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Anderson localization is an interference effect yielding a drastic reduction of
diffusion—including complete hindrance—of wave packets such as sound,
electromagnetic waves, and particle wave functions in the presence of strong disorder.
In optics, this effect has been observed and demonstrated unquestionably only in
dimensionally reduced systems. In particular, transverse localization (TL) occurs in
optical fibers, which are disordered orthogonal to and translationally invariant along the
propagation direction. The resonant and tube-shaped localized states act as micro-fiber-
like single-mode transmission channels. Since the proposal of the first TL models in the
early eighties, the fabrication technology and experimental probing techniques took giant
steps forwards: TL has been observed in photo-refractive crystals, in plastic optical fibers,
and also in glassy platforms, while employing direct laser writing is now possible to tailor
and “design” disorder. This review covers all these aspects that are today making TL closer
to applications such as quantum communication or image transport. We first discuss
nonlinear optical phenomena in the TL regime, enabling steering of optical communication
channels. We further report on an experiment testing the traditional, approximate way of
introducing disorder into Maxwell’s equations for the description of TL. We find that it does
not agree with our findings for the average localization length. We present a new theory,
which does not involve an approximation and which agrees with our findings. Finally, we
report on some quantum aspects, showing how a single-photon state can be localized in
some of its inner degrees of freedom and how quantum phenomena can be employed to
secure a quantum communication channel.
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1 INTRODUCTION

Transverse localization (TL) is found in media in which the refractive index is randomly modulated
only orthogonally to the direction of propagation. In these paraxial systems, Anderson localization
(AL) sustains nondiffracting beams: confined light tubes showing many potential applications
including fiber optics, quantum communication, and endoscopic imaging. In this review we will
summarize recent advances in disordered optical fibers, in which confinement is obtained thanks to
localization, discussing the advantages with respect to standard fibers. First we will report the latest
experimental results on transverse Anderson localization: the migration of localized states due to
nonlinearity, self-focusing, wavefront shaping in the localized regime, and the single-mode transport
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in disordered paraxial structures. This last result is particularly
important as it bridges the physics of Anderson localization to the
single-mode properties of optical fibers.

Then we will show how the traditional description of
Anderson localization, which was based on the analogy to
electrons in a random potential, turned out to be in error and
led to the prediction of a localization length depending strongly
on the wavelength of the light, which was not observed. We also
report on the alternative correct theory, which relies on an
analogy to acoustical waves in the presence of random elastic
moduli. Regarding quantum aspects, we will report on how a
single-photon state localized in some of its inner degrees of
freedom could be an effective resource in quantum
communication and cryptography, increasing both the amount
of information loaded per single particle and the security and
performance of protocols based on localized photon quanta.
Finally, we will review the so-called random quantum walks in
which the dynamics of a single particle moving on a lattice
conditionally to the state of an ancillary degree of freedom
display localization under certain conditions. A further aspect
of AL of quantum particles is the behavior of the multiparticle
interference and of the particle statistics in quantum walks. In the
first proof-of-principle photonic experiments, AL has been
observed in the two-photon wave function. In this scenario, it
could be possible to simulate even the fermionic statistics by
proper manipulation of two-photon entangled states generated
by single-photon sources.

1.1 Modeling Transverse Localization: The
Beginning
In the last decades, the idea that Anderson localization could be
applied to electromagnetic waves [1, 2] has drawn the attention
of the scientific community, stimulating experiments and
conjectures. The excitement was further propelled by the
following observation of the coherent backscattering cone (the
so-called weak localization) [3–5]. Several experiments claimed
strong localization of light in bulk media [6–8], but these results
are still today strongly debated [9–12]. First Abdullaev in 1980
[13] and then De Raedt and coworkers in 1989 [14] proposed an
alternative form of localization for light: the transverse
localization. These authors described an optical system
translationally invariant along the propagation direction of
the waves, together with a refractive index varying randomly
in the directions rectangular to it (transverse disorder). As usual
in diffraction theory one can reduce the appropriate Helmholtz
equation to a paraxial one [15, 16], which will be outlined in the
following [14].

We start from the Helmholtz equation for the scalar field ϕ (r),
which represents one of the components of the electric field
E (r, t)

∇2ϕ(r) + ω2

c2
n2(x, y)ϕ(r) � 0 (1)

where ω is 2π times the frequency, c is the vacuum light velocity,
and r � [x, y, z]. In the case of spatial longitudinal invariant
system, the function n(x, y) is the (transversely varying) refractive

index. Due to the translation invariance in the z direction, the
wave function can be represented as

ϕ(r) � a(r) exp(−ik0z) (2)

where a(r) is the envelope in z direction and describes the
localization effects in (x, y) direction. k0 � n0ω/c � 2π/λ is the
wavenumber in the medium. n0 is the average refractive index in
the disordered medium (disordered fiber), and λ is the
wavelength in the medium. Equation 1 becomes

− z
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+ 2ik0
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By introducing a transverse Laplace operator ∇2
⊥ � z2

zx2 + z2

zy2

and making the paraxial approximation [16]
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Equation 3 becomes

2ik0
z

zz
a(x, y, z) � ∇2

⊥ + U(x, y)( )a(x, y, z). (5)

where the potential is defined in terms of the spatially fluctuating
refractive index:

U(x, y) � k20
n(x, y)2 − n20

n2
0

[ ] ≈ 2k20
Δn(x, y)

n0
, (6)

with Δn(x, y) � n(x, y) − n0. Equation 5 is formally equivalent to
the Schrödinger equation driving electron localization [17]. Here
the z component mimics the time dependence in the Schrödinger
equation and the index fluctuations mimic the random potential.
In their seminal paper De Raedt et al. solved this equation
numerically and obtained evidence for transverse Anderson
localization for an index contrast of Δn � 0.25 and 0.5.

2 EXPERIMENTS ON TRANSVERSE
LOCALIZATION

The first papers on transverse localization were focused on
theoretical modeling and numerical simulations. The
experimental realization of the effect required more than a
decade from the appearance of the paper of De Raedt et al.
[14], because it required several technological advances on the
fabrication side. The difficulty relies in the realization of the
translationally invariant disorder in the z direction, which is
particularly challenging at optical wavelengths, where it is needed
to realize “paraxial defects,” i.e., invariance of the defect structures
along the symmetry axis for sufficient length and size. The first
successful approach was the “writing method” based on the
application of the photo-refractive effect, which easily enables
to produce z-invariant defect structures, employing Gaussian
beams. On a second stage, the TL has been realized employing
fiber-drawing technology, which enabled to produce longer
structures, larger refractive index contrasts, and finally
application-ready transverse-localized fibers. In the last stage,
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TL femtosecond direct laser writing was applied, which enabled
the direct control of the defect positioning in order to investigate
effects related to the disorder design. In the following, we will
describe all this.

2.1 Early Experiments
The first experimental observation of TL (and actually one of the
most unequivocal experimental manifestation of light
localization) has been reported by Schwartz and coworkers
[18] employing photo-refractive media. The authors employed
the optical induction technique [19], to transform the intensity
distribution of an array of parallel laser beams into a refractive-
index distribution thanks to the nonlinear response of the glassy
material. The distribution of the beam intensity is controlled with
an interference mask, thus enabling the experimentalist to design
the disorder configuration. The approach of Schwartz and
coworkers induces a small refractive index contrast (Δn ∼ 10–4)
and a large disorder grain size (∼10 µm), thus the expected mean
free path ℓ (the spatial length over which light propagation
direction memory is lost) could be rather large. However,
because the localization length, according to the scaling
theory [20, 21] is proportional to ek⊥ℓ , they argue that they
deal with a very small perpendicular wavenumber k⊥. The latter
is the projection of the wavevector onto the x−y plane k⊥ � k0
sin θ, with θ being the incidence angle; see the sketch in
Figure 1.

The big advantage of the optical induction is the possibility to
completely rearrange the refractive index distribution, with a
simple and fast rewriting procedure. The possibility to perform
experiments with several realizations of the disordered n(x, y)
pattern enables to retrieve averaged-over-disorder quantities and
this is an important aspect for verifying the presence of light
localization. In particular, the authors of [22] demonstrated a
dependence of the localization length on the degree of disorder,
thus demonstrating TL.

2.2 Optical Fibers
In 2012, Arash Mafi and coworkers [18] demonstrated TL in an
optical fiber, composed of polymer materials. They used a novel

kind of fiber named disordered binary fibers (DBF), based on the
random mixing of tens of thousands of polymer fibers of two
types: poly-methyl-methacrylate (PMMA) and polystyrene (PS).
The fibers were put together randomly and then thinned by
applying a fiber-drawing tower.

By this procedure, homogenous fibers were realized with a
realization of transverse disorder in the refractive index. The
binary fiber approach provides several advantages: 1) the
disordered refractive index distribution is permanent, 2)
the refractive index mismatch between the two materials
(Δn ∼ 0.1) has orders of magnitude higher than in the case of
the photorefractive structures, and 3) the optical fibers are a
mature technology ready for applications based on localization.
Mafi and coworkers also fabricated glass optical fibers hosting
transverse disorder and demonstrated TL therein [18]. The glass
platform is extremely favorable for applications, providing very
high refractive index contrast together with increased stability
and lower absorption.

2.3 Image Transport
In-fiber implementation of the Anderson localization
enables the propagation of localized beams with the
transverse size comparable to that of cores of commercial
single mode optical fibers. Thus a single disordered fiber with
sufficient transverse extension can act as a coherent fiber
bundle [23]. In [24] Mafi and coworkers demonstrated image
transport through disordered optical fibers up to 5 cm. The
transported image quality is comparable to or slightly better
than the one obtainable with commercially available
multicore image fibers, with disorder reducing the
pixelation effect present in periodic structures and
improved contrast. On the other hand, the imaging
resolution is limited by the quality of the cleaving and
polishing of the fiber tip, while the transport distance is
limited by the optical attenuation and the residual
longitudinal disorder resulting from the imperfect drawing
process. In this sense, a glass-based disordered fiber, with a
higher filling fraction and much lower losses, has the
potential to further improve endoscopic disordered fibers.

FIGURE 1 | Sketch of transverse localization: sketch of the scattering structure and illumination for the realization of the TL. Light, in the form of a plane wave defined
by the wavevector k, is impinging on the sample, with an azimuthal angle θ. The projection of the wavevector on the x-y plane (parallel to the fiber facet) k⊥ and the
projection of the wavevector on the propagation direction z (kz) are reported, together with the spectral parameter

��
E

√ � k⊥ (see Section 3). The disordered system is
typically consisting of amatrix of refractive index n containing “inclusions”with a different refractive index n1. To work as “paraxial defects”, the defect structures with
index n1 should be precisely parallel to z.
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2.4 Experimental Test of the Traditional
Theory of Anderson Localization
The traditional theoretical description of Anderson localization
of light, and, in particular, transverse Anderson localization [14,
18, 25] predicts a pronounced dependence of the localization
length on the light wavelength. This is implied by the dependence
of the potential U (x, y) in Eq. 5 on k0 � 2π/λ

2ik0
z

zz
a(x, y, z) � ∇2

⊥ + k20
n(x, y)2 − n2

0

n2
0

[ ]︸							︷︷							︸
U(x,y)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠a(x, y, z).

