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In this review article, we are interested in the detailed analysis of complexity aspects of both
time and space that arises from the implementation of a quantum algorithm on a quantum
based hardware. In particular, some steps of the implementation, as the preparation of an
arbitrary superposition state and readout of the final state, in most of the cases can surpass
the complexity aspects of the algorithm itself. We present the complexity involved in the full
implementation of circuit-based quantum algorithms, from state preparation to the number
of measurements needed to obtain good statistics from the final states of the quantum
system, in order to assess the overall space and time costs of the processes.
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1 INTRODUCTION

Quantum computing takes advantage of the unique properties of quantum mechanics, such as
superposition and entanglement to carry out computational tasks in distinct ways than the classical
computers do [1]. Since Richard Feynman’s idealization that a quantum architecture would be a
proper way to simulate actual quantum systems that occur in nature in the early 1980’s [2], much
attention has been given to the application of quantum systems for computational tasks. Among the
greatest and most famous achievements of quantum information and quantum computation, one
can cite superdense coding [3], the BB-84 algorithm for quantum public key distribution of
cryptography systems [4], Shor’s integer factoring algorithm [5], Grover’s database search
algorithm [6], alongside examples of no less importance or relevance. The advances have also
reached important areas of mathematics and natural sciences in general, with quantum algorithms
and circuit designing being developed to accomplish linear algebra tasks like eigen- [7, 8] and
singular- value [9, 10] decompositions of matrices, finding solutions to linear systems of equations
[11], solving linear [12–14] and nonlinear [15] differential equations, partial non-homogeneous
linear differential equations [16], among other potential applications.

There have been recent progress in the current era of Noisy Intermediate Scale Quantum (NISQ)
devices, such as problems that cannot be solved by any classical shallow circuits in reasonable time,
but turns out to be possible by shallow quantum circuits [17], quantum supremacy using a
superconducting quantum processor architecture achieved by Google team [18], and also
quantum advantages over classical computation using boson sampling [19] and the simulation
of quantum systems by means of quantum based architecture in D-Wave systems [20].

In general, the implementation of a quantum algorithm is based on many steps, that involve data
pre-processing, preparation of input quantum states, the processing of the input information
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through quantum gates and operations applied to the system,
measurement of the final state of the composite quantum system,
and post-processing of the data collected by the measurement
process. In the present work, we will not deal with the pre- and
post-processing steps, which are usually done by classical means.
In most quantum algorithms, the quantum advantage over
classical computation lies in the processing or evolution step,
which takes advantage of the dimension of the Hilbert space of
quantum systems and quantum parallelism to manipulate very
large amounts of data, a task for which the present classical
computers usually require exponential scaling resources, such as
memory and state-of-the-art processors in supercomputer units.
However, the preparation and measurement processes present in
some quantum algorithms, which are essential for their proper
implementations, are often neglected in their presentations,
because of the intrinsic difficulties of these tasks.

Themain purpose of this work is to perform a detailed analysis
of the computational complexity defined by the space and time
costs of quantum algorithms, considering all steps, from state
preparation to readout processes. This work considers a scenario
in which the rapid development of quantum computing has
attracted the attention of people with different background,
not only restricted to physicists or computer scientists from
academia, but curious, investors, bankers, and entrepreneurs,
which are delighted with the quantum speedups at first sight.
Although quantum computing provides amazing results
compared to its classical counterpart, a suitable interpretation
of the algorithmic costs demands a proper analysis, which
includes the circuit width, represented by the number of
qubits necessary to carry on the tasks, as well as the circuit
depth, which takes into account the number of quantum
operations that must be implemented on the system for the
proper processing of the information encoded in the qubit
system. We are also concerned with the processes of
recovering the resulting information of the processing, which
can be represented by observable statistics or quantum
tomography, depending on the task aimed by the quantum
algorithm.

This work is organized as follows. In section 2 the costs of state
preparation using different schemes are covered. Section 3 covers
matrix and quantum gate decomposition and their complexity
bounds. Section 4 considers quantum state tomography, with
emphasis on the required number of measurements and
repetitions of the execution of a quantum algorithm to achieve
a desired accuracy in the results. In section 5, the overall
complexity aspects for implementation are given, from state
preparation to readout process. Finally, section 6 contains the
conclusion of the work.

2 COMPLEXITY OF QUANTUM STATE
PREPARATION

The need for preparation of quantum states as input for solving a
given problem is a common task in many quantum algorithms
implemented in the circuit model of Quantum Computation
(QC) [1]. Such a preparation constitutes an important part in

the process of implementation of a given algorithm for circuit
gate-based quantum computing, as the final quantum state
encoding the solution of the problem is directly linked to the
input state through the evolution step. Thus, the complexity
aspects of preparing the input state must be taken into account in
a detailed resource analysis.

To describe the encoding of input states properly, we must
split the entire quantum system that constitutes a quantum
computer into two parts: the ancilla qubits, which are used,
for instance, to encode relevant information and control
logical operations, and the work system, that encodes the
initial conditions of the problem to be solved, which is
submitted to the evolution process defined by the quantum
algorithm. For instance, consider the processes to encode the
initial conditions for a linear differential equation [14] or for the
HHL quantum linear problem [11] in the work system. The goal
of state preparation is to initialize the system in a N-dimensional
specific quantum superposition that is suitable to the problem to
be solved on a quantum computer. This task is often
accomplished by subroutines that, in quantum algorithms, are
usually referred to as system encoding.

