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Quantum annealing is a global optimization algorithm that uses the quantum tunneling
effect to speed-up the search for an optimal solution. Its current hardware
implementation relies on D-Wave’s Quantum Processing Units, which are limited in
terms of number of qubits and architecture while being restricted to solving quadratic
unconstrained binary optimization (QUBO) problems. Consequently, previous
applications of quantum annealing to real-life use cases have focused on problems
that are either native QUBO or close to native QUBO. By contrast, in this paper we
propose to tackle inequality constraints and non-quadratic terms. We demonstrate how
to handle them with a realistic use case-a bus charging scheduling problem. First, we
reformulate the original integer programming problem into a QUBO with the penalty
method and directly solve it on a D-Wave machine. In a second approach, we dualize the
problem by performing the Hubbard-Stratonovich transformation. The dual problem is
solved indirectly by combining quantum annealing and adaptive classical gradient-
descent optimizer. Whereas the penalty method is severely limited by the
connectivity of the realistic device, we show experimentally that the indirect approach
is able to solve problems of a larger size, offering thus a better scaling. Hence, the
implementation of the Hubbard-Stratonovich transformation carried out in this paper on
a scheduling use case suggests that this approach could be investigated further and
applied to a variety of real-life integer programming problems under multiple constraints
to lower the cost of mapping to QUBO, a key step towards the near-term practical
application of quantum computing.

Keywords: optimization, quantum annealing, hubbard-stratonovich transformation, integer programing, scheduling
problem, quantum applications

1 INTRODUCTION

Since being first proposed by Richard Feynman in 1981, quantum computing has been an intriguing
idea for both physicists and computer scientists [1]. The core concept of a quantum computer is to
manipulate a quantum system in a large Hilbert space in order to gain a significant advantage over
classical computing to solve certain classes of hard problems. For instance, it has been theoretically
proven that quantum algorithms bring an exponential speed-up over traditional methods on the
problems of factorization [2] and quantum simulation [3, 4], as well as a quadratic speed-up for
unstructured search [5].
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For many hard computational problems however, no
approach, either classical or quantum, has been theoretically
proven to outperform others. In practice, the investigation of
quantum advantage is thus closely related to hardware
development in order to obtain empirical evidence. Yet,
controlling and manufacturing a quantum computer remains
an unsolved challenge, although past decades have witnessed
multiple breakthroughs. Despite the recently achieved significant
milestones for quantum computing, with quantum supremacy
tests being performed (Google’s superconducting quantum
computer Sycamore [6], photonic quantum computer JiuZhang
[7]), it is still a fundamental research question to determine which
problems and applications should be solved more efficiently by
using quantum computing in place of classical computers; and to
what extent. Given the current technological advancement,
quantum annealing-a metaheuristic optimization algorithm-
achieves promising experimental performances in finding
near-optimal solutions for some NP-hard optimization
problems [8–11]. Quantum annealing requires to map an
optimization problem to an Ising spin glass model with
Hamiltonian HP, to which QPUs are restricted to by
construction, and then solve the problem by sampling the
low-energy states of the physical system. The system is
typically initialized in the ground state of an easy-to-
implement driver Hamiltonian HD, and then evolved
progressively towards HP:

H(s) � A(s)HD + B(s)HP, 0≤ s≤ 1, (1)

where A(0) � 1, B(0) � 0 and B(1) � 1, A(1) � 0. With σx, σz the
Pauli spin operators and Jij, h

z
i , h

x
i some scalar coefficients, the

problemHamiltonian with n qubits is writtenHp � ∑<i,j>Jijσ
z
i σ

z
j +∑n

i�1h
z
i σ

z
i while the driver Hamiltonian HD � ∑n

i�1h
x
i σ

x
i does not

commute with HP, thus creating the quantum fluctuations. The
annealing process, which is a dynamic process of the quantum
system, is non-trivial and techniques such as non-linear
scheduling, pausing and reverse-annealing can further improve
the quality of the final system state [12, 13].

The understanding of the underlying physical process and the
speed-up that quantum annealing could provide over classical
methods has been a heated topic of debate and interest. Indeed,
the notion of quantum speed-up itself has been proven to be
elusive, and varies from provable to limited speed-ups, depending
on the question that is investigated [14–16]. It has been
commonly believed that quantum annealing can exhibit speed-
up over simulated annealing due to the fact that it can escape local
minima via quantum tunneling effect [17]. However, some
research is still needed to clarify to what extent quantum
tunneling can accelerate the optimization process. Besides,
another issue is whether the quantum tunneling effect can be
observed in the current physical device. Finally, it has been shown
that the speed-up of quantum annealing could be highly
dependent on the high dimensional energy landscape
determined by the problem structure [18].