We call the traditional approach according to Eq. 5 the
potential-type approach (PT). The authors of [26] investigated
this effect experimentally (see a sketch of the setup in Figure 2A)
in order to verify the validity of the current theory of Anderson
localization of light. The experimental setup is shown in Figure 2.
Figure 2B reports the localization length ξ versus the incident-
laser wavelength: no dependence on the wavelength is retrieved in
the range 0.55 ≤ λ ≤ 1 μm. This is in contrast to a simulation of
Karbase et al. [25] of the same specimens, using Eq. 5, showing a

strong dependence on the wavelength λ � 2π/k0; see the dashed
line in Figure 2. The reason for this discrepancy with the
theoretical predictions will be fully explained in the following
section. Here, we just sketch the essence of the findings of the
authors of [26]:

1) In deriving the wave, Eq. 5, it has been tacitly assumed that the
divergence of the electric field would be zero. In the presence
of a spatially varying index of refraction, the divergence is,
however, nonzero and is given by

∇⊥ · E � − 1
n2(x, y)E · ∇⊥n

2(x, y)≠ 0. (7)

Approximately neglecting this term leads to the strong
dependence of the localization length on k0, and, hence, on
the laser wavelength (dashed line in Figure 2B) [14, 18, 25],
at variance with the experimental findings (Figure 2B).

2) An alternative wave equation has been derived by the authors
of [26], in which the electric modulus 1/n2(x, y) enters
(“modulus-type,” MT), and which involves no
approximation (except the paraxial one):

FIGURE 2 | Probing the wavelength dependence of the average localization length. (A) Experimental setup: the probe beam is generated either by a tunable laser
(tunability range 0.690 and 1.04 μm) or at a fixed wavelength (532 nm) laser. The back-reflected light is then visualized by the camera CCD1 through the beam-splitter
(BS) to focus the beam at the fiber entrance. The piezo devices control the laser injection location. The transmitted light is collected by the objective OBJ2 and imaged on
camera CCD2 with a magnification of ×50. Panel B reports the average localization length ξ versus wavelength λ for both numerically simulated and experimental
data. Experimental data (open circles) are from [26] while numerical data, based on the approximate, traditional potential-type (PT) approach of Eq. 5 (full triangles and
dashed line) are from [25]. The full line represents the prediction of our new, modulus-type approach (MT), which is exact [26].
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2ik0
z

zz
b(x, y, z) � −∇⊥ × 1

n2(x, y)∇⊥ × b(x, y, z). (8)

here, b(x, y, z) � e−ik0zB(x, y, z) and B is the magnetic field. This
wave equation does not predict any wavelength dependence of
the average localization length (full line in Figure 2B), in
agreement with the experimental data.

2.5 Nonlinearity in Disordered Optical Fibers
There is a relevant debate about the fact that nonlinearity [27, 28]
may enhance disorder induced localization. The interplay
between disorder and a nonlinear response may strongly
modify the process of disordered induced wave trapping in
TL. In particular in the case of nonlocality, while localization
tends to reduce the intermode interactions, a nonlinear
perturbation, extending beyond the region of the localized
state, could eventually produce some kind of action at a
distance. The first experimental evidence of nonlocality acting
together with Anderson localization in an optical fiber has been
shown in [29]. In that paper, the disordered fiber has been probed
with a broadband laser beam, showing a distribution of sharp
peaks in the transmittance, as expected from the “resonant”
behavior of the disorder induced localized states [in Figure 3A
we report the spectrum transmitted from the fiber (blue)
compared to the probe spectrum (red)]. The first evidence is
that the spatial shape of the localized states is strongly affected by
energy probe beam power. This effect is reported in Figures 3B,C,
where the localized state shape is reported as a function of the
input power. The mode is seen to shrink when power is
augmented. The presence of sharp peaks in the spectrum for

all the power values confirms that the nonlinear action conserves
the coherence of probe light.

This self-focusing results from the peculiar interaction
between disorder and thermal nonlinearity. In general, the
refractive index of a nonlinear optical material, varies with the
optical intensity I as n � n0 + Δn(x, y) + n2I, where Δn(x, y) is
the refractive index fluctuation due to disorder and n2 represent
the coefficient of the nonlinear perturbation. A positive n2
coefficient results in a converging wave front that can
potentially surpass the diffraction limit. Conversely, a negative
value of n2 produces a defocusing nonlinearity, thus the expansion
of the beam. In plastic binary fibers, one expects the slow thermal
nonlinearity to yield a negative n2, thus defocusing. However,
experimental measurements report instead a focusing nonlinearity.
This unexpected effect is explained as follows [30]: if the refractive
index reduction is more pronounced in one of the two constituent
materials of the binary fiber, the refractive index mismatch may
increase. Thus the overall refractive index reduction is
compensated by a stronger index contrast, resulting in a smaller
mean free path. This argument is not affected if we switch from the
PT to the MT description, because according to both theories the
mean-free path is inversely proportional to the index contrast,
resulting effectively in a decrease of the localization length, as
shown in Figure 3.

This effect makes a local and optical tunability of the
localization length possible, enabling to drive the position of
the localized states in a form of localization-mediated beam
steering. The steering effect is reported in Figure 4. Figure 4A
shows light reflected by the fiber input: the probe beam (green
spot on the left) and the pump beam (red spot on the right).

FIGURE3 | Localized states and nonlinearity. Panel (A) reports the spectrum (blue thick line) retrieved at the output of a disordered fiber (the collection area is 1 µm).
The red thin line represents the source spectrum. Panel (B) reports the shape of the most intense mode (at ≃801 nm), for five values of the input power. Panel (C) shows
localization length versus input intensity. All data are from [29].
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Figures 4B–D show the shape of the probe beam at the output as
a function of the pump beam power. Here it is possible to note
how much the probe beam is attracted towards the pump one.
Figure 4E shows the distance of the probe beam center as a
function of the input power.

Nonlocality obviously works also when more than two
modes are involved. The behavior of a group of localized
modes is visualized in Figures 4F,G. Here we show (data
from [29]) the mode density (number of localized modes
per square µm) along the x and y axes at the output of a
fiber. The mode density has been characterized for various
values of the input power. The modes indeed appear to be
attracting one another and then after a “collision” they start
to diverge.

2.6 Localized States and “Single Modes”
The Anderson localization (AL) scenario typically comprises a
disordered system supporting states which are strongly localized
at different locations in space and at different energies [31]. These
disorder-induced resonances have thus a poor or negligible
spatial and spectral overlap, so that transverse energy
transport is substantially slowed down.

While the majority of the studies on AL are focused on the
measurement of transport-related quantities (such as diffusion or
conductance [6–8, 21]), it is also interesting to study the
properties of disorder-generated localized states. These light
structures could be employed for energy storage [28, 32] or
super-efficient lasing [33, 34]. Indeed localized states act
exactly like a microresonator, with the difference that the
resonance is sustained by a disordered structure instead of a
regular one. In photonics, this kind of “lonely” structures are
extensively employed in several fields: the most successful
applications are in the field of fiber optics and laser resonators
where they are named single-mode resonators or single-mode
fibers. The principle of operation for both applications is very
similar: they are resonant structures designed to host a single
solution (typically the fundamental one) of the wave equation
without (or with very small) losses.

In the case of disordered optical fibers, one may ask, to which
extent a localized state operates as a single mode hosted in the
core of single-mode fibers. This issue has been extensively studied
in [35].

In contrast to multimode fibers, disordered binary fibers
(DBF) show peculiar transmittance maps. The transmittance

FIGURE 4 | Light steering in the localization regime. Panel (A) shows the input of the DBF, showing the probe beam (green on the left) and the pump beam (red on
the right). Panels (B–D) report the probe beam (pump light has been removed from the detector with a spectral filter) for several values of pump power. Panel E shows the
distance between probe and pump beam versus the pump power. Panels (F–G) report the modes density along the X axis and Y axis (respectively) and for several pump
powers. Data are from [29].
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map is the total (integrated over the whole fiber tip output)
intensity measured as a function of the injection location, and
measured with the setup shown in Figure 5. Light from a CW
laser is tightly focused into a spot of 0.7 µm diameter at the DBF
input. The fiber input tip is sustained by a motorized actuator
which enables to scan the injection location (r � [x, y]) along the
input plane. The total transmittance T (r) is thus obtained by
summing the whole intensity measured on the output plane
(R � [X, Y]) by Camera 2. A typical transmittance map is
reported in Figure 5A. It is possible to note that high
transmittance locations (green spots) are appearing rather
sparsely and surrounded by a sea of barely transmitting
locations. These “hotspots” are the locations at which the
input (which has a size much smaller than the localization
length) couples efficiently to a transmission channel
corresponding to a transversely localized state. The fact that
the transmittance map is sparse should be thus a consequence
of the fact that the coupling conditions are very “strict”
(resonance bandwidth is very small) and thus coupling
happens only at specific locations.

Now it is interesting to further investigate the nature of these
transmittance hotspots. The most accessible feature is the
intensity profile measured at the fiber output: this is reported
at Figure 6 for four different input locations. The input locations
are identified by small colored dots labeled (ai bi, ci, di) in
Figure 5A. The intensity profiles in panels B and C of
Figure 6B correspond to injection locations in the same
hotspot and they produce two very similar output intensity

profiles. On the other hand, two very close input locations
lying in a barely transmitting area (panels C and D of
Figure 6) produce two very different output intensity profiles.
The intensity profile corresponding to a high efficient
transmission channel is thus a fingerprint of the channel. In
the same way the Gaussian profile going out from a single mode
fiber is an indistinguishable signature for efficient coupling of a
laser beam to the fundamental mode of the fiber’s core.

To verify this picture, one should observe where the mode’s
fingerprint is found while scanning the input of the fiber. To
perform this measurement systematically, the authors engineered
a specialized observable that is the degree of similarity Q(r1, r2)

Q(r1, r2) � ∫ I(R, r1)I(R, r2)dR, (9)

normalized such that Q(r, r) � 1. The fingerprint of a
transmission channel is the output intensity profile retrieved at
the location of higher transmittance. So for the transmission
channel located at ai, it produces a Q-map Q(ra, r2) � ∫I (R, ra)I
(R, r2)dR, where ra corresponds to a location of higher intensity of
the mode ai. By computing Q(ra, r2) for all r2 in the area of view,
we retrieve the Q-map reported in Figure 7A. The white/bluish
area (where Q ≃ 1) corresponds to the dwelling area of the mode:
the set of input locations from which the mode can be activated.
The dwelling area is very sharp, meaning that when the mode is
activated, no other modes (which would modify the fingerprint
and immediately lower the Q) are activated.

FIGURE 5 | Probing single mode nature of localized states. The sketch reports a scheme of the experimental setup. Legend: CW laser, continuous wave laser; M,
mirror; BS, beam-splitter; OBJ, objective; DBF, disordered binary fiber. Panel (A) reports the transmittance map in a 10 µm side field of view. Data are from [35].
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A similar situation is found in Figure 7B for the mode in ei.
The two modes are only barely overlapping: energy is not flowing
from one localized state to the other. The dark area in both maps
corresponds to locations in which no intensity is transferred to
the localized state. Note that the small displacements of the input
inside the dwelling area do not cause any modification in the
mode fingerprint. Multimode light structures would give rise to a
pronounced flickering of the image due to the difference in phase
delay of the different modes. The absence of such flickering is a
relevant proof of the single-mode nature of the light structures
supported by the DBFs.