It is important to remark that there are different kinds of
encoding, such as basis encoding and amplitude encoding: the
former is often used when one needs to manipulate real numbers
arithmetically, and the latter when one takes advantage of the
large size of the Hilbert space to encode data as probability
amplitudes [21]. As an example of basis encoding, let us see
how a real number is encoded in a binary string. Suppose we must
represent the real value vector �x � (−0.3, 0.6). The first digit on
the binary string encodes the sign of the number, in which a 0
stands for “+”, and a 1 for “−” signs. The floating point is located
immediately to the right of the sign bit. This will lead to the state
vector |x〉 � |10100 01001〉 in basis encoding 1. Note that this
representation is approximate, subjected to an error ε in its
representation, which depends on the number of precision
qubits employed. The exact representation of a decimal basis
number into the binary basis would require more or less bits,
according to the number to be represented. In general, assuming
that the composite system starts from the configuration |0〉⊗n,
those circuits present depth 1, as only one NOT operation may be
executed on each qubit in parallel, depending on the binary
representation that must be encoded. Examples of circuits for
basis encoding are presented in detail in Ref. [22]. Basis encoded
states can be used, for instance, to solve prime factorization
problems [23], in machine learning techniques [24], and to
encode the solution of the computation by quantum
annealers [25].

For amplitude encoding, the relevant information for
computation is stored in the probability amplitudes of the
quantum state. The process usually starts from the n-qubit
state |0〉⊗n, which is submitted to a transformation like

1A real number x ∈ [0, 2) can be represented in binary basis as x � ∑R
i�1ai2

−i , with ai
∈ {0, 1} and R is the number of precision bits. There are different strategies of
covering the whole interval of real numbers.
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|0〉⊗n → |ψ〉 � ∑N−1

i�0
ci|i〉, (1)

with ∑N−1
i�0 |ci|2 � 1, and each |i〉 corresponding to a given state

vector of theN-dimensional computational basis, withN � 2n. To
address this task, one must be capable of preparing such a
superposition preserving coherence properties. The costs of
preparing such input states have been discussed in the
literature [26–29]. The generic superposition can be prepared
from the state |0〉⊗n by the implementation of quantum gates that
act directly upon the system to be prepared. These operations,
and consequently, the cost of the procedure that aims to prepare a
pure state, must be defined by the free parameters
contained within |ψ〉, that is, a transformation |ψ〉 � U|0〉⊗n,
with O( ~N) [21, 30] gates, could be implemented, where ~N
corresponds to the number of free parameters. Since the
number ~N can be less than the total dimension of the system
N, the process of preparing these bounded states can present a
resulting cost that is cheaper than preparing the full upper bound
case. Notice that, in the upper bound case, where |ψ〉 has 2n free
parameters, ~N � N � 2n. This is often the case with general
systems of differential or linear equations, where the degrees
of freedom of the quantum state must encode the initial values of
the variables within the problem. Nevertheless, there are cases
where the state vector defining the initial conditions for a system
to be evolved or simulated are defined by sparse vectors or
specially bounded initial conditions. For instance, one can
consider the study of the behavior and properties of spin
chains [31], where often each site of the chain starts from a
ground state configuration or with a few qubits representing the
excited states of spins in the chain. This procedure of
initialization has the advantages of being based on operations
that act directly on the work qubits, without the presence of any
ancilla systems which would increase the circuit width, whose
operations are entirely defined by the free parameters of the
initial state |ψ〉. On the other hand, it requires a number of
quantum gates which grows with the number of free parameters.
Although these gates can be executed in parallel, in each qubit,
this scheme is better implemented when the initial conditions
encoded in |ψ〉 are given by sparse configurations or specially
bounded vectors.

The state initialization can follow the procedure described in
detail in [26], which makes use of standard single- and
controlledk-operations, which are operations controlled by k
qubits, acting on a single target. This method requires
O(Nlog22(N)) single and two-qubit operations in total for
executing a transformation like 1) without the introduction of
additional quantum bits. One should also take notice of the
presence of controlledk-operations, that can be further
decomposed into O(k2) single and two-qubit quantum gates
[32]. The particular structure of these controlled operations
increases the depth of its action throughout the components
of the quantum system [26]. Soklakov and Schack presented a
quantum algorithm [33] to prepare an arbitrary quantum register
based on the Grover’s search algorithm requiring resources that
are polynomial in the number of qubits and additional gate
operations.

As an example of state preparation, the Divide-and-Conquer
scheme [34] presents an algorithm for amplitude encoding in the
form of a superposition like

|x〉 � x0|0〉 ψ0

∣∣∣∣ 〉 +/ + xN−1|N − 1〉 ψN−1
∣∣∣∣ 〉, (2)

in which the qubits of the work and ancilla systems are
entangled. So, although the system is prepared in a
superposition state, the results after observation of ancilla
qubtis will be left the work system as a mixed density matrix,
what, in the case of algorithms for solving systems of linear or
differential equations, this could be a disadvantage.
Nevertheless, the algorithm is useful for machine learning
and statistical analysis, and other applications, such as data
sorting [34]. The algorithm structure presents the idea of
dividing a problem into subproblems of the same class. The
idea for creating the quantum superposition is to divide the
problem like the scheme presented in Figure 1. The algorithm is
based on the circuit model for quantum computing, which are
presented in detail in [34], and presents space and time costs
that scales as O(N) and O(log22(N)), respectively.