Despite these key challenges, the rapid progresses achieved in
hardware development suggest that practical applications of
quantum computing are within reach. Particularly, the latest
generation of D-Wave’s Quantum Processing Units (QPUs),

designed to solve optimization problems with quantum
annealing, reaches more than 5,000 qubits. As such, quantum
annealing has already been applied to several real life problems
with D-Wave’s experimental device. The applications range from
scheduling and planning problems [19–21], machine learning
[22, 23] and other domains such as molecular design [24, 25],
portfolio optimization [26, 27] or robotic movement [28].
Notably, some experiments carried out on D-Wave’s 2000-
qubit machine have shown that quantum annealing, when
combined with classical solvers within an hybrid approach,
can outperform some existing commercial solvers on industrial
scale optimization problems, such as scheduling and traffic
control [29, 30].

In this work, we are interested in solving an industrial energy
problem, which can be written as a constrained integer
programming problem: the optimal charging scheduling of
electrical (EV) buses. Through this application, we aim at
providing insights on two of the main research questions
quantum annealing still needs to address, namely mapping to
QUBO problems and embedding in hardware [19]. Due to the
complex nature of the EV-bus charging problem, not tailored a
priori for quantum computing, mapping to QUBO and then to
hardware is effectively a costly step. In order to go beyond the
penalty method commonly used for such mappings [31], we
propose to use the Hubbard-Stratonovich transformation to
obtain an efficient, with least qubit requirement, mapping. The
transformation was first applied to quantum annealing problems
by Ohzeki in 2020 [32], and we explore more deeply its practical
implementation and performances by studying a problem of
increased complexity, with several inequality constraints.

In the rest of this paper, we solve the EV bus charging
scheduling problem on the D-Wave 2000q Quantum
Processing Unit by firstly reformulating it into a QUBO
problem with the penalty method, in Section 2. Besides, we
also discuss the limitations of the penalty method, specifically the
issues of graph connectivity and dynamic range. Next, by
employing a method based on the Hubbard-Stratonovich
transformation and described in Section 3, we reduce some of
the quadratic penalties in the QUBO problem into linear terms,
breaking thus the limitation of connectivity and dynamic range.
Finally, we present and discuss some numerical experiments in
Section 4 and conclude in Section 5.

2 EV-BUS CHARGING SCHEDULING
PROBLEM

2.1 Problem Definition
We consider a fleet of Nbus electrical buses and a set of Npile piles.
Assuming that the electricity consumption of all buses is known
during their respective operating hours, the objective of the EV-
bus charging scheduling problem is to find an optimal daily
schedule for charging the buses by minimizing the cost of
electricity while avoiding any breakdown. The EV-bus
charging scheduling problem with minimization of price can
thus be formulated as follows, with T � (t1, t2, . . . , tk, . . . , tT)
being a discretization of time periods:
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min ∑
i,j,k

pkωjxijk, xijk � oikzijk, (2)

where zijk is a binary variable indicates whether bus i is
charging at pile j for the time period tk while oik � 0 if bus
i is in operation and oik � 1 otherwise, i.e., if bus i is available
for charging at time tk. ωj is the power output of pile j, pk the
cost of electricity at time tk. We consider a time period of 24 h,
and need only to find the values zijk during non-operating
hours, i.e., during charging windows. This reduces the number
of time steps to Ltime ≤ T. In the sequel, we denote by Sil
(respectively, Dil) the starting (respectively, ending) time of the
l-th charging window of bus i. The constraints of the problem
can be expressed as:

∀i, k : ∑
j

xijk ≤ 1, (3)

∀k : ∑
i,j

xijk ≤Npile, (4)

∀i, l : ∑Dil

j,k�1
ωjxijk −∑Dil

k�1
cik + 1≤ 1, (5)

∀i, l : ∑Dil

j,k�1
ωjxijk − ∑Si(l+1)

k�1
cik + 1≥ 0.3, (6)

∀i, l : ∑
j,k∈[Sil ,Dil]

xijk(1 − xij(k+1))≤ 1. (7)

Constraint (3) ensures that any bus can only be charged at most
one pile at a given time, while (4) means that the total number of
buses being charged at the same time should not be greater than
the total number of piles Npile. (5) and (6) control the state-of-
charge (SOC) of each bus i between 100 and 30% at all times by
adding constraints at each time a bus leaves the charging station,
with cik being the power consumption of bus i at time tk. Note
here that the power ωj is also normalized to be consistent with
SOC ∈ [0, 1]. Lastly (7) guarantees that a bus can only be charged
continuously, and not intermittently, at most once during each
charging window. Hence, the original EV-bus charging problem
Eqs 2–7 is an integer programming problem with inequality
constraints.