The fact that the dwelling areas of different modes are barely
overlapping is consistent with the picture in which localized states
are orthonormal. A definitive confirmation of orthonormality
requires to measure all the relevant observables: dwelling area,
fingerprint, spectral parameter, and polarization. Such a
challenging experiment (requiring the full characterization of
thousands of modes) has not yet been carried on to our
knowledge.

On the other hand, Figure 7C, related to mode (ci), provides a
Q-map almost entirely empty: in absence of a transmission
channel, retrieved light is not coupled to a localized state. In
this case the fiber behaves in way similar to a (very leaky) large-
core multimode fiber where a small translation of the input
produces a complete change of the output due to interference
(thus an immediate decay of the Q value).

Regarding polarization, [24] reports one of the first studies
about the impact of polarization: in the Supplementary Figure S3
of reference [24], the authors show that image reconstruction is
nearly unaffected by the input polarization. The Supplementary

Figure S2 of reference [35] demonstrates the “polarization
maintaining” nature of the localized states. To our knowledge,
there are no experimental studies for the polarization behavior in
the nonlinear case; however, we have no evidence suggesting that
the picture changes.

The summary is as follows

1) High transmission channels in a fiber are sparse.
2) They are separated by a barely transmitting “sea”.
3) Independently on how (and where) light is coupled to a fiber,

each transmission channel retains its fingerprint (output
profile).

4) Modes are excited in alternative fashion (i.e., the same input
location activates only a transmission channel at time).

In other words, localized states of a disordered binary fiber
behave exactly like the single modes of conventional single mode
fibers showing the same property: namely the “resilience to the
launch conditions.”

2.7 Designed Disorder in Glass Fibers
Disorder binary fibers (DBF) are a unique architecture [36]: a
fiber without cores (thus similar to a multimode fiber), capable of
hosting localized/single mode solutions. However, the high
absorbance of the plastic component materials, together with
fabrication-induced scattering losses, degrades consistently their
transmittance efficiency, which remains very limited especially if
compared with the properties of silica fibers capable to transmit
light for kilometer with few losses. It is thus very promising to
obtain transverse localization on disordered glassy fibers. The first

FIGURE 6 | Mode fingerprints. Each panel reports the spatial profile of the intensity found for the correspondent location in Figure 5; i.e., panel (A) shows the
fingerprint for location (a), (B) for location (b), etc. Data are from [35].

FIGURE 7 | Q-maps. Panels (A–C) show Q-maps for modes (a), (e), and (c), respectively. Data are from [35].
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observation of transverse Anderson localization in a glass optical
fiber has been obtained by Mafi and coworkers [37]. The glassy
disordered fiber has been obtained, starting from a “porous satin
quartz” rod of 8 mm in diameter and 850 mm in length from
which a single 150 m long fiber (diameter 250 µm) has been
obtained. However, in this system the nonhomogeneous
distribution of disorder (lower air hole density in the central
region of the fiber) produces localized states only at the borders of
the fiber. This uneven distribution of disorder forbids a complete
optical exploitation of the waveguide section. Moreover, the
positions of the defects (the air bubbles) are random (it results
from the natural occurrence of pores in the rod) and cannot be
tuned by the experimentalist at the fabrication stage.

On the other hand, the concept of designed disorder [38] is
becoming an intense field of research with applications ranging
from the fabrication of waveguides polarizering to light
harvesting [39–41]. In fact, in some cases, disordered
structures, even if fully deterministic, can be more favorable
for specific tasks than periodic ones. For example, disordered
arrays of defects can be employed to produce a structure
displaying different propagation regimes (full photonic
bandgap, Anderson localization, or free diffusion), depending
on the wavelength employed [42].

In order to implant “designed disorder” into glassy optical
fibers, the authors of [43] employed the femtosecond direct laser
writing (FDLW) technique. FDLW [44] exists since the early
nineties and enables nanometric resolution in surface ablation. In
transparent materials bulk micro machining can be achieved
through nonlinear (two- or three-photon) absorption, thus
enabling the fabrication of photonic or microfluidic devices.
The strong confinement of the nonlinear absorption volume,
together with positioning performed by piezo-actuators with
nanometric resolution, enables the fabrication of three-
dimensional and complex structures. The modifications by
nonlinear absorption yield a local refractive-index change (at
low power) or even void formation (at high power). Importantly
the changes produced are permanent; thus, the low power
approach enables producing durable wave guides. The group
of Szameit and coworkers reported several experiments on

waveguide arrays in which disorder is introduced in the inter-
waveguide coupling factors. This approach enabled to investigate
Anderson localization [45–48], defect localization [49], and also
topological insulation [50]. This wave-guide-based approach,
indeed, enables accessing a plethora of intriguing physical
phenomena; however, it requires the individual fabrication of
each of the transmission channels. In this sense, DBF support
localization in a different manner: they can be, indeed, seen as a
continuous meta-material, potentially hosting localized states at
any location, which could support the resonance condition. The
most evident consequence of this difference is that localized states
translate gradually their position when wavelength is changed in
DBF, while they can be hosted only at the waveguides location in
waveguides-arrays.

In order to transfer the advantage of DBF to glasses, Gianfrate
and coworkers [43] employed FDLW in a nontraditional way. In
particular they employed an objective with high numerical
aperture (NA � 0.65) to generate tubes with very small
diameter and with refractive index larger than the surrounding
medium. These paraxial structures play the role of a transverse
scatterer, because their reduced transverse dimension does not
enable to support propagating modes: they act as paraxial defects
(see sketch in Figure 1). This new generation of optical fibers
based on paraxial defects has been studied in [43], where the
authors show how the localization strength depends on the degree
disorder properties. The authors demonstrate that the
confinement properties depend on the degree of disorder
0 < χ < 1: a parameter tuned at the fabrication stage. The
paraxial defects are fabricated at the transverse coordinates
[XMx,YMy] � [δ(Mx + χθMx), δ(My + χθMy)], where Mx and My

are integer numbers between 0 and S and δ is the lattice size
and θ is a uniform random number between [−0.5 and 0.5].When
χ is 0, the paraxial defects are located in a square lattice with cell
side δ and S2 defects (square with side δS). For χ > 0 each defect is
displaced by a random amount δχθMx along X and δχθMy along y,
generating a square lattice with an increased degree of
randomness.

Figure 8 reports the measured localization length ξ as a
function of χ. It is possible to note that the localization length

FIGURE 8 | Localization length in direct laser written disorder. Localization length ξ versus degree of disorder χ, measured in a D Glassy substrate in which paraxial
defects have been realized with FDLW. Data are from [43].
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decreases up to 0.6 and then starts to increase again. While the
decrease is naturally expected as a natural consequence of
increasing disorder, the increasing behavior above χ � 0.6
results from the appearance of overlapping paraxial defects
which are effectively decreasing the defect density.

The realization of localization induced by direct laser-written
defects is the first step towards a new generation of glass-based
optical fibers characterized by low absorption and greater stability
with respect to their plastic counterpart. The ability of tuning the
defect position will open the possibility to test the concepts of
designed disorder directly in optical fibers, thus paving the way
towards unprecedented applications.

3 THEORY OF ANDERSON LOCALIZATION
OF LIGHT

3.1 Historical Overview
Since the appearance of Anderson’s seminal 1958 article [17], the
interest of the condensed-matter community in electron and wave
localization has not decreased [31, 51]. That Anderson localization is
an interference phenomenon, i.e., due to thewave nature of electrons,
became only clear in a second seminal paper by the “gang of four”
Abrahams, Anderson, Licciardello and Ramakrishnan [20], in which
they combined perturbation theory with a scaling procedure (to be
described below) to show that the disorder-induced interference
leads always to localization in two and one dimension. That one-
dimensional systems feature always localized states had already been
shown by Mott and Twose in 1961 [52].

The rather ad-hoc scaling argument of the gang of four has been
given two complementary field-theoretic fundaments: the self-
consistent localization theory of Vollhardt and Wölfle [53–55]
and the generalized nonlinear sigma model [56, 57], which goes
back to a paper by Wegner [58]. Wegner realized that the nonlinear
sigma model for planar ferromagnetism exhibits the same scaling
behavior as the scaling theory of Anderson localization. Shortly after
the self-consistent localization theory of Vollhardt and Wölfle
[53–55] appeared, it was noted by Economou and Soukulis [59]

that the resulting self-consistent equation for finding the localization
length was mathematically analogous to the problem of finding (or
not finding) a bound state for single electrons within a potential well
(“potential-well analogy”). The potential-well-analogy method was
later formulated more rigorously by Soukoulis et al. [60] and Zdetsis
et al. [61]. In all three analytic approaches, 1) the scaling/nonlinear
sigma model theory, 2) the self-consistent theory, and 3) the
potential-well analogy, one proceeds in two steps for calculating
the localization characteristics, namely the phase diagram, the
conductance in the delocalized regime, and the localization length
in the localized regime:

1) Calculating a “unrenormalized” (or “reference”) conductance
g0 from the disorder statistics of the spatially fluctuating
potential

2) Applying the
- scaling equations (scaling theory/nonlinear sigma model)
- self-consistency relation (self-consistent localization theory)
- potential-well relation.

It is interesting to note that as the potential-well analogy is not
based on the assumption of weak disorder (i.e., the assumption
that the relative variance of the potential fluctuations is small),
one can apply the standard effective-medium theory for strong
disorder, namely the coherent-potential approximation (CPA)
for calculating g0 [61]. Complementary numerical methods for
solving the Anderson localization problem are the Green’s
function method [62, 63] and the transfer matrix method [64].
In both methods the one-parameter scaling idea is used to extract
the bulk localization features by finite-size scaling. These methods
do not suffer from some shortcomings of the analytical
approaches (The analytic approaches predict, e.g., a critical
exponent of ] � 1.0, whereas the true one, obtained by the
numerical work, is ] � 1.57 [62, 65]).

The standard (Anderson) model for electron localization is
given by the following Hamiltonian on a simple hypercubic lattice
[17] with lattice constant a.

H � ∑
i

|i> ϵi < i| + t∑
i≠j

|i> < j| (10)

where the indices i, j denote lattice sites and the double sum is
over next nearest neighbors only. ϵi � < i|V(r)|i > is the diagonal
element of an external potential V(r), which varies randomly in
space. < r|i > areWannier basis states. Usually the local potentials
ϵi are assumed to be independent random variables, which are
distributed according to a distribution density P(ϵ), which can be
a Gaussion or a box-shaped function [66]. The overlap
(“hopping”) matrix element t is assumed to be constant. Near
the bottom (or top) of the band, one can write down a continuum
Hamiltonian,

H � − Z2

2m
∇2 + V(r) (11)

with ta2 � 1
2m. Here a constant 6t has been added (subtracted) at

the bottom (top) of the band. This leads to the Schrödinger
equation:

FIGURE 9 | Visualization of two interfering scattering parts, one going
clockwise along the loop and the other anticlockwise.
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Eψ(r) � Hψ(r) � − Z2

2m
∇2 + V(r)( )ψ(r) (12)

In the continuum description [57], one considers V(r) as a
Gaussian random variable with zero mean and correlation
function < V(r)V (r′) > � cδ(r −r′), where c is the variance
times a d-dimensional volume.