The circuit for implementation of the Divide-and-
Conquer algorithm for state preparation presents
polylogarithmic depth and has a simplified structure, with
the tasks divided into problems of the same class. It also
presents the advantage of being based on the circuit model of
computation, making its implementation simple as a
subroutine for the main algorithm just by including the
corresponding circuit in the state preparation step.
However, this polylogarithmic depth comes at the cost of
increasing the circuit width, as ancilla qubits are necessary to
carry on its implementation. Thus, one can observe a trade-
off between gate counts and number of qubits playing a
significant role for this scheme.

Another state preparation scheme usually mentioned in
quantum algorithms involves accessing a quantum database in
which the quantum states are prepared in advance and can be
quickly transferred to the working qubits. Below we describe this
scheme in more detail, paying special attention to its complexity.

FIGURE 1 | Schematic representation of the Divide-and-Conquer
algorithm for loading a four-dimensional vector x into a quantum state. The
task of preparing |x〉 is divided into subtasks and can be represented as the
logic tree shown above. Adapted from [34].
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2.1 Quantum Database and Quantum
Random Access Memory
Employing calls on RandomAccess Memory (RAM) devices is an
approach that aims to accomplish the task of preparation of
quantum states by querying a database that contains the
information of interest. For the purpose of querying a memory
device with relevant information about the input state, one must
be able to construct a database which consists in a set of state
vectors containing the information for quantum computation.
For instance, suppose a set ofm vectors S � {ψ1, ψ2, . . . , ψm}, each
of them containing k components. The quantum equivalent of
this database is the quantum associative memory representation
[35] given by the uniform superposition of each state vector [21].

|S〉 � 1��
m

√ ∑m
i�1

ψi

∣∣∣∣ 〉. (3)

The cost for the creation of |S〉 scales as O(mk) [21, 35].
Assuming that each |ψi〉 can be considered as a qubit system with
dimension k � N � 2n, this would require O(mN) steps, which
grows linearly (quadratically) with N in the best (worst) case.
Grover’s quantum search algorithm is often used as subroutine
for querying databases with complexity O( ��

m
√

log2(m)) steps,
while preparing and processing results of the query process would
take Ω(m log 2(N)) steps [6].

There are other architectures for the implementation of
quantum random access memory, such as the “Bucket
Brigade” (BB) [36] and the Flip-Flop qRAM [37], which make
use of different schemes to retrieve the content of a memory cell
coherently. The BB architecture, for instance, is composed of a
series of three-level quantum systems (qutrits), described by the
states |•〉, |← 〉 and |→ 〉, which are used to guide a bus signal to
the corresponding memory cell. A scheme to access a memory

cell addressed by a 3-bit string is shown in Figure 2. In this
architecture, each qubit in the address register is sequentially sent
into the subsequent levels of the binary tree. These qubits then
interact with the corresponding three-level system, whose initial
state |•〉 is changed to |← 〉 or |→ 〉, depending on the address
qubits. The three-level systems then act like a routing system
which is used to guide a bus signal to the addressed memory cell.
In this process, the state of the address qubits becomes entangled
with the position state of the bus. The content of the cell is then
transferred to the internal degrees of freedom of the bus signal by
means of CNOT operations, whose number corresponds to the
internal degrees of freedom that must be encoded. The signal is
then sent backwards towards the path, and its position state

FIGURE 2 | Schematic representation of the BB architecture for a eight states qRAM. To address the memory cells only 3 � log 2(8) are needed. The nodes of the
tree are composed by qutrits, which are initially in the wait state. The bit string determines the path to be followed by the bus signal, in which 0 means left path and 1 right
path. Depending on the bits of the given string, the states of the qutrits are left in |← 〉 or |→ 〉, and follows to the next level. Adapted from [38]. After returning by the same
path to the beggining of the tree, the states return to the wait states.

FIGURE 3 | Quantum circuit corresponding to one Flip-Flop iteration of
the FF-qRAM algorithm. The classically-controlled operations X are applied to
the states |ψ j〉, and the register |0〉R can include the probability amplitudes for
encoding. Note that the complete superposition creation requires the
complete circuit implementation. Adapted from [37].
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becomes uncorrelated with the address qubits. To complete the
process, a SWAP operation is done between the internal degrees
of freedom of the bus signal and the answer register. To
completely construct the BB architecture for qRAM, O(N)
qutrits would be necessary, although only O(log 2(N)) of those
are activated for routing during one memory call. It has been
shown that the BB architecture for quantum RAM accomplishes
the task of retrieving the content of a memory cell coherently with
O(log22(N)) [38] steps. The results can also be returned in a N-
dimensional superposition form, if the bit string for addressing is
given by a state of n qubits in superposition. The introduction of
qutrit systems also has the effect of increasing the width of the
circuit, as more quantum systems are introduced for its
implementation. The architecture also presents the
characteristic of not being suitable for quantum correction
algorithms, as for the implementation of these, all the qutrits
in the system would be activated, and this would make it
equivalent to the usual FANOUT RAM architecture [36, 37].
Possible physical implementations of the BB architecture can be
realized in quantum optical and solid state systems [36].