2.2 Reformulation of Constraints With the
Penalty Method
Due to hardware constraints, quantum annealing can only be
directly sampled from an Ising Hamiltonian. In this section, we
reformulate thus the integer programming problem to a
quadratic unconstrained binary optimization (QUBO)
problem, which by definition does not include any constraint
or non-binary variables [31, 33]. For each equality constraint of
the form Ci(x) � 0 in the optimization problem, the penalty
method consists in augmenting the cost function with a term
P2
i (x) which penalizes the solutions that violate the constraint.

For the inequality constraints, following [31], we first transform
them into equality constraints with slack variables and then apply
the penalty method. More specifically, constraints (3) and (7) are
equivalent to

∑
j

xijk ≤ 1 ≡ ∑
j

xijk � s1,ik, (8)

∑
j,k∈[Sil ,Dil]

xijk(1 − xij(k+1))≤ 1 ≡ ∑
j,k∈[Sil ,Dil ]

xijk(1 − xij(k+1)) � s5,il, (9)

with s1,ik, s5,il ∈ {0, 1}. This yields the corresponding penalty
functions:

P2
1(x) � (∑

j
xijk − s1,ik)2

, (10)

P2
5(x) � (∑

j,k ∈ [Sil ,Dil]xijk(1 − xij(k+1)) − s5,il)2

. (11)

It should be noted that Eq. 11 is of degree 4 in x, i.e, it is not a
quadratic form. Therefore, a first limitation of the penalty method
is that the already quadratic constraint (7) cannot be included in
the augmented cost function.

Next, handling constraints (4) to (6) requires to introduce a
slack variable that is either an integer [constraint (4)] or a real
number [constraints (5)–(6)]. We choose to encode such non-
binary variables s with binary encoding,
i.e., s � (1/Γ)∑N−1

i�0 2is(i), Γ � ∑N−1
i�0 2i, where N is the number of

bits and upper-indexed s(i) are used to denote the encoding binary
variable of s. Other options, not explored in this article, for
encoding the continuous variables include one-hot encoding
and order encoding, as in [34]. Constraints (4)–(6) become

P2
2(x) � ∑

i,j

xijk − s2,k⎛⎝ ⎞⎠2

, (12)

P2
3(x) � ∑Dil

j,k�1ωjxijk −∑Dil

k�1cik + s3,il( )2

, (13)

P2
4(x) � ∑Dil

j,k�1ωjxijk −∑Si(l+1)
k�1 cik − 0.7s4,il + 0.7( )2

, (14)

where s2,jk is a binary-encoded integer slack variable in [0, Npile]
and s3,il, s4,il are binary-encoded continuous slack variables in [0,
1]. Furthermore, it is easy to see that the penalties P3 and P4 can
be written into a single one:

P2
3,4(x) � ∑Dil

j,k�1ωjxijk −∑Di(l+1)
k�1 cik − s3,4,il + 0.7( )2

, (15)

with s3,4,il ∈ [0, 0.7 −∑Si(l+1)
k�Dil

cik].
Finally, it can be observed that the barrier method in classical

optimization is a more efficient way of handling inequality
constraints [35], yet not applicable here due to the log
function required by this method but not feasible in practice
on the quantum annealer.

2.3 Quadratic Unconstrained Binary
Optimization Formulation of the Original
Problem
By employing the penalty method and encoding the continuous
variables, the original constraints are reformulated into
penalty functions P1 . . . 5. The effective QUBO Hamiltonian
reads then:
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HQUBO(x) � Hp(x) +∑
i

λiP
2
i (x), λi ∈ R, (16)

where Hp � ∑i,j,kpkωjxijk is the Hamiltonian corresponding to the
original cost function (2). It remains to determine the values of λi
such that the structure of the original problem can be kept
unchanged in the reformulated QUBO problem. More
specifically, let C denote the set of all viable solutions x, we
need to ensure that:

∀x1 ∈ C, x2 ∉ C : HQUBO(x1)<HQUBO(x2), (17)

∀x1, x2 ∈ C andHp(x1)<Hp(x2): HQUBO(x1)<HQUBO(x2).
(18)