As there is no difference from the mathematical standpoint
between a time-Fourier transformed classical wave equation
(Helmholtz equation) and the Schrödinger Eq. 12 for the
electrons (identifying 2mE/Z2 with −ω2, where ω is the angular
frequency), it was soon suggested that acoustical [67] and
electromagnetic (EM) waves [68, 69] should also exhibit
Anderson localization. These theoretical approaches were
based on the nonlinear-sigma-model formalism. A
multiple-scattering approach for localization of
(schematically scalar) acoustical waves was published by
Kirkpatrick (1985) [70].

Considering acoustical waves in a disordered medium, the
disorder may come from 1) spatial density fluctuations or 2)
spatial fluctuations of elastic moduli. John et al. [67] assumed
density fluctuations, and the approach of Kirkpatrick (see Eqs
6a–6c of [70]) is equivalent to considering fluctuating elastic
moduli. If one assumes both density and modulus fluctuations,
the wave equation for the schematically scalar acoustical
displacement field ϕ(r, t) takes the form

ρ(r) z
2

zt2
ϕ(r, t) � ∇K(r)∇ϕ(r, t) (13)

or in frequency space

−ρ(r)ω2ϕ(r, t) � ∇K(r)∇ϕ(r, t) (14)

If the density ρ does not fluctuate, Eq. 14 constitutes an
ordinary eigenvalue problem, which can be solved by
discretization, followed by diagonalization. In the case of
density fluctuations, one can separate the fluctuations from the
mean ρ(r) � ρ0 + Δρ(r):

−ρ0ω2ϕ(r, t) � ω2Δρ(r) + K∇2( )ϕ(r, t) (15)

Now the term ω2Δρ(r) looks like a frequency-dependent
potential. But from the mathematical standpoint, it is strange
that in an eigenvalue problem the potential depends on the
eigenvalue. Certainly it would be more sound to divide the
whole equation by ρ(r) to obtain an effective modulus K(r)/
ρ(r). However, in their approach to acoustical localization, John
et al. [67] kept the effective frequency-dependent potential,
because then they could take over the established electronic
theory of Anderson localization, in particular the nonlinear-
sigma-model theory of McKane and Stone [57]. In his seminal
article on the localization of light [71], the author pursued the
same strategy: he wrote down a wave equation for the electrical
field E(r, ω), where the ω2 term was multiplied with the spatially
varying permittivity ϵ(r). In this derivation, he tacitly assumed
that the divergence of E would be zero. We pointed already out
that, in the presence of a disorder-induced spatially varying
permittivity, this is not the case. We shall discuss the
consequences of this in the sections after introducing the
scaling concept of localization theory.

For later reference, let us call a stochastic wave equation with
fluctuating coefficient of ω2 a “potential-type” (PT) equation and,
if the elastic modulus fluctuates, a “modulus-type” (MT)
stochastic equation.

Pinski et al. [65, 69] used the transfer matrix method to solve
the discretized stochastic acoustic wave Eq. 14 for the density of
states and the localization properties, comparing the MT case
with the PT case. While they find that the critical properties of
both models are within the universality class of the electronic
Anderson problem [72], the phase diagrams of the two models
are rather different. The analogue of the PT model is the
Anderson model of Eqs. 10, 12, whereas the quantum analog
of the MT model is an electron system with spatially fluctuating
hopping amplitude or effective mass (“off-diagonal disorder”)
[73], which also has a phase diagram different from the
Anderson model [73]. So one can state that the PT and MT
stochastic wave equations describe two physically different
situations of wave disorder. In the case of electromagnetic
case, however, they are supposed to describe the same,
namely EM waves in a medium with spatially fluctuating

FIGURE 10 | Sketch of the scaling function as anticipated by Abrahams, Anderson, Licciardello, and Ramakrishnan [20].
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permittivity ϵ(r) � n2(r). The solution of this paradox is, as we
shall demonstrate below, that the PT description is an
approximation (neglecting the ∇ E term), whereas the MT
description is exact.

3.2 Wave Interference and the Scaling
Theory of Anderson Localization
If a wave is experiencing disorder like electrons in an impure
metal, the waves are repeatedly scattered. This multiple scattering
process can be interpreted as a randomwalk, featuring a diffusion
constant D. In fact, one can derive a diffusion equation for the
wave (diffusion approximation [74, 75]). The diffusion
approximation is equivalent with the relaxation time

approximation [76], leading to the Drude law for the
conductivity.

The diffusion approximation assumes that after each scattering
event, the phase memory is lost. However, if one follows the
scattering amplitudes with phases kłij (where lij is the distance
between two adjacent scattering centers) in a frozen medium, the
phase memory is in principle not lost. This has dramatic
consequences for recurrent partial paths, i.e., paths with closed
loops: the phase of the recurrent path is exactly equal to that going
in the reverse direction (see Figure 9). This leads to destructive
interference and therefore to a decrease of the diffusivity and, as we
shall see, for d � 2 to a vanishing of the diffusivity.

For describing the interference mechanism, Abrahams et al.
[20] have proposed an ingenious scaling scenario. They consider

FIGURE 11 | Reference conductance, which is proportional to the logarithm of the localization length g0(E)∝ ln ξ(E) as a function of the spectral parameter
E/q2

c � [k0qc]2 sin(θ)2. Full (black) line: MT calculation, which gives the same result for all values of k0. Broken lines: PT calculation for wavelengths λ �2π/k0 � 1 μm (red)
0.75 μm (green) 0.6 μm (blue) 0.5 μm (orange). The correlation wavenumber has been determined from our samples by image processing to have the value kc � 8 μm−1

[26]. The arrow indicates the maximum of the distribution of localization lengths in the MT case.

FIGURE 12 | Experimental apparatus for quantum cryptography using single-photon localized states. Alice encodes her qudits by preparing single-photon states
via a spatial light modulator. She chooses between two bases, namely (K) the eigenstates of the multimode fiber that localize after the propagation and (X) the states that
spread after the fiber. Bob measures in the K basis or in the X basis inserting one or two lens before the detection stage. After the comparison between the basis choices
by Alice and Bob, they can extract a secure key.
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the dependence of a dimensionless conductance g on the sample
size L in d dimensions and make the Ansatz

g(L)∝ Lβ 5 β � d ln g
d ln L

(16)

For β > 0 g scales towards infinity with increasing L, β < 0 g
scales towards zero. In the metallic regime (g → ∞), the
conductance should depend on the size L of a sample as g(L)
∝ σLd−2, where σ is the conductivity, so that β(g → ∞) � d − 2
(see Figure 10). On the other hand, for localization (g → 0) one
expects g (L) ∝ e−L/ξ, where ξ is the localization length. This
transforms to β(g → 0) ∝ ln g. Abrahams et al. then assumed a
smooth interpolation between the two limits to exist (see
Figure 10). By means of perturbation theory, they further
estimated the correction due to the interference terms to be
negative and proportional to 1/g. Their final result for the
scaling function is

β(g) � z ln g
z ln L

� d − 2 − c
g

(17)

where c is a dimensionless constant of the order of 1. It can be
verified from Figure 10 that in 3 dimension, the scaling with
increasing size L depends on the initial value of the conductance,
i.e., on the conductivity in diffusion approximation (Drude
approximation for electrons). However, as can be seen from
Figure 10 in 2 and 1 dimension, g scales always towards 0,
i.e., for L → ∞, there is always localization.

The scaling function (Eq. 17) is the same for the nonlinear
sigma model for planar ferromagnetism, as noticed by Wegner
[58]. Later a field-theoretical mapping from a stochastic
Helmholtz equation to a generalized nonlinear sigma model
was established and applied to the electronic Anderson
problem [56, 57] as well as the PT description of the
classical-wave problem [1, 67] and the MT description of
acoustical [77] waves and light [26].

In two dimensions, the scaling Eq. 17 is solved as

g(L) � − c ln L/L0 + g0 (18)

The localization length is given by the value L taken for g1 ≈ 1.
The reference conductance g0 is the diffusion-approximation
conductance

g0 � kℓ, (19)

where k is the wave number and ℓ the mean free path. For the
reference length, traditionally the mean-free path has been taken
as well. In our description, instead, we shall take for L0 the
correlation length Lc of the disorder fluctuations (see below)

L0 � 1
qc

� Lc

2π
(20)

From Eq. 18 one obtains the well-known formula [78] for two
dimensions:

ξ(E) � 1
qc
eg0(E)/c (21)

3.3 Wave Equation for Electromagnetic
Waves in a Disordered Environment
As indicated above, almost the entire literature on Anderson
localization (AL) of light is based on the potential-type wave
equation, i.e., a wave equation in which the spatially fluctuating
permittivity ϵ(r) appears as a coefficient of the double-time
derivative of the wave function (electric field). In a recent
article [26], some of the present authors have shown that this
wave equation is in error and leads to a fictitious wavelength
dependence of the localization length in transverse localization,
which is not observed in the experiments. We now review the
derivation of the traditional wave equation, showing which error
was made, and present the derivation of the correct wave
equation.

Maxwell’s equations in a medium with spatially varying
permittivity ϵ(r) are

∇ · B(r, t) � 0 ∇ ·D(r, t) � 0 D(r, t) � ϵ(r)E(r, t)
(22a)

∇ × B(r, t) � 1

c2
z

zt
D(r, t) ∇ × E(r, t) � − z

zt
B(r, t)

(22b)

For deriving a wave equation for the electromagnetic fields,
one can either solve the electrical field E(r, t) or the magnetic
field B(r, t).

3.3.1 Traditional, Potential-Type Approach
The traditional procedure (potential-type approach, PT) was to
solve E(r, t):

ϵ(r)
c20

z2

zt2
E(r, t) � −∇ × ∇ × E(r, t)

� ∇2E − ∇(∇ · E(r, t))
≈ ∇2E,

(23)

where in the last step ∇ ·E � 0 was assumed. In the frequency
regime, we obtain the following stochastic Helmholtz
equation:

−ω2ϵ(r)
c20

E(r,ω) ≈ ∇2E, (24)

which, separating the fluctuations of the permittivity as
ϵ(r) � <ϵ> + Δϵ(r), can be rewritten as

−ω2〈ϵ〉
c20

E(r,ω) ≈ ∇2 + ω2Δϵ(r)
c20︸			︷︷			︸

V(ω)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠E (25)

This equation is mathematically equivalent to a stationary
Schrödinger equation for an electron in a frequency-dependent
random potential V(ω). This equivalence made it possible to
transfer the complete electronic theory of AL [21, 53] to classical
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electromagnetic waves [21, 71, 79, 80]. We call this approach
“potential-type” (PT).

We now want to check the validity of the approximation made
in Eqs 23–25. We have

0 � ∇ ·D � ∇ · (ϵ(r)E(r)) � ϵ(r)∇ · E(r) + E(r) · ∇ϵ(r) (26)

from which follows [81].