The Flip-Flop qRAM (FF-qRAM) [37] scheme has the
advantage of being based on the circuit model for quantum
computation, and thus can be implemented as a subroutine in
the state preparation step of a quantum algorithm to generate a
quantum database by just adding the circuit to the state
preparation step. The circuit for one Flip-Flop iteration is
shown in Figure 3. The operation executed by the complete
circuit has the effect [37].

FF − QRAM∑
j

ψj

∣∣∣∣∣ 〉|0〉R � ∑
l

d(l)∣∣∣∣ 〉 θ(l)
∣∣∣∣ 〉R, (4)

where |d(l)〉 encodes the string of the vector, and |θ(l)〉R �
cos(θ(l))|0〉R + sin(θ(l))|1〉R represents the information about the
amplitudes of encoding in superposition of the register qubit R. In
this scheme, the CNOT operations applied to the qubits in the basis
vectors |ψj〉 are classically controlled by the corresponding bits
d(l)i . The gate denoted in the circuit by θ(l) denotes a rotation on the
register qubit to associate the probability amplitude to the qubits in
the database. Note that the database qubits |ψj〉 can be in an
arbitrary basis state, and the circuit has the effect of applying the
controlled rotation θ(l) only if the database state |ψj〉 matches the
bit string d(l) � d(l)0 d(l)1 . . ., thus only associating the amplitude
with the corresponding bit string.

According to Ref. [37], the costs of space and time amounts to
O(log 2(N)) qubits and O(m log 2(N)) multi-qubit operations for

creating superpositions of basis states with specific probability
amplitudes on a quantum database such as represented by Eq. 1.
The information can also be read and updated through repeated
iterations of the Flip-Flop scheme. It has the advantage of not
depending on proper routing algorithms, as it happens with the
conventional and BB qRAM architectures [36], and is based on
the quantum circuit computation model, what makes possible the
application of quantum error-correction routines [37, 39–41].
The major disadvantage of the FF-qRAM architecture is the
requirement of multi-controlled qubit rotations, whose cost
can surpass the entire complexity of implementation for the
whole FF-qRAM circuit, as the decomposition of such an
operation can increase considerably the depth of the
corresponding quantum circuit (see Section 3), depending on
the architecture of the hardware in which it must be
implemented.

In Table 1, the space and time costs for the preparation
schemes are summarized. The BB based architecture for
qRAM presents polylogarithmic time costs, as well as the
Divide-and-Conquer algorithm, but needs O(N) qutrits
(represented in brackets), although only O(log 2(N)) of these
qutrits are activated during the process, and a proper routing
algorithm, together with the O(log 2(N)) address qubits for
routing the bus signals to the corresponding the memory cells.

3 GATE DECOMPOSITION COMPLEXITY
BOUNDS

Gate decomposition consists in the task of writing general
operators that act upon a n-qubit system in the form of
simpler gates that can be implemented in a quantum
computer. For this purpose, different approaches and
techniques have been developed, such as cosine-sine
decomposition (CSD) [42], QR decomposition [43],2 the
Khaneja-Glaser decomposition (KGD) [44] among other
methods with no less relevance.

In general, an arbitrary n-qubit gate U is represented by a N ×
N matrix, with N2 degrees of freedom, that can be written as a
product of O(N2) two-level unitary operations. To achieve such a
decomposition, one can make use of a set of universal gates for
computation, i.e., a set of one- and two-qubit operations from
which any arbitrary operator U can be decomposed. For instance,
it is known that the set of single-qubit and CNOT gates is
universal [1]. With respect to the complexity regarding the
implementation of U in terms of this universal set, the
theoretical lower bound amounts to ⌈14 (N2 − 3 log2(N) − 1)⌉
CNOT operations [30].

Different approaches of circuit designing for gate
decomposition are available in the literature. In particular,
using the QR approach, the decomposition of U results in a
quantum circuit with gate cost that amounts to O(N2log32(N))
elementary operations [32]. Ref. [45] shows a circuit build in

TABLE 1 | Resource Analysis of space and time for schemes of preparation (Free
Parameters, BB—Bucket Brigade, Divide and Conquer, FF—Flip-Flop). The
quantities in brackets represent the quantity of qutrits needed for the considered
architecture.

Preparation scheme Space costs Time costs

Free Parameter O(log 2(N)) O( ~N)
Divide and Conquer O(N) O(log22(N))
BB-qRAM O(log 2(N) + [N]) O(log22(N))
FF-qRAM O(log 2(N)) O(log 2(N))

2QR decomposition consists in decomposing an operator in a product of matrices,
Q and R, each of which have particular properties.
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which the CSD method is recursively applied together with
uniformly controlled operations, resulting in a cost of N2 − 2N
CNOTs and N2 elementary single-qubit operations for
implementing U. In [46], it is presented a circuit based on the
use of Gray Codes [47], whose complexity bounds matches
asymptotically the theoretical lower bound by reducing the
gate cost from O(N2 log 2(N)) to O(N2) by elimination of
superfluous control qubits from the corresponding quantum
circuit.