We proceed to an analysis of the different terms in Eq. 16,
following the method in [31]. The detailed calculations are
described in the Supplementary Material, and we find that in
order to preserve the structure of the original problem, it is
sufficient that the coefficients λi satisfy the following inequalities:

min δp ×minω

2−2N−2 > λ3,4 >
max p ×maxω × Ltime

ε2
,

λ1,2 >max p ×maxω × Ltime,

(19)

where min δp is the minimal price difference between any two
given times during the day (including the difference between
lowest price and 0), ε is a margin to control the state of charge
within the boundaries [0.3 + ε, 1 −ε], typically set to ε � 0.1. The
non-quadratic penalty P2

5 is omitted. These inequalities indicate
thus how to appropriately set the values of the coefficients λi for
the penalty functions. Another practical issue is the ratio r
between the largest and smallest terms in the QUBO objective
function HQUBO. Indeed, a large ratio will require the hardware
device to have high dynamic range and precision, which is
challenging for the current technology advancement. More
precisely, recalling that the original objective function is H*
� ∑i,j,kpkωjxijk, we obtain the lower and upper bounds,
respectively:

rmax >
1

min p ×minω
×min δp ×minω

2−2N−2 ∼
1

2−2N−2,

rmin <
max p ×maxω × Ltime

ε2
× 1
max p ×maxω

� Ltime

ε2
,

(20)

where rmax, rmin give the range of the ratio r for which the
structure of the problem stays the same. Hence, in order to
guarantee that the structure of the problem is preserved, N, ε,
Ltime should be such that:

1
2−2N−2 >

Ltime

ε2
. (21)

Furthermore, observe that the upper bound Ltime
ε2 of rmin scales with

the number of time steps, Ltime but is independent of Nbus and
Npile. Consequently, increasing the size of this problem solved by
quantum annealing and penalty method would not represent a
higher challenge in terms of dynamic range of the physical device.
This is a satisfying result as the QUBO form of many hard
problems requires scaling dynamic range [36]. On the contrary,

increasing the number of time steps requires higher performances
from the QPUs.

2.4 Limitations of the Quadratic Penalty
Model
Although the quadratic penalty model maps the constrained
optimization problem to an unconstrained one while
preserving the relation between solutions, there are several
practical limitations while implementing the quadratic penalty
model on a real quantum annealer. Firstly, the Hamiltonian that
can be realized onto the real physical device is an Ising
Hamiltonian which contains at most two-body interactions,
i.e., quadratic terms in the objective function. In the previous
Section 2.3, we have shown that some penalty functions can
contain higher-order terms that can not be written into the
QUBO objective function, cf. quadratic constraint (7) and the
corresponding penalty (11).

The second practical limitation of the penalty method relates
to the connectivity of the hardware architecture. We refer to the
quadratic penalty term of the first constraint P2

1,ik(x) �
(∑jxijk − s1,ik)

2 as an example. To implement this constraint,
we are requiring an all-to-all connectivity between the qubits
representing xijk for some fixed i, j and an ancillary qubit s1,ik. It is
beyond current technology to realize arbitrary connectivity
between qubits on a physical device, as the interactions are
often restricted between neighbors. Specifically, the D-Wave
2000q architecture is based on a Chimera graph, which has
only limited connectivity; each qubit being coupled to at most
6 other qubits. The next generation of D-Wave devices (D-Wave
Advantage) has an improved connectivity with the Pegasus graph
of degree 15 [37], but was not available for testing as of writing
time. Nevertheless, it is still very challenging to solve a highly
connected problem on either of these architectures. Besides, as
shown in Section 2.3, the coefficient λ is typically much larger
than the terms in the original objective function, which could out-
range the practical dynamic range of current device.

In practice, before the logical Ising Hamiltonian can be
sampled, the problem has to be mapped to the physical
hardware graph via minor embedding [38, 39]. Minor
embedding maps one logical qubit into a chain of physical
qubits with negative neighboring interaction strength
Jchain_strength. This process creates significantly more physical
qubits, for example the number of physical qubits needed to
embed a N-clique onto the Chimera graph of D-Wave 2000q is
O(N2), i.e., only up to 64 fully connected qubits can be embedded
onto over 2000 qubits. Besides, the interaction Jchain_strength must
be of similar magnitude or greater than the penalties to prevent
breaking of chains, which would further address the problem of
effective dynamic range. We refer to [38, 40] for more discussion
around the optimal value of Jchain_strength.