∇ · E � − 1
ϵ(r)E · ∇ϵ(r)≠ 0 (27)

One can estimate the error made in Eq. 23 by inserting for E a
wave with wavelength λ. If the scale, on which the permittivity is
varying, is large with respect to λ (eikonal limit), the term on the
right-hand side of Eq. 27 is negligible. However, if this condition
is fulfilled, one deals with very weak disorder. In this case, one has
in three-dimension delocalization and in two dimension a very
large localization length, exceeding macroscopic sample
dimensions, which would make the observation of AL
impossible. So, for stronger disorder, where one might have a
chance for observing AL, the scale of the permittivity fluctuations
must be of order λ. In this case the divergence of E is not
negligible. This renders the approximation made in the PT
wave Eq. 23 invalid.

3.3.2 New Approach: Modulus-Type Description
If one solves the Maxwell Eq. 22 for B, one obtains

z2

zt2
B(r, t) � −∇ × c20

ϵ(r)∇ × B(r, t) (28)

Equation 28 leads to the following stochastic Helmholtz
equation:

ω2B(r,ω) � ∇ ×M(r)∇ × B(r,ω), (29)

where we have defined the spatially fluctuating dielectric modulus
as M(r) � c20/ϵ(r).

Equation 29 is mathematically equivalent to the Helmholtz
equation for an elastic medium with zero bulk modulus and a
spatially fluctuating shear modulus M(r). This equation is exact
and is called the modulus-type (MT) approach. A theory for a
medium with finite (constant) bulk modulus K and a spatially
fluctuating shear modulus has been worked out [77, 82, 83] by
some of the present authors and applied for explaining the
anomalous vibrational properties of glasses, in particular the
enhancement of the vibrational density of states with respect
to the Debye law (“boson peak”). Our present theory of Anderson
localization of light relies on the analogy to this case. Essentially
one needs only to take the K→ 0 limit for this theory and obtain a
theory for light diffusion and localization in disordered optical
systems.

In order to describe transverse Anderson localization, we first
map this problem to a two-dimensional problem.We then use the
paraxial approximation to map the z dependence of the wave
profiles to the time dependence in an effective Schrödinger
equation. For estimating the diameter of the large-z profile,
the localization length ξ, we apply the scaling theory of
Anderson localization [20, 21], which is equivalent to the
renormalization-group approach to the generalized nonlinear
sigma model [56–58]. For the calculation of the z dependence

FIGURE 13 | Two-photon quantum localization. (A-D) Correlation functions G (x1, x2) of a two-photon wave function in a one-dimensional Anderson lattice. The
four scenarios report the distributions for different input states in an intermediate time evolution, where the two photons have the same chance to be localized or to
spread ballistically. (A) Photons are prepared in a separable state in which they occupy two adjacent sites. (B) Entangled state in the polarization degree of freedom (H:
horizontal polarization, V: vertical polarization) that is antisymmetric with respect to the exchange of the particle’s paths. Such state mimics the fermion statistics.
Indeed, according to the Pauli exclusion principle, the probability to detect the two photons in the same site is zero. (C,D) Entangled states in the occupation number of
two sites. The distribution changes depending by the sign in the superposition. (e,f) The function g(Δ) calculated in the localization area, i.e., x1, x2 ∈ [−4,4] and x1− x2 � Δ
for the four initial states.
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of the localization length, we then use the self-consistent
localization theory of Vollhardt and Wölfle [53–55, 80].

3.4 Description of Optical Fibers With
Transverse Disorder
We now consider an optical fiber with transverse disorder, i.e., the
permittivity exhibits spatial fluctuations in x and y direction, but
not in z direction.

Because our system is translation invariant with respect to the
z direction, we may take a Fourier transform with respect to z:
B(x, y, kz ,ω) � ∫ dzeikzzB(x, y, z,ω). We then obtain an effective
two-dimensional Helmholtz equation

⎛⎝ [k20 − k2z]︸			︷︷			︸
E�k2⊥

−∇⊥ ×M(x, y)
〈M〉 × ∇⊥⎞⎠B(x, y, kz , E) � 0 (30)

where k0 � ω/
����
〈M〉

√ � 2π/λ is the wavenumber of the input laser
beam, λ is its wavelength, and θ is the angle between the direction
of the incident beam direction and the optical axis (azimuthal
angle); see Figure 1. E � k2⊥ � k20 − k2z � k20 sin

2 θ is called the
spectral parameter. It replaces the spectral parameter ω2 of a true
two-dimensional system.

For θ≪ 1 we canmake the approximation E � (k0 + kz) (k0 − kz)
≈ − 2k0 (kz − k0) ≡ −2k0Δkz, which is called the paraxial
approximation [16]. The wavenumber Δkz refers to the Fourier
component of the envelope b(x, y, z) � B(x, y, z)e−ik0z , which
describes the beats of the magnetic field vector B(x, y, z) in z
direction. In the paraxial limit b(x, y, z) obeys the paraxial equation

2ik0
z

zz
+ ∇⊥ ×M(x, y)

〈M〉 × ∇⊥( )b(x, y, z) � 0. (31)

Introducing a “time” τ � z/2k0 (which has the dimension of a
squared length), this equation acquires the form of a Schrödinger
equation of an electron in a medium with a randomly varying
effective mass:

z

zτ
+ ∇⊥ ×M(x, y)

〈M〉 × ∇⊥( )b(x, y, τ) � 0. (32)

As stated above, such a model is related with a stochastic tight-
binding model with a spatially varying hopping amplitude (“off-
diagonal disorder”) [73].

Let us now compare the MT Eq. 31 with Eq. 5,

⎛⎝2ik0
za(r)
zz

− ∇2
⊥ − k20

n(x, y)2 − n2
0

n20
⎡⎣ ⎤⎦︸							︷︷							︸

U(x,y)

⎞⎠a(x, y) � 0

By comparing Eq. 31 with Eq. 5, we can estimate the influence
of the wavelength λ � 2π/k0 on the localization properties: in the
exact MT Eq. 31 the wavenumber k0 enters only as a prefactor of
the z derivative. Therefore, in the steady-state regime z → ∞ k0
does not enter at all. This is, however, completely different for
the PT case described by Eq. 5: here k0 is the prefactor of the
fluctuating-disorder term, which governs the mean-free path and
hence the localization length.

How come that the predictions of two wave equations which
are supposed to describe the same physical situation, namely, the
wave propagation (or localization) of samples with transverse
disorder, differ in such a drastic way? The difference can be traced
back to the fact that in deriving (Eq. 5) the term ∇ ·E has been
dropped. Therefore, the additional wavelength dependence
implied by the PT Eq. 5 must be an artifact of this
approximation. We shall come back to the comparison
between the PT and MT predictions when we display explicit
results obtained in the two approaches.

3.5 Mean-Field Theory for Wave
Propagation in a Turbid Medium
3.5.1 Rayleigh Scattering and Disorder
The most important aspect of Anderson localization is the
disordered environment. In the case of electromagnetic wave,
the disorder may appear as randomly distributed scatterers or a
spatially fluctuating permittivity ϵ(r) � n2(r).

Lord Rayleigh considered in his seminal papers on the blue
color of the sky [84, 85] point-like scatterers, which act like
induced Hertzian dipoles. Jackson points out in his textbook [86]
that considering fluctuating permittivity one obtains as well the
famous ω4 law for the scattering cross-section, which is inversely
proportional to the mean-free path. It is known nowadays that
this law becomes ωd+1 in d dimensions [87, 88].

Because in our effective two-dimensional system the wave
spectral parameter ω2 is replaced by E � k2⊥ for small E, we must
have by the two-dimensional Rayleigh law

1
ℓ(E)∝ k3⊥ � E3/2 (33)

We shall demonstrate in Section 3.7 that the PT approach
violates this requirement.

For weak disorder1, i.e., 〈ΔM2〉≪ 〈M〉2, the detailed
distribution of the moduli (Gaussian or otherwise) is not
important, because—as we shall see—the only parameters
which enter into the mean-free path are the mean 〈M〉, the
variance 〈ΔM2〉, and the correlation length Lc of the fluctuating
inverse permittivity (modulus). Here ΔM(ρ) � M(ρ) −〈M〉 are
the fluctuations about the mean. Here and in the following ρ
signifies the two-dimensional spatial vector.

The correlation length of the spatially fluctuating modulus is
an important parameter, because it defines the characteristic
length scale of these fluctuations. It is defined by the length
scale of the spatial decay of their correlations:

L2
c �

1
〈ΔM2〉∫ d2ρC(ρ) (34)

with the correlation function

C(ρ) � 〈ΔM(ρ + ρ0)ΔM(ρ0)〉 (35)

1The theory may be generalized to include strong disorder using the coherent-
potential approximation [89]. This theory includes percolative aspects, which may
be relevant for TL fibers made of glass.

Frontiers in Physics | www.frontiersin.org August 2021 | Volume 9 | Article 71566315

Giordani et al. Localization of Light

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


3.5.2 Simplified Scalar MT Model and Born
Approximation
In this introductory subsection, we consider a simplified MT
Helmholtz equation for a schematic scalar wave function b(ρ, E)

E + ∇⊥ · 1 − ΔM(ρ)
〈M〉( ) · ∇⊥b(ρ, E) � 0 (36)

The corresponding Green’s function obeys

s + ∇⊥ · 1 − ΔM(ρ)
〈M〉( ) · ∇⊥[ )G(ρ, ρ′, s) � −δ(ρ − ρ′), (37)

where s � E + iϵ is the complex spectral parameter.
It has been shown in [89] that for sufficient small spectral

parameter one can use the Born Approximation with respect to
the fluctuations ΔM of the (in this case elastic) modulus. In order
to apply the Born approximation, the Fourier-transformed
averaged Green’s function is represented in terms of a
complex self-energy function Σ(E):

G(q, s) �∫ d2{ρ − ρ′}eiq[ρ−ρ′]〈G(ρ, ρ′, s)〉

� 1

−s + q2[1 − Σ(s)]
(38)

and the lowest quadratical order in ΔM is given by

Σ(s) � 1

(2π)2
1

〈M〉2 ∫ d2qq2C(q)G0(q, s) (39)

with the unperturbed Green’s function

G0(q, s) � 1
−s + q2

. (40)

We now represent the correlation function schematically by
introducing an upper wavenumber cutoff qc ∝ L−1c :

C(q) � C0
1
q2c

〈(ΔM)2〉θ(qc − q), (41)

where C0 is a dimensionless constant and θ(x) is the Heaviside
step function. From this we get, using the fact that the Green’s
function does only depend on q � |q|,

Σ(s) � C0
1
q2c

〈(ΔM)2〉
〈M〉2

1
2π

∫qc

0
dqq3G0(q, s) (42)

We fix C0 by requiring that the q sum

∑
q

≡ C0
1
q2c

1
2π

∫qc

0
qdq�! 1, (43)

i.e., C0 � 4π. We finally get for the self-energy

Σ(s) � c∑
q

q2G0(q) (44)

with the “disorder parameter” c � 〈 (ΔM)2 〉 / 〈M 〉2. The inverse
mean-free path is given by the imaginary part of Σ, multiplied
with k⊥ (see the next subsection):

1
ℓ(E) � k⊥Σ″(E) (45)

The integral in Eq. 42 or Eq. 44 is elementary and gives k2⊥π/q
2
c

for k⊥ ≤ qc, so that we obtain from the Born approximation (Eq.
42) the Rayleigh law (Eq. 33)

1
ℓ(E) � cπk3⊥/q

2
c k⊥ ≤ qc, (46)

which, as said above, holds in the limit E � k2⊥ → 0

3.5.3 Self-Consistent Born Approximation (SCBA) for
the Modulus-Type Approach
For higher values of the spectral parameter, the Born
approximation is insufficient, and we need a nonperturbative
approach. Using a hand-waving argument, stating that it is
inconsistent to work with two different Green’s functions, one
may replace G0 (q, s) in the Born approximation for Σ(s) by the
full Green’s function G (q, s). This turns Eq. 44 into a nonlinear,
self-consistent equation for Σ(s). This is the self-consistent Born
approximation (SCBA):

Σ(s) � c∑
q

q2G(q, s) � c∑
q

q2

−s + q2[1 − Σ(s)] (47)

The SCBA may be obtained more rigorously by field-
theoretical techniques [56, 57, 67, 77], in which it appears as a
saddle-point of an effective field theory.