Although the lower bound of CNOT gates for implementing
an arbitrary U has an exponential cost in terms of the number of
qubits n, it is possible to reduce the depth of a CNOT based circuit
by the realization of a space-depth trade-off. This technique
consists in the use of additional ancilla qubits, thus increasing
the width of the quantum circuit, to parallelize the CNOT
operations that must be realized throughout the circuit to
implement the generic n-qubit gate U. The ideia was first
demonstrated in [48], where it is proved that making use of
O(n2) ancilla qubits, a n-qubit CNOT circuit can be parallelized to
O(log 2(n)) depth. It has been also already proved that each n-

qubit CNOT circuit can be synthesized with O( n2

log2(n)) CNOT

gates [49]. These results were recently improved [50], showing
that it is possible to reduce the number of ancilla qubits presented

in [49] by a factor of log22(n), resulting thatm � ( n2

log22(n)) auxiliary
qubits suffice to build O(log 2(n))-depth circuits, and also, to
reduce the depth presented in [49] by a factor of n, thus achieving

the asymptotically optimal bound of O( n
log2(n)). This

optimization in space-depth trade-off is summarized in the
following way [50]: For any integer m ≥ 0, any n-qubit CNOT

circuit can be parallelized to O(max log2(n),
n2

(n+m)log2(n+m){ }),
with m standing for the number of ancillas in the composed
system.

Thus, besides the exponential complexity of decomposing
arbitrary n-qubit unitary operators, the space-depth trade-off
presents an alternative in optimizing the circuit synthesis.
Nevertheless, it is worth to consider that this parallel approach
requires additional qubits to make the trade-off, having the
immediate effect of increasing the circuit width of a quantum
algorithm. It is also worth noting that different architectures for
quantum computing may present different sets of basic gates in
which the quantum operations must be decomposed, and also
other different important aspects, such as connectivity, making
the costs of decomposition and implementation of gates also
dependent on the architecture of the quantum computer.

4 COMPLEXITY OF QUANTUM STATE
TOMOGRAPHY

Quantum state tomography (QST) is a procedure that aims for
the complete reconstruction of an unknown density matrix ρ [1].
Often, for information encoded in amplitudes or phases of a
quantum state, after executing a quantum algorithm, one is
presented with a density matrix whose elements (ρij) codify
the algorithm’s output [51]. Information encoded in the

complex amplitudes of a quantum state is not directly
accessible through trivial means [1]. Thus, QST could
represent a fundamental step in the knowledge of obtaining
the full solution of a given problem. This consideration is
important for a proper comparison between quantum and
classical algorithms in which the quantum solution is a
superposition state while the classical solution is a vector
where all coefficients are known [52]. At the same time
quantum information can be stored in a Hilbert space whose
dimension increases exponentially according to the number of
qubits. To retrieve such information it is necessary to pay the
price for that, which also requires exponential steps.
Alternatively, some global properties of the solution could be
obtained by means of the expectation values of some observables,
i.e., Ok � Tr(Okρ) [51]. This later approach usually conducts to
quantum advantage in the processing time, however, it is not
straightforward to get from average values of observables the
desired quantities usually employed in practical applications of
quantum computing. In this way, the impact of the QST
complexity on the overall costs of quantum algorithms must
be carefully considered.

There are many quantum algorithms whose output state has
coherence in the computational basis. There are algorithms to
solve partial differential equations [53–59], linear differential
equations [12–14], nonlinear differential equations [60], linear
system of equations (also named quantum linear problem) [61,
62]. In these examples, QST may be required depending on the
level of detail expected to be known.

There is a variety of QST processes and schemes available to
accomplish the characterization task, such as Simple Quantum
State Tomography (SQST) [1], Ancilla Assisted Process
Tomography3 (AAPT) [63], QST via Linear Regression
Estimation [64], Compressed-Sensing QST [65], Principal
Component Analysis [66], efficient process tomography [67]
and permutationally invariant tomography schemes [68, 69],
each of these with particular complexity aspects, being suitable
for specific problems. Their different computational costs arise
from taking advantage of particular characteristics of ρ.

In general, QST is based on the decomposition of the density
matrix in a linear combination of basis operators. For a system of
n qubits, the reconstruction of a density matrix ρ in such space
requires 4n − 1 � N2 − 1 basis operators [1], which scales
polynomially in the dimension O(N2). These exponential
aspects of complexity are well known [70]. Besides the
number of basis operators needed for characterization, it is
important to remind that the reconstruction of ρ is based on
expectation values of those basis operators. For instance, in the
case of a single qubit, the set of 41 − 1 � 3 basis operators needed
for the proper quantum statistics could be based on the Pauli
matrices X, Y, and Z, such that

ρ � 1
2

Tr(ρ)I + Tr(ρX)X + Tr(ρY)Y + Tr(ρZ)Z[ ] , (5)

3Although Ref. [63] discusses quantum process tomography, a QST procedure is
needed in order to complete the protocol in SQPT and AAPT schemes, and an
insight about the complexity of quantum state tomography can be obtained.
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where I is the identity operator. This statistical approach requires
ensemble measurements of these observables, thus requiring a
large number of copies of ρ [1]. Besides these fundamental
concepts, it has been shown that by using machine learning
theory one could learn information about ρ by a number of
measurements that grow linearly with n [71]. Ref. [51] gives a
detailed description of the number of measurements and the
scaling of the physical resources of the system. There are also
models in which the QST problem is converted into a parameter
estimation problem such as linear regression [72], for which the
computational complexity scales as O(N4).