Several previous contributions have tried to findmore efficient
ways of embedding constraints with Quantum Annealing. Hen
et al. propose to design a specific driver Hamiltonian HD that
commutes with the penalty HamiltonianHpenalty: [HD,Hpenalty] �
0 but not with the original problemHamilotnianH*: [HD,H*] ≠ 0
[41, 42]. In this case, the state would only evolve in a sub-space of
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the Hilbert space that satisfies the constraints. This approach is
however not yet implementable on the current version of quantum
annealer devices. In another work, Vyskočil et al. suggest to solve
the problem of embedding constraints by using ancillary variables
and mixed-integer linear programming to find the optimal
combinatorial design of these qubits on the hardware graph [43,
44]. Ajagekar et al. apply a decomposition of the problem into a
constrained MILP problem and unconstrained QUBO sub-
problems that would be solved by quantum annealer [45].
However, these methods either could not be implemented with
the current hardware or very hard to generalize to realistic
optimization problems with several constraints.

3 BREAKING THE QUADRATIC PENALTY
BY HUBBARD-STRATONOVICH
TRANSFORMATION
In this work, we follow a method described by M. Ohzeki and
based on the Hubbard-Stratonovich transformation to reduce the
quadratic terms into linear terms [32]. The transformation is a
well-known technique in statistical physics [46, 47] and is defined
via the integral identity

exp − a
2
x2( ) �

����
1

2πa

√ ∫∞

−∞
exp − y2

2a
− ixy[ ]dy, (22)

with a real positive a. Consider the former Hamiltonian structure
with additional penalty terms H(x) � Hp(x) + ∑iλiP

2
i (x), with

P(x) being a linear expression of x and Hp(x) the original cost
Hamiltonian. The partition function of the system subjected to
the predefined Hamiltonian H can be written as

Z � ∑
x

exp(−βH(x)) � ∑
x

exp −βHp(x) − β∑
i

λiP
2
i (x)⎛⎝ ⎞⎠,

(23)

where β ∈ R is the inverse temperature of the system at
equilibrium. By performing the Hubbard-Stratonovich
transformation (22) on the quadratic penalty terms and
applying a complex change of the integral variable y←i

���
β/λ

√
],

one can obtain the following expression of the partition function:

Z∝ Γ∑
x

∏
i

∫ d]i exp ∑
i

β

2λi
]2i + β∑

i

]iPi(x) − βHp(x)⎛⎝ ⎞⎠,

(24)

where ∏i ∫d]i � ∫. . .∫d]1 . . . d]n. (24) is the partition function
associated to an effective Hamiltonian H(x, ]) with continuous
] � (]1, ]2, . . . ):

H(x, ]) � −∑
i

1
2λi

]2i −∑
i

]iPi(x) + Hp(x). (25)

The remaining problem is to find the saddle point of the effective
Hamiltonian H(x, ]) where 〈Pi(x)〉x � 0. Ohzeki proposes an
iterative procedure, where for a fixed ] � (]1, ]2, . . . ), we find
the ground state withminimal energyminxH(x, ]) with the quantum

annealer as a powerful sampler for the Ising model. And the
multipliers are updated based on gradient descent during the
iterations.

Notice that now, it is only necessary to determine the ground
state of the effective Hamiltonian H(x, ]) in Eq. 25, which
depends on Pi instead of P2

i . The method brings thus three
significant improvements over the penalty method in Section
2.3. Firstly, the problem of connectivity mentioned in Section 2.4
is solved, and we can thus handle much larger problems with the
same number of qubits. Secondly, the penalty P5 (11) can be
written into the objective function, with highest order term being
quadratic. Finally, it can be observed from Eq. 25 that the penalty
coefficients λi no longer explicitly affect the penalty terms Pi.
Consequently, the penalty coefficients no longer causes problems
in terms of the dynamic range of D-Wave QPUs. We also note
that in our problem, solving the ground state ofH(x, ]) remains a
non-trivial problem, hence the necessity of the quantum sampler.
However, it is also noted by Ohzeki that the relation between
〈Pk(x)〉x and ] could be non-monotonic for certain problems,
causing difficulties for the gradient descent method to find the
saddle point.

The algorithm is summarized as in Algorithm 1, where the
braket notation 〈〉x in Eq. 26 is the probabilistic summation of
P(x), with the state of x sampled from the Hamiltonian H(x, ])
from Eq. 25 on the quantum annealing device or other
optimization algorithm.

4 EXPERIMENTAL RESULTS

In this section, we generate various problems with different
settings in Ltime, Nbus, Npile based on realistic operational data
of EV-buses. The continuous variables are discretized using N � 8
bit for binary encoding. We then analyze the experimental results
on the minor embedding, directly sampling the QUBO model
from the D-Wave-2000q quantum annealer, and the iterative
method based on Hubbard-Stratonovich transformation. The
ground truth optimal solution is obtained using the
commercial solver Cplex. We also use the classical counterpart
simulated annealing [48] as a benchmark.