For our detailed calculations2 we return to the full vector
Helmholtz Eq. 30. We take advantage of the fact that the equation
of motion for an elastic medium with spatially fluctuating shear
modulus μ(r) is of the form

ρmω
2 + ∇ · (λ + 2μ(r))∇ · −∇ × μ(r)∇×[ ]u(r,ω) � 0 (48)

where u is the displacement vector, ρm the mass density, and λ is
the longitudinal Lamé modulus. If one discards the longitudinal
term, one arrives at the MT Eq. 30. Therefore one can take over
the entire theory [77] derived for the classical sound waves
without the longitudinal excitations, working in two instead in
three dimensions. Within this theory the influence of transverse
disorder is accounted for by an effective-medium treatment (self-
consistent Born approximation, SCBA), derived as saddle-point
approximation within the nonlinear sigma model field theory
[77]. In such a treatment the spatial fluctuations of ϵ̃ are
transformed into a dependence on the complex spectral
parameter s � E + i0 according to

G(k, s) ≡ 〈G(k, s)〉 � 1

−s + k2[1 − Σ(s)]

� 1
1 − Σ(s)

1

−k2Σ + k2
( ) (49)

where G (k, s) is the Fourier and Laplace transform of one of the
two configurationally averaged Greens functions of Eq. 30 (which

2The reader, not interested in these details, may continue with the next subsection.
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are equal to each other), and we now represent the Green’s
function in the following way:

G(q, s) � ∫ d{ρ − ρ′}eiq[ρ−ρ′]〈G(ρ, ρ′, s)〉

� 1

−s + q2[1 − Σ(s)] � 1
1 − Σ(s)

1

q2 − k2Σ(s)
(50)

≈
1

1 − Σ′(0)
1

q2 − k2Σ(s) (51)

where we have introduced an E dependent complex wave number
kΣ(s) � kΣ′(E) + ik″Σ(E), which obeys

k2Σ(s) �
s

1 − Σ(s) (52)

The SCBA self-consistent equation for Σ(s) is

Σ(s) � c∑
q

q2G(q, s) � c∑
q

q2

−s + q2(1 − Σ(s))
� c

1 − Σ(s) (1 + sG(s)) (53)

with the local Green’s function

G(s) � ∑
q

G(q, s) � 1
1 − Σ′

∑
q

1

−kΣ(s)2 + q2

� 1
1 − Σ′

1
q2c

ln(q2c − k2Σ) − ln(−k2Σ)[ ]. (54)

From the local Green’s function, we obtain the spectral
density as

ρ(E) � Im
1
π
G(s){ } � 1

π
∑
q

G″(q, E)

� 1
q2c(1 − Σ′) θ(q

2
c(1 − Σ′) − E) (55)

For E≪ q2c , we have

Σ′(E) ≈ Σ′(0) � c

1 − Σ′(0) (56)

which can be solved to give

Σ(0) � 1
2
(1 − �����

1 − 4c
√ ) ≈c≪ 1

c (57)

Making a variable change v � q2 and neglecting the imaginary
part of k2Σ in the denominator, we obtain for the imaginary part of
the self-energy

Im Σ(s)[1 − Σ(s)]{ } � Σ″(E) 1 − 2Σ′(E)[ ]

� cIm
1
q2c
∫ dv

v

−k′2Σ + v

⎧⎨⎩ ⎫⎬⎭ � c
π

q2c
kσ′

2(E),

(58)

from which follows

Σ″(E) � cE
π

q2c

1
1 − 2Σ′(E)

1
1 − Σ′(E) ≈c≪ 1

cE
π

q2c
(59)

We now want to relate Σ″(E) to the mean-free path of the
scattered waves. We may Fourier-transform the Green’s function
(Eq. 37) into ρ space to obtain

G(ρ, s) � − 1
4(1 − Σ′)H

(1)
0 kΣ(s)ρ( ) →ρ≫ k−1Σ

− 1
41 − Σ′

�������
2

πkΣ(s)ρ

√
eikΣ(s)ρ (60)

whereH(1)
0 (z) is the Hankel function of first kind [90]. For large ρ

the intensity is then given by

|G(ρ, s)|2 � 1
8πkΣ(s)ρ e

−ρ/ℓ(E) (61)

with the mean-free path given by [26].

1
ℓ(E) � 2k″(E) � kΣ′(E) Σ″(E)

1 − Σ′(E)∝ E3/2 (62)

This generalizes the Born-approximation result (Eq. 46),
which is reobtained for small E and/or small c.

3.6 Self-Consistent Born Approximation for
the PT Approach
The SCBA for the PT approach, due to John et al. [67], adapted to
the transverse-disorder case reads [26]

ΣPT(s) � ck20 ∑
q

GPT(q, s) (63)

with the Green’s function

GPT(q, s) � 1

−s − k20ΣPT(s) + q2
≡

1

−kΣ,PT(s)2 + q2
(64)

As in the MT case, we have for the mean-free path

1
ℓ(E) � 2kΣ,PT″ (E). (65)

3.6.1 Diffusion of the Wave Intensity
As the vector character of the magnetic field enters into our
mean-field treatment only by doubling the Green’s functions, we
return to a scalar description of the field amplitude.

The multiple scattering of waves in a turbid medium can be
well described in terms of a random walk along the possible paths
among the scattering centers [74]. The scattered intensity may be
shown to obey a diffusion equation. Our object of interest is
therefore the intensity propagator

P(q, p, E) � 1

(2π)2 ∫ d2k〈G k+ 1
2
q, s++ 1

2
ω( )G k− 1

2
q, s−− 1

2
ω( )〉

� ∫∞

−∞
dρ∫∞

0
dτe−pτe−iρqP(ρ, τ, E)

(66)

with p ≡ −iω + ϵ, ϵ→ + 0. The second line defines P (q, p, E) as the
spatial Fourier transform and Laplace transform (with respect to
τ) of the intensity propagator P (ρ, τ, E) in the ρ � (x, y) plane. For
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deriving the diffusion description, it is assumed that after each
scattering event the memory of the phase of the wave function is
lost. P (q, p, E) then obeys a diffusion equation with a E dependent
modal “diffusivity”3 D(p, E):

z

zτ
− ∇2

ρD0(E)( )P(ρ, τ, E) � δ(ρ)δ(τ) 5 P(q, p, E)

� 1
p + q2D0(E)

(67)

As a matter of fact, within the saddle-point approximation
(SCBA) one is able to calculate the mean-field diffusion coefficient
D0(E), which corresponds to the diffusion approximation. This
diffusivity is the analogue to the electronic diffusivity D0� σ0/ρF,
where σ0 is the Drude conductivity and ρF the density of states at
the Fermi level. D0 is obtained by considering the Gaussian
fluctuations of the field variable Q (ρ, s) around Qsaddle(s) [26,
56, 57, 67, 77] and is given by

D0(E) � ℓ(E)kΣ′(E)
q2cρ(E)

(68)

This diffusivity may be related to the dimensionless reference
conductivity g0 by the Einstein relation [26].

g0(E) � q2cρ(E)D0(E) � ℓ(E)kΣ(E) � D0

1 − Σ′(0)
� 1 − Σ′(E)

Σ″(E) ≈c≪ 1 q2c
π

1
cE

(69)

We see that g0 and D0 in our model are equal to each other
within a factor of order unity. In two dimension, the conductivity
is also equal to the conductance. This quantity is relevant to the
scaling approach of Anderson localization, which will be
explained in the beginning of the next section. For E → 0 the
conductance g diverges due to the Rayleigh law [67].

Using the self-consistent localization theory [53–55, 80], the
authors of [91] have derived an expression for the mean-free path
of the intensity:

R2(τ, E) � ∫ d2ρρ2P(ρ, τ, E) � ξ2(E) 1 − e−τ/τξ(E)( ) (70)

with the cross-over time

τξ(E) � ξ2(E)/D0(E) (71)

So, for “times” τ � z/2k0 smaller than τξ the intensity diffuses
regularly according to R2 (τ, E) � τD0(E), whereas for τ ≫ τξ(E) it
saturates in the steady-state limit z → ∞ at R2 (∞, E) � ξ2(E).

We remind ourselves that ξ(E) also depends on D0(E)∝
g0(E) via

ξ(E) � 1
qc

eg0(E)/c (72)

3.7 Results for the Localization Length
We have solved both for the MT and the PT cases of the SCBA
Eqs. 53, 63, 64, resp. for four different values k0 � 2π/λ, where λ is
the laser’s wavelength inside the medium. From the results of the
complex wavenumber kΣ(s)we evaluated the reference
conductance g0� k′(E)ℓ(E)� k′(E)/2k″(E), which, in turn, is
proportional to the logarithm of the E dependent localization
length.

We observe the following features:

• In the MT case, all four curves fall on top of each other
(because k0 enters only into the definition of E but not
elsewhere).

• In the PT case, one obtains four different curves.
• Furthermore, in the PT case, the curves enter into the
negative E regime, which is unphysical and violates the
stability law for bosonic excitations [92, 93].

How can one estimate the average localization length from this
calculation?

The distribution of the localization length is determined by the
function ξ(E) by

P(ξ)∝ ∑
α

zE
zξ

∣∣∣∣∣∣∣∣∣
α

, (73)

where Eα(ξ)
∣∣∣∣α�1,2 are the two branches of the inverse function E(ξ)

of ξ(E) in the MT case. In the PT case, there is only one branch. In
the MT case, there is a broad E region, where ξ(E) ≈ ξmin,
indicated by the arrow in Figure 11. Therefore P(ξ) has a
delta-like peak near ξmin. On the other hand, in the PT case
there is a broad range of values for ξ, which, furthermore, varies
strongly with k0. So, the average value of ξ will vary
correspondingly with k0, as demonstrated by the numerical
calculations by Karbasi et al. [25], shown in Figure 2.

In view of the fact that in our measurement we did not find a
dependence on k0 and that the SCBA of John et al. for the PT
approach [67, 71] leads to unphysical results, we suggest that
one should rather abandon the PT approach and use the
MT one.