The overall costs of implementation 4 yielded from SQST is
O(N4 log 2(N)), and the same relation holds for AAPT using Joint
Separable Measurement (JSM) scheme. Both SQST and AAPT-
JSM require only single body interactions [51], while the
Mutually Unbiased Bases (MUB) and the generalized POVM
AAPT-schemes require many-body interactions. The costs for
MUB scale as O(N2log22(N))[O(N2log32(N))] under presence
of nonlocal [local] two-body interactions, and the POVM scheme
as O(N4) measurements on a single copy of the density matrix.
The particular aspects of complexity of these schemes of
tomography must take into account the required type of
interactions between qubits, as nonlocal interactions may be
not available in all architectures for quantum computation,
which would represent a difficulty for its implementations. It
is also worth noticing that AAPT-based schemes require the
presence of ancillary systems, which, in practice, have the effect of
increasing the system width. SQST has the ability of
characterizing the full density matrix of a quantum system,
including all probabilities and relative phases, but with a cost
exponentially large with respect to the number of qubits that
compose the system, making its implementation impractical to
characterize output states of circuits with large width of the work
system. The Quantum Principal Component Analysis (QPCA)
[73], widely applied in machine learning techniques, focuses on
reconstructing the eigenvectors of ρ corresponding to the largest
eigenvalues of the system in a particular region of the spaceH, in
time O(R log 2(N)). The full density matrix reconstruction can
also be realized with QPCA process, in a number of time steps
that amounts to O(RN log 2(N)) [73]. Compressed-Sensing, in
contrast, reconstructs the full density matrix of the system in
O(RNlog22(N)) time steps [74]. In particular, the basic idea of
Compressed-Sensing is that a low-rank density matrix can be
estimated with fewer copies of the state, as the sample
complexity depends on its rank R. Ref. [71] introduces the
matrix Dantzig selector and matrix Lasso estimators, with
sample complexity for obtaining an estimate accurate within
ε in trace distance scaling as O(R2N2

ϵ2 log2(N)) for rank-R
states, requiring measuring of O(RNpolylog(N)) Pauli
expectation values. Finally, in the case where the final
density matrix of the work qubits ends up in a state which
is permutationally invariant (PI), the tomographic method
presented in [68, 69] requires only O(log22(N)) operations. If

the density matrix is not perfectly invariant under qubit
permutation, the method still provides a satisfactory result at
least for those cases where the order of the qubits is not
relevant. The PI method is best suited for the tomography of
systems which present symmetric quantum states, like Dicke
states [72] or spin squeezed states [73].

In practice, all of the costs rising from measurement schemes
used for obtaining prior information about the systems under
consideration will increase the overall cost of its implementation
in quantum computing devices, which will be brought together in
section 5. The cost of tomography schemes are brought together
in Table 2.

4.1 Pure State Tomography
There exist certain procedures where one is not interested in the
full description of the resulting state ρ (e.g., some special cases of
the algorithm in [14]). Instead, let us assume that the output of
the algorithm is fully codified in the squares of the state’s
amplitudes, i.e., if |Ψ〉 � ∑N

m�1〈m|Ψ〉|m〉 is the output of the
algorithm, then all one needs to know is each |〈m|Ψ〉|2. More
generally, one may be interested in knowing the square of the
amplitudes associated to only a subspace ofH. An example of this
is considered in [74], where it is assumed that the output of the
algorithm can be written as

|Ψ〉 � 1
N |0〉 Ψ0| 〉 + |1〉 Ψ1| 〉( ) , (6)

where the first qubit is an auxiliary one, |Ψ0〉 � ∑N
m�1αm|m〉 is

the target state (written in terms of the computational basis of
the subsystem), |Ψ1〉 is an arbitrary state, and N is a
normalization constant that may depend on N. The
probability of success p corresponds to the probability of
the auxiliar qubit to be found in the state |0〉, which may be
computed as

p � 〈Ψ0|Ψ0〉
N 2 . (7)

Moreover, the probability of the system to be found in the state
|0〉|m〉 is pm � |αm|2/N 2, here assumed to be non-null for every

TABLE 2 | Resource Analysis for schemes of tomography of quantum states. The
schemes presented consists of Standard Quantum State Tomography
(SQST), Joint Separable Measurements (JSM), Mutual Unbiased Measurements
(MUB), Positive Operator Valued Measurements (POVM), Quantum Principal
Component Analysis (QPCA), Compressed-Sensing (CS) and the
Permutationally Invariant Quantum Tomography (PI) scheme. Note that QPCA
process can be used to reconstruct large eigenvalues of the Hilbert space, as
well as the full density matrix (QPCA Full).

Tomography scheme Overall process cost

SQST/JSM O(N4 log 2(N))
MUB O(N2log22(N))
POVM O(N4)
QPCA O(R log 2(N))
CS O(RNlog22(N))
QPCA (Full) O(RN log 2(N))
PI O(log22(N))

4The overall complexity is defined as in [51], given by the number of copies of ρ
times the number of gates per measurement.
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m. As explained in [51], each pm is possible to be estimated by
performing Mm independent measurements, each measurement
requiring one copy of |Ψ〉. After these trials, the probability pm is
estimated as �pm � nm/Mm, where nm is the number of
occurrences of |0〉|m〉. By statistical arguments, in Ref. [51] it
is shown that the number of trials necessary to estimate pm up to a
relative precision Δ with probability 1 − ε 5, denoted byMm(Δ, ε),
is bounded as