4.1 Minor Embedding
First of all, we generate several instances of the EV-bus scheduling
problem with different values of Ltime, Nbus, Npile based on real
operational data. The problems are generated by randomly sampling
from 15 typical bus operational schedules and randomly setting the
number Npile and power ωj of charging piles in a reasonable range.
We refer to Supplementary Figure S1 in the Supplementary
Material for a visualization of these typical bus schedules.
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To solve the problem via a quantum annealer, the logical
problem (QUBO) graph needs first to be mapped to the hardware
graph. In this case, the D-Wave-2000q has a Chimera
architecture, which possesses a limited connectivity of degree
6. This implies that the number of physical qubits after the
mapping is larger than the number of logical qubits in its
original QUBO form, due to the minor embedding. We note
that the minor embedding problem is NP-hard itself hence a
heuristic algorithm is employed here [49]. Indeed, as analyzed in
Section 2.4 and Section 3, the highly connected QUBO graph
caused by the quadratic penalties increases significantly the
number of qubits needed on the hardware to solve the EV-bus
scheduling problem, even at a small scale.

The cost of embedding is illustrated in Figures 1A–D, where a
problem with ∼ 150 qubits will cost ∼ 1,500 qubits on the
hardware. We further observe a quadratic increase of physical
qubits in Figure 1A when fixing Nbus � 1, Npile � 1 and increasing
Ltime from 24 to 120, and a linear increase in Figures 1B–D where
Ltime is fixed. Consistently with the analysis in Section 2.3, we
find thus that increasing the number of time steps Ltime is more
challenging in terms of hardware requirement than increasing
Nbus, Npile. This result further emphasizes that the extra qubits
needed are mostly due to the quadratic penalty terms in
P2
3,4(x) � (∑Din

j,k�1ωjxijk + . . . )2, where the number of variables x
in the penalty increases with Ltime.

4.2 Solving the Penalty Model
After minor embedding, the embedded problem is then
sampled using the D-Wave quantum annealer as an
efficient solver for QUBO problems. As discussed in
Sections 2.3 and 2.4, the penalty coefficients λi for the
penalties Pi need to be set appropriately to guarantee that
the structure of the original problem is preserved.
Additionally, the parameter Jchain_strength is introduced
during minor-embedding to ensure that the physical qubits
can be correctly mapped back to the logical qubits after the
sampling. Although theoretical bounds, i.e., minimum
theoretical values to ensure that the penalized optimal
solution is the original one, are provided for λi in Section
2.3, in practice, the optimal values for Pi can not be directly
calculated. Instead, we explore the trade-off between penalty
and chain strength by computing the time to 99%-success, as

defined in [14], and chain break fraction for an instance of the
problem Nbus � 1, Npile � 1, Ltime � 24 solved with different
settings of λ3,4 and Jchain_strength. The coefficients λ1,2 are
constant to 10, since according to our previous results,
these values are above their theoretical bounds and are of
no significant effect on the efficiency of the solver.

As shown in Figure 2A, the time to 99%-success for this
problem takes similar values along the lines Jchain_strength ∼ λ3,4.
However, this conclusion does not hold for other problems, as
shown in Supplementary Figure S2 in the Supplementary
Material, where the optimal λ3,4 seems to be in the range [50,
800] for problems of larger sizes. We also observe that for λ3,4 ≫
Jchain_strength, almost no solution could be found, which can be
explained by an increased chain break fraction, as shown in
Figure 2B. Equally for λ3,4 ≪ Jchain_strength: although the quality
of mapping is guaranteed by an increased chain strength, yet the
efficiency of sampling by D-Wave QPUs is reduced. We conclude
that choosing the optimal values for λ3,4 and Jchain_strength is largely
an empirical question that is problem dependent, but it is safer to
set a penalty λ3,4 close to the theoretical bounds and a chain
strength Jchain_strength of the same order of magnitude as λ3,4.

4.3 Solving With the Hubbard-Stratonovich
Transformation
It is clear from the previous discussion that directly embedding
and sampling the problem obtained with the penalty method
suffers from several drawbacks and does not enable to solve large-
scale problems. An alternative method discussed in Section 3 is
proposed to obtain a better scaling with the quantum annealer.
Using the Hubbard-Stratonovich transformation, the QUBO
Hamiltonian HQUBO(x) is transformed into an effective
Hamiltonian HQUBO(x, ]) with an additional multiplier ].
Then the remaining problem is to find the saddle point of the
effective Hamiltonian, which is the original optimal solution. This
method is similar to the Lagrangian dual method in classic
optimization, and can reduce the quadratic terms into linear
ones in the penalized QUBO energy.