3.8 Transverse-Localized Modes and
Wavelength Dependence
We stated in the beginning that we experimentally verified [35]
that the Anderson-localized wave functions are single modes,
i.e., they are single eigenmodes corresponding to a certain

eigenvalue Ei � k(i)⊥ according to the characteristic equation

EiBi(x, y, z) � −∇⊥
M(x, y)
〈M〉 ∇⊥Bi(x, y, z) (74)

For the intensity Ii(x, y, z) � B2
i steady-state, large z regime is

localized around certain spots ri in the (x, y) plane (see, e.g.,
Figure 5) and becomes zero on the length scale given by ξ(Ei). As
can be seen from Figure 5, the x, y dependence of the wave
intensities is rather irregular. Only on the average, we find an
exponential decay of the intensity away from ri.

3It is important to note that the “diffusivity” D( p, E) is dimensionless, because the
“frequency” p � −iω + ϵ has the dimension of an inverse squared length.
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Let us consider now, in more detail, cases in which one may
obtain a wavelength dependence of the localization length. In our
experiment, reported in [26] we had a rather large aperture of
∼ 50°. As shown by the authors, this covers the whole ξ(E)
spectrum shown in Figure 11 and leads to a ξ distribution
peaked at ξmin, which is k0 independent. On the other hand, if
one would work with a narrow-aperture laser, eventually tilted by
a certain angle θ with respect to the optical axis, one could “pick”
certain single modes. Because k⊥ � k0 sin(θ) has k0 as prefactor,
certainly the mode one may pick up by this procedure will be a
different one if k0 is changed. This opens an interesting method
for further investigation of the localized single modes.

3.9 Discussion
In this section we have presented a comprehensive theory of
transverse Anderson localization of light. We started to derive
the appropriate stochastic Helmholtz equation for electromagnetic
waves with spatially fluctuating permittivity. We have shown that
the potential-type approach, which is analogous to the Schrödinger
equation for an electron in a random potential with the potential
depending on the spectral parameter E, relies on an approximation,
which is only applicable to very weak disorder, and, for transverse
disorder, leads to a wavelength dependence of the localization
length. Such a dependence is not observed. In the newly introduced
modulus-type approach, which is exact, such a dependence is not
predicted, in agreement to our experiments.

Within the modulus-type approach, the localization length,
i.e., the radius of the transmitted modes, diverges as the spectral
parameter (which is proportional to the square of the azimuthal
angle between the direction of the incident radiation and the
optical angle) vanishes. This must be so, because a ray in the
direction of the optical axis does not experience transverse
disorder. The potential-type approach, however, implies a
finite mean-free path at zero spectral parameter, and the
predicted spectrum penetrates into the negative range of E,
rendering the predicted spectrum unstable.

At the end of this section, we would like to comment on the
possibility of observing localization of light in three-
dimensional systems. As mentioned in the introduction,
despite of intensive efforts, this has not been observed until
now. We emphasized that the modulus-type theory is analogous
to sound waves in solids with spatially fluctuating shear
modulus. There it is known that localized states exist at the
upper band edge, which in solids is the Debye frequency. In
turbid media the analogue of the upper band edge is the inverse
of the correlation length of the disorder fluctuations. So if it
would be possible to prepare materials with spatial fluctuations
of the dielectric modulus, which have a correlation length of the
order of the light wavelength, we expect chances for observing 3-
dimensional Anderson localization.

4 NONCLASSICAL ANDERSON
LOCALIZATION OF LIGHT

According to the seminal studies by Anderson regarding single-
particle evolution in lattices, the disorder in the system leads to

localization of the wave-function. As we have illustrated in the
first sections, such a phenomenon is well explained by quantum
mechanics in the case of electrons and by classical
electrodynamics in the case of light in the classical limit;
i.e., no quantum effects are involved. In particular, localization
is the result of constructive and destructive interference among
the multiple paths of the particle. Being an explicit example of the
wave-like behavior of quantum particles, the observation of AL in
single-photon states does not display any substantial difference
with respect to the experiments carried out with classical light.
However, single-photons are one of the most promising
candidates for quantum information processing in the context
of computation, simulation, and cryptography [94]. In this
framework, AL has been extensively investigated in photonic
quantum walks [95–98]. The latter are versatile platforms for
several tasks [99, 100], including simulation of quantum
transport effects such as the AL. Furthermore, localized single-
photons have been used as a resource to realize quantum
cryptography protocols [101, 102]. The investigation of AL at
the single-particle level reveals distinctive features when particle-
particle interference is taken into accounts [103, 104]. This occurs
when more than one particle evolve in the disordered lattice. In
this case, other quantum properties of the system, such as particle
indistinguishability and statistics, play a crucial role in the spatial
distribution of the multiphoton wave-function.

This section regarding quantum AL is organized as follows.
First, we introduce the quantum walks model and present single-
photon experiments in the context of AL. We further provide
practical applications of localized single-photon states in
quantum cryptography protocols. Second, we illustrate two-
photon quantum walks experiments and the effect of particle
statistics in the localization.

4.1 Single-Photon Localization
4.1.1 Quantum Walks
The concept of quantum walks (QW) was first formulated as a
generalization of classical random walks (RW) [105]. In the discrete-
time evolution, the walk is performed by a quantum particle, which
lives in aHilbert space of d levels corresponding to the position in the
lattice. In the classical random walk, the walkers go forward or
backward according to the result of a coin toss. In the quantum case,
the coin toss is a unitary operator that manipulates an additional
two-dimensional degree of freedom embedded in the walker. Then
the state of a quantum walker is described by the eigenstates of the
position operator w � {|d>} and by the coin basis c � {|↑>, |↓>}. The
evolution is regulated by two operators, the coin C

̂
that performs

rotations in the coin subspace and the shift S ̂. The latter moves the
position of the walkers conditionally to the coin state c according to
the following expression:

S ̂ � ∑
d

|d + 1〉〈d |⊗| ↑〉〈↑| + |d − 1〉〈d |⊗| ↓〉〈↓| (75)

The evolution operator in the discrete-time scenario is the
combination of the coin and shift action, namely
Un � (S ̂ · (C ̂⊗I

̂

w))
n, where n is the number of single time-step

evolution and I
̂

w is the identity operator in the walker’s position
space. It is possible to retrieve the evolution operator through the
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Hamiltonian H of the system describing a particle evolving in a
lattice as U(t) � e−iHt . In this scenario, it is straightforward to
translate the above description to the continuous-time case. The
operator H expresses the interactions among the lattice sites like
in an adjacency matrix. The resulting QW evolution U(t) is
entirely identified by the H matrix without the need for
defining a coin operator as in the discrete-time case. The main
feature of the QW with respect to a RW with an unbiased coin is
the distribution of the walker for t → ∞. Such distribution
depends on the initial state of the particle and the walker
tends to spread towards the far ends of the lattice. This is in
contrast to the typical diffusive behaviors of a RW. This
discrepancy is due to the superposition principle in quantum
mechanics that gives rise to the interference effects typical of
waves. The formulation of QWs is very general and feasible for
different applications and experimental implementations in the
quantum information and quantum computation fields [98, 106,
107]. In particular, the formulation of QWs is very suitable for
realization in photonic platforms [108]. In the various
experiments of photonic QWs, the dynamic of the walker has
been encoded in the degrees of freedom of single photon states,
such as the polarization for the coin subspace and, for the walker’s
position, the optical path in bulk [109, 110] and integrated
interferometers [111–116], the time arrival to the detector
[117], the modes supported by a multimode fiber [118], the
angular [119–121], and the transverse momentum [122].

The QWs evolution operator can be modified for different
tasks. For example, the QWs paradigm has been exploited to
observe topological-protected states [108, 123], to simulate
systems with nontrivial topology [119, 121] and to engineer
high-dimensional quantum states [120]. For what concerns AL
in discrete-time QWs, single-photon localization has been
investigated by introducing site-dependent disorder in the QW
evolution. Such condition is achieved implementing site-
dependent coin operators. One example is the coin in the form

C ̂
d � 1�

2
√ eiϕ

↑
d 0

0 eiϕ
↓
d

( ) · 1 1
1 −1( ), (76)

where random extracted phase-shifts ϕ↑(↓)d operate locally on the
site d thus breaking the transnational symmetry of the systems. In
[94] the authors present a discrete-time QWs encoded in the time
arrival and polarization of single-photon states. The apparatus
comprises two loops of different lengths. At each step, the
photons generated by a single-photon source choose the
shortest or the longest path according to the polarization state
that represents the coin space. The position of the particle is
encrypted in time. The coin operators in the expression (Eq. 76)
were manipulated to reproduce 1) the ballistic spread of the
quantum walker by fixing ϕ↑(↓)d � 0, 2) Anderson localization
(AL) with random extracted phase-shift, and 3) the diffusion
regime that resembles the behavior of a classical random walker.
This last condition is the result of a dephasing between the two
polarizations in Eq. 76 larger than the coherence time of the
single-photon packets, which destroys the interference among the
paths. This experiment was one of the first proofs of AL at the
single-photon level. Another example in this direction is [95].

Here the discrete-time QW was realized through an integrated
optical circuit composed by a network of beam-splitters and
phase-shifts [124, 125]. Single-photon localization was observed
in the output modes of the optical circuit.

There are further examples of single-photon localization
regarding continuous-time QWs. They are typically realized
exploiting continuous coupling among waveguides arranged in
a lattice in photonic chips. In this scenario, the time coordinate is
again replaced by the distance z covered during the propagation
in the waveguides. The single-photon wave-function is given by
the Schrödinger equation [126]:

−i zψd

zz
� cd,dψd + cd,d−1ψd−1 + cd+1,dψd+1, (77)

where ψd is the single-photon amplitude at the site d and the
coefficients cij are the couplings among the modes of the lattice
that are expressed in the HamiltonianH. The length of the device
and the coupling coefficients can be engineered to observe AL, as
shown in the single-photon experiments in [96, 97].

Concerning all mentioned quantum experiments, it is worth
noting that the localized single-photon distribution has the same
properties as the distribution of localized modes of classical light
described in Sections 2, 3. The interest in quantum localization is
not restricted only to the pure observation of localized states. In
the following section, we illustrate an application of localized
single-photon states in quantum cryptography.