Mm ≥p−1
m C(n, ϵ) , (8)

where C(n, ϵ) ≡ 3
Δ2 log2(1/ϵ) does not depend on the system’s

size. Denoting now the square of the normalized amplitude by
β2m ≡ |αm|2〈Ψ0|Ψ0〉, then pm � |αm|2/N 2 � p β2m, and thus, from
Eq. 8, the behavior of Mm can be determined from the behavior
of p and β2m in terms of N. Finally, let’s assume that each |αm|

2

goes to 0 at the same rate as N grows, i.e., |αm|
2 � O(N−r) for r > 0

and all m. A particular case of the last occurs when the
discrete probability distribution {β2m} is fairly uniform, for
which r � 1. Therefore, since β2m � |αm|2/∑m|αm|2, one has that
β2m � 1/N and from Eq. 8 the number of copies of |Ψ〉 necessary
to determine each pm, that can be taken as M � max

m
Mm, is

such that

M≥O p−1 min
m

β2m( )−1( ) � O(p−1N) . (9)

We conclude that if p has a non-null minimum as a function of
N, then the computational complexity of the tomography of all
the pi is of order N. Otherwise, one needs to determine the
asymptotic behavior of the success probability p as N grows (e.g.
Ref. [14]).

5 OVERALL COMPLEXITY OF
IMPLEMENTATION

The overall complexity for implementation of a quantum
algorithm accounts for all tasks that must be executed. It must
take into account the total resource aspect, such as the number of
work and ancilla qubits, represented by the width of the circuit,
that could eventually include qRAM systems, as well as the usual
gate cost aspect, brought together with the number of
measurements. The last accounts for the number of copies
times the number of measurements per copy done upon the
final state in order to reconstruct its proper statistical averages
and features.

Space costs: As discussed in section 2, the preparation of a
generic superposition can be done by manipulating the work
system, by the application of quantum gates that correspond to
the transformations defined by the free parameters of the state.
This results in a space cost which corresponds to the dimension
of the work system alone. Assuming that such system has a
Hilbert space dimension corresponding to a n-qubit space, it
results in O(log 2(N)) qubits needed for its implementation. The

Divide-and-Conquer scheme requires a circuit width which
have a space cost of O(N) for implementation, but it is worth
noting that it makes use of ancilla qubits that are left entangled
with the work system. The discussed schemes for qRAM have
similar aspects of qubit resources, but the presence of routing
and O(N) qutrits (although this is not the number of activated
qutrits during a memory call) in the BB architecture makes it
less favorable for the implementation of gate-based algorithms
for computation.

Gate or time costs: For the analysis of the corresponding
overall gate complexity of an implementation, we need to
consider also the amount of identical copies of ρ needed for
its proper reconstruction, given a determined scheme for the task
[51]. The overall cost of these schemes will appear as a
multiplying factor in the full time cost analysis, since all the
operations in the implementation of the quantum algorithm,
from preparation to readout, should be done this corresponding
number of times.

Preparation: The overall time cost of the preparation step
depends on whether it is implemented by operating directly
on the work system based on the free parameters of the state,
or by queries made upon a previously prepared quantum
RAM device 6. With preparation based on the free
parameters, the amount of quantum operations has the
upper bound of O(N) for preparing a N-dimensional
quantum superposition. The Divide-and-Conquer quantum
algorithm can create an entangled superposition between
ancilla and work systems, with a O(log22(N)) circuit depth.
The Bucket-Brigade qRAM architecture [36] also presents
O(log22(N)) time steps, as discussed in section 2. The
preparation implemented via FF-qRAM scheme is fully
based on the quantum circuit computation model, without
any routing algorithm to address the memory cells that must
be queried throughout the transformation represented by Eq.
1. The number of gate operations in the FF-qRAM sums up to
O(log 2(N)) [37].

Evolution: We define the expression evolution to denote the
process in which the previously prepared work system is evolved
to its last configuration, which could represent, for instance, the
solution of a system of linear equations [11], a system of coupled
differential equations [14], among other examples of possible
applications for quantum computation. The quantum algorithm
is composed by a sequence of defined steps and operations,
which transforms the initial state under linear operations, that
can be controlled by ancilla qubits that compose the full system
under consideration. The evolution process will be denoted here
as a linear map, represented by ε, as in Ref. [49]. The gate and
resource costs of a given algorithm depend on the tasks that may
be executed through its implementation, so different quantum
algorithms have distinct space and time costs. To represent
generically the time cost of the processing step of the algorithm,
we will define a function C(ε), of which one excludes the steps of
preparation and measurement of the quantum states.

5This exactly means that |�pm − pm|/|pm|≤Δ with probability 1 − ε.

6The complexity of preparing a quantum RAM device is beyond the scope of the
present work.
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Readout: The readout aspect must bring the analysis of the
number of gates per measurement necessary to characterize a N-
dimensional quantum system. For both SQTP and AAPT-JSM,
O(log 2(N)) single qubit operations must be implemented in order
to reconstruct the density matrix. For AAPT-MUB based
schemes, one needs O(log22(N)) [O(log32(N))] single- and
two-qubit gates, given that nonlocal [local] correlations occur
in the system. The POVM scheme gate cost scales as O(N4) [49]
operations per measurement. There are, also, particular methods
of reconstruction for ρ, such as QPCA [67] and Compressed-
sensing, which are capable of reconstructing the density matrix
with a number of gates up to O(R log 2(N)) and O(RNlog22(N))
respectively, where R stands for the rank of the density matrix
under reconstruction [65]. For systems which are
permutationally invariant, the PI tomography scheme presents
a measerement cost which scales quadratically with the number
of qubits of the composed system [66, 67]. The PI method also
presents approximate results of the density matrix being
measured when the system is not invariant under
permutations. For the application of those techniques, some
knowledge of ρ must be needed, such as the existence of larger
eigenvalues in some regions of the composed Hilbert space [67]
and sparsity of ρ. Since we assume that no prior information
about ρ is known, we shall not discuss these in the overall
complexity analysis.