To demonstrate the effectiveness of this method, we solve a bus
charging scheduling problemwithNbus � 3,Npile � 2 and Ltime� 48.
The QUBO formulation of this problem with quadratic penalty
constraints could not be directly embedded onto the 16 × 16

FIGURE 1 | (A) The number of physical qubits needed to minor embed different problems, for fixed Nbus � 1, Npile � 1 and Ltime ∈ {24, 48, 72, 96, 120}. The dashed
line is a quadratic regression fit. (B–D) Fixing Ltime ∈{24, 48, 72}, and varying other problem parameters.Nbus,Npile. The dashed lines are linear regression fits. The 16 × 16
Chimera graph from D-Wave 2000q sampler is used for all embeddings except for the large problems in (D), embedded onto a 24 × 24 Chimera graph.
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FIGURE 2 | (A) Time to 99%-success in μs under different annealing parameters λ3,4 (penalty coefficient) and Jchain_strength (chain strength for minor embedding)
estimated based on 1,000 experiments on a problemwith Nbus � 1,Npile � 1, Ltime � 24. White pixels indicate that no optimal solution has been found, “SA” label in the y-
axis indicates solving the problem with simulated annealing. (B) Chain break fraction under the same experimental settings as in (A).

FIGURE 3 | (A) State-of-charge SOC at different iterations calculated based on the lowest energy sample from D-Wave annealer with the Hubbard-Stratonovich
(HS) transformation method. The two solid black lines indicate respectively SOC � 0.3 and SOC � 1, between which the constraints are satisfied. Blue shaded areas
represent the time intervals during which the bus is available for charging. (B) Distribution of the sampled energy of the dual Hamiltonian at each iteration. The blue and
orange shaded areas represent sampling results from the D-Wave sampler and simulated annealing, respectively. The blue solid (respectively, dashed) line
indicates the lowest value (respectively, the median) of the samples. The black solid line marks the lowest energy of the original Hamiltonian (without HS transformation)
sampled by simulated annealing with an extended period of time. (C) Histogram of number of iterations till convergence (all constraints are satisfied) with two different
strategies of updating the multipliers μ: ADAM represents adaptive gradient and constant learning rate η � 0.1. All plots are obtained for the same problem with
parameters Nbus � 3, Npile � 2, Ltime � 48.
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Chimera graph of the D-Wave 2000q sampler. For reference, to
embed such a problem onto a 24 × 24 Chimera graph would cost
2,499 physical qubits and the maximum chain length is 31. On the
other hand, the dual Hamiltonian as defined in Eq. 25 only
requires 320 physical qubits to embed with a maximum chain
length of 4. This example illustrates thus clearly that the limitation
for connectivity is well mitigated after the Hubbard-Stratonovich
transformation.

We investigate then whether the iterative approach can lead to
the ground state of the original Hamiltonian, i.e., the optimal
schedule with minimum cost and satisfying all constraints. As
shown in Figures 3A,B, the optimal solution is obtained after 96
iterations of updating the multipliers ] based on the sampling of
the dual Hamiltonian with the D-Wave 2000q annealer. In
Figure 3A, we visualize the state-of-charge SOC of the optimal
solutions found while sampling the dual Hamiltonian at different
iterations. It can be seen that while updating the multipliers ]
according to Algorithm 1, the state of charge gradually falls into
the interval [0.3, 1], where the constraints are satisfied. Figure 3B
displays the distribution of different samples returned by both the
D-Wave 2000q annealer and simulated annealing. We note that
the multipliers ] are updated according to the lowest energy
samples returned by D-Wave’s machine. We observe that the
sampled lowest energy of the dual Hamiltonian does not decrease
monotonically. This might be caused by multiple reasons. Firstly,
the sampling, quantum or classical, is a heuristic process so that
the actual ground states of the dual Hamiltonian are not
necessarily found at each iteration, as shown in Figure 3B.
Secondly, the energy landscape of the dual Hamiltonian might
be non-convex, as also discussed by Ohzeki when this method is
proposed [32]. Thirdly, the learning rate might be too large.