4.2 Quantum Cryptography Through
Localized Single-Photon States
Quantum computing could undermine the security of some of the
current cryptographic protocols. An example is given by the RSA
protocol security which is based on the difficulty for a classical
computer to find prime factors of large integers, while a quantum
computer solves the same problem in polynomial time [127]. This
motivates the need for a different approach to come up with a
more secure cryptographic procedure. Quantum cryptography is
the field of quantum information that has the aim to formulate
secure protocols based on the rules of quantummechanics. In the
quantum protocol BB84, two agents, Alice and Bob, exchange a
stream of qubits, i.e., quantum states that live in a two-
dimensional Hilbert space. Alice randomly chooses to prepare
the state according to two possible bases {|↑>, |↓>} and {|+>, |−>},
where |±〉 � 1�

2
√ (|↑〉 ± |↓〉). Bob receives the signal and decides

randomly in which basis he measures the qubits. He extracts a
stream of bits corresponding to 0 when hemeasures ↑ (+) and to 1
when he measures ↓ (−). Then, Alice and Bob’s streams of bits
cannot correspond to each other when Bob measures on a basis
different from Alice’s choice. The two agents compare part of
their bit strings and, according to the resulting bit error rate, they
can detect an eventual eavesdropper attack and extract a secure
key [128]. Variants of this protocols exploit entangled states or
high-dimensional states instead of qubits. The latter are a
generalization of qubits and describe a particle living in a d-
dimensional space. The so-called qudits provide advantages in the
amount of the information storage in the state sent to the receiver,
and security [129].
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Single-photon localized states are examples of qudits, where
the d-levels correspond to the positions assumed by the photons.
In [100] the authors implement a BB84-inspired protocol using
localized states generated by a disordered optical fiber. The
experimental setup is similar to the one shown in Figure 12.
Alice modulates the single photons obtained by an attenuated
laser with a spatial light modulator. In this way, she can choose to
send states that localize after propagation in the fiber in either
momentum or position at the fiber’s output tip. Bob chooses the
basis of the measurement by placing or removing a lens before the
single-photon detector. This implementation of the BB84
protocol exploits the quantum duality between the real space
and the Fourier space of the lens: a state localized in the first space
is indeterminate in the other one and vice versa. The authors
prove the feasibility of the protocol using localized single-photon
wave-functions even in the experimental conditions. A recent
work [101] exploits a similar setup for performing a slight
different cryptographic protocol. In this experiment, the
information about the basis chosen by Alice is not shared
publicly after the communication between the agents. Alice
codifies her message and the basis in two different photons
that are sent at different random time. At the end of the
protocol, Alice and Bob compare the measurements about
some random pair of photons, and then they are able to
extract a secure key. This protocol offers advantages in terms
of sensitivity to noise and resilience to a “photon number
splitting” eavesdropper attack.

4.3 Multiphoton Localization
Single-photon localized states do not add any further insight into
AL with respect to experiments based on wave interference.
Nevertheless, the proper description of quantum light is
within the framework of second quantization. This
representation is necessary for describing many-particle
evolution. The electromagnetic field can be expressed by the
boson annihilation a ̂ and creation operators a ̂, i.e., the operators
that destroy or create exactly one photon in a given mode [130].
This description reflects the particle statistics and, consequently,
explains the quantum interference effects due to the
indistinguishability of the particles. This change in the
description consists basically in expressing the same state in
terms of occupation numbers of the field modes. The system
is then individuated by the evolution operator acting to the
creation and annihilation operators. In the case of QWs, that,
as we have seen in the previous section, corresponds to a linear
transformation among modes of a given degree of freedom, the
single creation operators representing one photon in the mode i
will be

b ̂
†

i � ∑
j

Uija ̂
†

j (78)

where Uij are the element of the QW evolution operator in the
occupation number representation. One of the most famous
examples of two-photon interference, the Hong-Ou Mandel
(HOM) experiment [131] is explained by the latter
formulation. Here two indistinguishable photons entering in a

beam-splitter from different ports come out always together in
the same output port. This phenomenon is a first example of the
role of particle indistinguishability in the evolution of
multiphoton states.

Two-photon interference has been investigated in the regime
of AL. The main result that emerges from these studies is that the
way in which the system approaches localization strongly
depends on its initial state. In Figure 13 we report numerical
simulations illustrating the two-photon state localization
investigated in the theoretical [102, 103, 132] and the
experimental works [95–97] carried out in this topic. The first
row (Figures 13A–D) report the two-photon distribution G (x1,
x2) defined as the probability to detect one photon in the position
x1 and the other in x2, averaged over different disorder
configurations. For example, in the case two identical photons
injected in the QW in positions 0 and 1 in the state
|ψin〉 � a ̂†0a ̂

†
1|0〉, the function G (x1, x2) has the following

expression

G(x1, x2) � 〈〈|〈0|ax̂1ax̂2|ψ〉|2〉〉 � 〈〈|Ux1 ,0Ux2 ,1 + Ux2 ,0Ux1 ,1|2〉〉,
(79)

where «·» is the average over the disorder, the bra 〈0|ax̂1ax̂2 is the
projection on the state with the photons in the positions x1 and x2
respectively and |ψ> the output state of the QW. The last term is
the result of the application of Eq. 78 to the creation operators in
the initial state |ψin> and of the bosonic operators commutation
rule [ai, a

†
j ] � δij. The distributions reported in the figure

illustrate the state of the system after a discrete-time QW of
30 time steps. In the simulations we have extracted uniformly the

phases ϕ↑(↓)d of Eq. 76 around 0 in an interval of length π/2. In
such condition, the single-photon wave function still preserves
the ballistic spread typical in the QW, while it is starting to
localize. In the second row (Figures 13E–H), we show the
function g(Δ) � ∑x1−x2�ΔG(x1, x2) in the region of localization.
All the quantities are normalized to the maximum and averaged
among 1,000 configurations of disorder. Figures 13A,B,E,F
compare the two functions G and g for the evolution of the
initial states a ̂†0a ̂

†
1|0〉 and 1�

2
√ (a ̂†0,Ha ̂

†
1,V − a ̂†1,Ha ̂

†
0,V )|0〉. These states

correspond to two photons created in the site 0 and 1 with
different symmetries with respect to the exchanging operations
between the two particles. The first one reproduces the evolution
of two noninteracting bosons. Here, we observe the typical
tendency of bosons to assume the same states just mentioned
in the description of the HOM experiment, i.e., to find the two
photons in the same position with high probability. In contrast,
the second state is antisymmetric under exchanging of the two
particles and presents the opposite behavior. The probability to
find the photons in the same site is zero. These states simulate de
facto fermion statistics and the Pauli exclusion principle. To
reproduce an antisymmetric state, it is necessary to exploit an
additional degree of freedom, in this case the polarization. The
boson and fermion statistics in AL have been observed
experimentally for the first time in [95] by exploiting
polarization entangled states and an integrated photonic chip.
Here a single-photon source based on parametric down
conversion from a nonlinear crystal generates a pair of
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entangled states in polarization such as the state investigated in
Figures 13B,F. The state evolves in a discrete QW platform,
realized in an integrated device that comprises a network of
beam-splitter and phase-shifts (see Section 4.1). The coin
operators in the form of Eq. 76 are sampled properly to
observe the AL. The second type of states investigated in the
literature is illustrated in Figures 13C,D and g-h. These states are
entangled in the occupation number of the sites 0 and 1. The
output distribution depends on the sign in the superpositions of
the contributions a ̂†20 and a ̂†21 that create two photons in the
respective modes. Such entangled states in the context of AL were
investigated for the first time in [96] and then in [97]. The pair of
entangled photons is generated via parametric downconversion.
These photons are strongly correlated in the momentum space.
Such correlations are transferred among the position of the QW’s
lattice by means of a lens system. In this way the photons are
coupled in the waveguides of the integrated device implementing
the QWs. The two experiments with such entangled states have
been performed exploiting continuous-time QW by random
couplings among the waveguides arranged in a lattice (see
Section 4.1). In particular, in the most recent experiment [97],
the authors report the results averaged over different
configurations of random couplings thus representing one of
the most exhaustive experiment on two-photon Anderson
localization.

4.4 Discussion
In this section we have illustrated Anderson localization (AL) in
the context of quantum light, presenting the most relevant results
for what concerns the experimental realizations and applications.
We have first formulated AL in the context of quantum walks
(QW). We have then described the use of localized states in
quantum cryptography. In the end we have illustrated the
problem of localization in quantum optics by considering
multiphoton states. Up to now the investigation of
multiphoton AL localization was confined to the two-photon
case. The reasons are various. It is still debated in the literature,
whether the results reported in the quantum experiments can be
reproduced by classical light, i.e., by wave interference. For
instance, in [133] it was shown that some features of the
distribution reported in Figure 13 could be observed with a
laser propagating in a circuit engineered with an appropriate
disorder. There are other concerns regarding the intrinsic
difficulty to simulate the evolution of noninteracting bosons
such as photons scattered by a random network [132]. This
prevents finding an analytical solution for the systems with a
large number of photons. All these considerations explain why
the present investigations about quantum AL were basically
carried out from a phenomenological perspective. This
motivates further studies to provide a more rigorous
framework for quantum AL.

5 APPLICATIONS AND PERSPECTIVES

The story understanding transverse localization of light in the last
four decades has been one of constant advances. With respect to

the first formulations (which reported just numerical evidences
[13, 14]), now it is possible to observe and tailor localization on at
least four different platforms: photorefractive crystals, plastic
binary fibers, disordered glassy fibers, and laser written glass
waveguides. Each of this platforms has its specific features and
advantages in terms of applications.

1) Photorefractive crystals [134], proposed in 2007, enable
relatively rapid reshaping of disorder together with
nonlinear response, thus a new generation of switches or
routers based on disorder guiding can be envisioned. The
drawback of this approach is the small refractive index
mismatch and large disorder grain size. For obtaining
micron sized localized states, further effort would be
needed in improving the nonlinearity engineering.

2) Polymeric binary fibers have been proposed in 2012 and
successively further improved. The fabrication technique
for these items is extremely cheap and straightforward (if
one has access to a fiber drawing tower) and enables realizing
kilometer-long fibers starting from a few-centimeter-sized
preform. In binary fibers the refractive index mismatch is
0.1 (employing PMMA and Polystyrene as plastic
components of the preform), and the disorder can be
obtained easily with a grain size of the order of a micron.
The advantage of this approach is that the micrometric sized
defects need not to be individually fabricated: it is the
transverse thinning, affecting collectively all individual
strands in the preform that produces this fine-scale
disorder. Thus binary fibers support strong localization in
the visible range. Binary fibers have been thus extremely
successful in terms of potential applications. It has been
demonstrated that they can support nonlinearity and
switching, image transport, wave front shaping, controlled
focusing, quantum communication and key distribution, and
image transport. The drawback of binary fibers resides in the
large losses: currently between 50 and 100 dB/m. These losses
are exceeding the ones expected for the intrinsic scattering and
absorption of the plastic material: this poor performance is
probably due to the assembly and drawing stage (carried on in
a unclean environment), which introduces microscopic dust
in the preform. Due to these losses, all the experiments have
been carried on longitudinally small pieces of binary fibers
(few tens of centimeters).

3) Glass-based binary fibers have been fabricated since 2014
from a porous glass. A rod with initial diameter of 8 mm
produces air-holes with diameter varying between 0.2 and
5 µm. This approach promises all the advantages of glass
(lower losses and enhanced stability) together with easy
fabrication. This potential has already been demonstrated
in recent results including new applications such as
localization-based random lasing. The only drawback of
this approach is related to the nonhomogeneity of the
disorder. Indeed, air holes tend to be located at the outer
boundary of the fibers due to the fabrication process and, thus,
eventually turning localized states into leaky modes.

4) Employing fiber drawing (both in the glassy or plastic
versions), it is impossible to get a direct control on the
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position of the defects. This drawback has been
circumvented in 2020, employing a direct laser writing
approach. Direct laser writing is still prone to high losses
due to inefficient coupling and small refractive index
contrast. Nevertheless, by tuning individually the
paraxial defect positions, it is possible to test how
extensive localization properties depend on specific
configurations. Thus direct laser written localization can
be employed as a test-bench to find out how different
localization properties are affected by varying the disorder
configurations. Then, if performance enhancement is
found, the optimal configurations can be translated to
the more efficient fabrication approaches.

If the technological progress on these platforms continues
just at the same rate as in the last years, we can envision that
one (or perhaps more than one) of these platforms will find its

way to the application and industrialization in the next
few years.
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