Overall Complexity: The overall gate cost for implementation
of a quantum algorithmwill now be classified according to each of
the techniques discussed in the previous sections, including
preparation and measurement schemes. The first multiplicative
factors in each of the bounds presented stands for the number of
experimental samples needed for each measurement scheme,
which will be O(N4 log 2(N)) for both SQTP and JSM,
O(N2log22(N))[log32(N)] for MUB, and O(1) for POVM. We
will not bring to this particular analysis the QPCA and
Compressed-Sensing methods, since we suppose no further
information (like the rank R) of the density matrix is known.
For each of the considered preparation methods, the free
parameter has the upper bound of O(N) operations, while
both of the divide-and-conquer algorithm and the BB-qRAM

architecture present the same upper bound of O(log22(N))
quantum operations for preparing a state in a generic
superposition. Using FF-qRAM, this bound is improved to
O(log 2(N)) operations. The evolution cost is generically
represented by the function C(ε). These information are
brought all together in Table 3. We also present the possible
choices of state preparation and measurement schemes suitable
for tasks often approached by circuit-based quantum algorithms
in Table 4.

6 CONCLUSION

We have presented a theoretic overview of the total complexity
for the implementation of circuit-based quantum algorithms,
involving the codification of the system parameters in the
initial state of the work/register qubits, the evolution step
towards the final state encoding the solution of the problem
and the readout of this solution. A comparison between several
schemes of preparation of input states as well as of tomography of
final states was provided.

It is important to notice that algorithms that depend on the
preparation of input states as superpositions of the basis states have at
least O( ~N) gate operations based on the number of free parameters,
~N, defined by the initial state of the work qubits. Once a FF-qRAM
device is available, this complexity can be reduced to O(log2( ~N)),
which means to be linear in the number of qubits.

The evolution step can be represented by a linear map ε of the
initial state to the final state. Its time cost,C(ε), is strongly dependent
on the quantum algorithm, and usually shows an exponential
speedup compared to the classical algorithm solving the same
problem. The origin of such speedup comes from the nature of
the Hilbert space, i.e., the ability of a given number of qubits to
encode an exponential number of states. Concerning the readout of
the solution encoded in the final state, we have done a generic
analysis assuming a fairly uniform probability distribution over the
basis states of the Hilbert space. In this case, if the desired result is
encoded in a single amplitude of a given basis state, the number of
required ensemble copies will scale asO(N) in the best scenario. This
means a cost that is at least exponential in number of qubits. It is also
important to mention that expectation values of observables which

TABLE 3 |Gate Complexity Analysis for various schemes of preparation (FP - Free
Parameters, DC—Divide-and-Conquer, BB—Bucket Brigade, FF—Flip-Flop)
and readout—Measurement procedures. The quantities in brackets are only taken
into account if the system shows local interaction between qubits, in the case of
the MUB sheme only. C(ε) stands only for the time cost of the evolution stage
of the quantum algorithm, represented via the linear map ε.

Overall gate complexity

Meas.Prep FP DC/BB-qRAM FF-qRAM

SQTP/JSM O(N4 log2(N)(N O(N4 log2(N) O(N4 log2(N)
+C(ε))) (log22(N) + C(ε))) log2(N) + C(ε))

MUB O(N2log22(N) O(N2log22(N) O(N2log22(N)
[log32(N)](N+ [log32(N)](log22(N) [log32(N)]
C(ε))) +C(ε))) (log 2(N)

+C(ε)))
POVM O(N + C(ε) O(log22(N) + C(ε) O(log2(N)+

+N4) +N4) C(ε) + N4)

TABLE 4 | Quantum algorithms and possible choices for input state preparation
and tomography schemes.

Algorithm State preparation Tomography scheme

Quantum Simulation/ Free-parameter QPCA/
Systems with sparse/ gate-based Compressed-
specially bounded preparation Sensing
conditions
Machine Learning Divide-and- QPCA
Techniques Conquer algorithm
Systems of linear/ BB-qRAM SQTP/JSM
differential equations FF-qRAM POVM
with non-sparse initial QPCA (Full)
conditions Compressed-Sensing
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represent global features of the solution can be realized as a method
to avoid the full tomography of the system [11]. Combining this fact
with the classical shadows technique [75] for measurements, it is
possible to diminish even more the overall quantum algorithmic
complexity.

Therefore, for algorithms depending upon the preparation
of a superposition state, for which the solution is encoded
in the final superposition state of the work qubits, the
overall complexity to obtain the solution will be at least
O(N log 2(N)C(ε)), which can be significantly higher than
C(ε). We point out that this complexity overview also
depends on the architecture of the quantum hardware in which
the algorithm should be implemented, and the availability of basic
quantum gates for proper decomposition of all operations needed in
the process of implementation.
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