From an optimization perspective, the aforementioned three
points imply that in practice, the task of solving for the multipliers
] is carried out in a complex landscape with noisy evaluations of
the gradient. In this context, finding the optimal multipliers,
hence the saddle point could be very challenging, especially with a
large number of multipliers. To resolve this problem, instead of
using a fixed learning rate η � 0.1, we have employed an adaptive
gradient method to update the multipliers ], with ADAM solver
for stochastic optimization [50]. To further confirm the
effectiveness of the adaptive gradient methods, we have solved
the problem multiple times with the two different strategies,
ADAM or fixed learning rate. It is observed in Figure 3C that the
adaptive gradient approach for updating ] has a significant
advantage over fixing the learning rate, requiring about
10 times less iterations to converge. This emphasizes thus that
the practical constraint caused by the transformation, namely
performing a classical gradient descent, requires careful tuning in
order to reduce the additional computational overhead, which
ADAM achieves. Yet, we note that it has been proven that ADAM
as described in [50] could possibly diverge, even in the convex
case [51]. Hence, the convergence of ADAM-type methods has
been analyzed theoretically in several recent contributions. For
instance, Chen et al. derive a set of sufficient conditions to
guarantee the convergence of AmsGrad, a variant of Adam,
with a rate of O(logT+d2�

T
√ ) for non-convex stochastic

optimization [52], where T is the number of iterations of the

algorithm and d the dimension of the problem. Similarly, Zhou
et al. achieve a rate of O(

����
d/T

√ + d/T) for AmsGrad [53]. The
interested reader is also referred to [54–57] for more in-depth
analyses of adaptive gradient algorithms. Consequently, although
ADAM has shown to be an appropriate choice for solving the bus
charging scheduling problem, further work could explore the
impact of the adaptive gradient method on the convergence and
computational cost of this iterative approach.

5 CONCLUSION

In this work, we have solved a realistic EV-bus charging
scheduling problem with D-Wave’s quantum annealer. Firstly,
we have reformulated the original integer optimization problem
with inequality constraints into a QUBO problem by the penalty
method. Furthermore, theoretical analysis on the lower bound of
the penalty and experimentation with minor embedding
emphasize the fact that the key challenge for quantum
annealing to solve the bus charging scheduling problem is
two-fold: on one hand, the number of additional qubits
needed for minor embedding and on the other hand, the
penalty bounds to preserve the structure of the original
problem. We analyze these problems with numerical
experiments and find out that the former problem is caused
by the quadratic penalty which makes it especially difficult to
increase the number of time steps when modeling the problem.
The latter challenge is linked to the case-dependent problem
structure and the dynamic range of the physical device, which
have a joint effect on the efficiency of quantum annealing.

Tomitigate the above problems, we have employed an iterative
approach based on the Hubbard-Stratonovich transformation
proposed by Ohzeki [32]. This method reduces the quadratic
penalty terms in the original QUBO Hamiltonian into linear
terms in its dual Hamiltonian with the Hubbard-Stratonovich
transformation. Then by iteratively solving the dual Hamiltonian
to update the multipliers ] introduced by the transformation, the
ground state of the original QUBO Hamiltonian, hence the
optimal solution of the original problem, can be found. We
demonstrated that it is possible to solve a larger-scale problem
which can not be directly embedded onto the D-Wave 2000q′s
Chimera graph with this approach. Besides, we observed that due
to the noisy gradient evaluation caused by the heuristic sampling
process and the complex energy landscape, it is significantly more
efficient to update the multipliers in an adaptive manner, for
instance with ADAM solver, instead of using a fixed learning rate.

As believed by many, quantum annealing can provide speedup
for certain optimization problems with quantum tunneling effect.
However in practice, the physical implementation for a quantum
annealer contains only two-body and mostly neighbouring
interactions between qubits (spins). This means that the ideal
problems for a physical quantum annealer to solve in the near
future are limited to problems which can be formulated as QUBO
problems on a sparsely connected graph. While a large portion of
the optimization problems can be eventually reformulated as
QUBOs by encoding continuous variables, introducing penalties
and ancillary qubits, it will generally induce an additional burden
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in terms of connectivity and dynamic range of the physical device.
The Hubbard-Stratonovich transformation can be a possible way
of alleviating this cost and solving larger-scale problems with an
iterative procedure. Under the Hubbard-Stratonovich transformation,
the complexity of solving the original problem is transformed into
both solving the dual problem and the optimization of themultipliers,
where the latter can be achieved using a classical computer. In this
sense, this approach can be considered as a hybrid classical-quantum
algorithm where the advantage of the quantum computing is better
utilized. We believe that similar to the EV-bus charging scheduling
problem considered in this work, many more realistic use-cases can
be better solved by quantum annealing with the combination of
Hubbard-Stratonovich transformation and adaptive gradient descent.
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