as belonging to the condensate because of
the indistinguishability of electrons. Their fractional density q �
Nc/N0 < 1 may become substantial filling the whole mirror volume
(with the exception of the equatorial region, i.e., the magnetic
minimum, as this lacks any mirror points and thus is least
vulnerable to the partial Meissner effect). However, experimentally,
it will be rather difficult to identify the condensate frommeasurements
of the electron distribution as this can be done only viameasuring the
condensate anisotropyAc ≈ mi/m. Though this is large, it presumably
cannot be observed separately. The requirement of monitoring the
parallel energy ϵ‖ in the very low–energy regime and identifying a
positive bump localized near ϵ ≈ mc2s /2 is certainly too strong. Hence,
the condensate anisotropy will be hidden in the overall anisotropy.

In fact, however, in [5], following the first unexplained
detection of this effect in [44], we pointed at the almost
persistent observation of the occurrence of a weak magnetic
enhancement (or maximum) in the very center of the (about
symmetric) mirror bottle. It occurs once the spacecraft by chance
crosses the center of the bottle. According to the above discussion,
the quasi-superconducting Meissner effect should be weakened
here because of the lack of any mirror points, the high passing
speeds of the bouncing electrons, and the absence of any
resonance with the wave background noise. One expects that
the field here is depleted least, whichmight be interpreted if not as
the ultimate observational proof though as experimental support
of our condensate formation theory.

That the global pressure anisotropy is little affected can easily
be verified when looking into the contributions of the initial
pressure anisotropy A0 � P0⊥/P0‖ − 1 and the condensate
pressure anisotropy Ac � Pc⊥/Pc‖ − 1 to the total pressure
anisotropy A � A0 + Ac. Here, in a very strict conservative
treatment, the pressures are used in order to consider the
effect of the fractions of electrons in the normal non-locked
and condensate states. It suffices to consider the situation at some
particular unspecified mirror point sm. There the distribution
consists of the normal passing (i.e., not mirroring) particles and
the mirroring resonant condensate particles. It is then easy to
show that the total anisotropy, accounting for the fractional
contributions of the two constituents, is expressed as

A ≈ A0[1 + 2q2/(1 − q)2] + 2q2/(1 − q)2 → A0

1 − q
. (26)

Thus, unless q≲ 1, the total anisotropy is not substantially affected.
In case of A0 � 0 initially, a weak anisotropy is produced by the
second term in this expression. For the above estimate of the
magnetosheath value q ∼ 10−4, it is tiny and impossible to
identify unless this estimate is unrealistic and will be corrected
for q. In any case, any observer would have interpreted it as an
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original electron anisotropy A0 from which it cannot be
distinguished and therefore will be misunderstood and taken
responsible for generating electron mirror modes, as has been
done in the literature. This would however be a misconception
because the electronmirrormode is in small scale the order of λe and
has very low amplitude, as we have shown when using historical
observations [5] where the electron mirror mode becomes visible
inside the ion mirror mode only. In most cases, it will be drowned in
the general level of magnetic fluctuations. It is improbable that the
electron anisotropy would exhibit any sign of the condensate. As
pointed out, the role of the condensate is not in its anisotropy but in
its coherence. By this, it modifies London’s penetration depth and
the Ginzburg ratio with its macroscopic consequences which are
independent of the anisotropy.

We have been strictly conservative when calling for pressure
anisotropy. The situation of the anisotropy becomes substantially
more favorable when the condensate electrons appear as a separate
population independent of the non-condensate electrons with their
large and pronounced anisotropy unaffected by the symmetric
background and density ratio. Which stand has to be taken
remains not known and undecided till now.

Thus, experimental verification by observation of the
particle distribution is probably unrealistic. It requires
precise measurement of the fluctuation in the parallel
distribution function at v‖ ∼ cs which seems unrealistic in
view of the estimated condensate density. The only possibly
promising spacecraft observations are Magnetospheric
Multiscale (MMS) datasets in the magnetosheath under
conditions when mirror modes are observed. In this respect,
we point to very recent most interesting mirror mode
observations [4, 45] in the magnetosheath and solar wind.
Still, identification of the condensate will be an intricate
problem. Other effects of the condensate are hardly
imaginable. Its parallel energy is too low, and its large

separate anisotropy lies on the wrong side of the electron
distribution for exciting any kinetic plasma waves. The only
other effect to be expected is the modification of the ion-
acoustic background spectrum due to resonance near the
mirror point and electron trapping. This resonance implies
interaction with the ion-acoustic waves which so far has not
yet seriously been investigated.
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