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In this paper, we investigate the reconstruction of networks based on priori structure
information by the Element Elimination Method (EEM). We firstly generate four types of
synthetic networks as small-world networks, random networks, regular networks and
Apollonian networks. Then, we randomly delete a fraction of links in the original networks.
Finally, we employ EEM, the resource allocation (RA) and the structural perturbation
method (SPM) to reconstruct four types of synthetic networks with 90% priori structure
information. The experimental results show that, comparing with RA and SPM, EEM has
higher indices of reconstruction accuracy on four types of synthetic networks. We also
compare the reconstruction performance of EEM with RA and SPM on four empirical
networks. Higher reconstruction accuracy, measured by local indices of success rates,
could be achieved by EEM, which are improved by 64.11 and 47.81%, respectively.

Keywords: network reconstruction, element elimination method, priori structure information, time-series
information, evolutionary game

1 INTRODUCTION

Reconstructing a network based on priori structure information has attracted lots of attention for the
network science [1]. Prior information about the connectivity patterns or potential interactions of the
networks are accessible via public database [2, 3], high-throughput experiments [4], or data mining
of interaction knowledge [5–7]. A wide diversity of methods based on priori structure information
have been developed for the problem of network reconstruction [1, 8, 9]. Among various models, a
few reconstruction models would provide a reliable estimate of a network’s structure with priori
structure information. Link prediction is a typical method which uses accessible structure to estimate
the likelihood of existence of unobserved links or identifies spurious links in a network [10, 11]. The
unknown structure of a network is then reconstructed by link prediction. A few link prediction
models are validated in both synthetic networks and empirical networks, which are local similarity
indices [12–14], maximum likelihoodmethods [11, 15] andmethods based on predictability [16, 17].

The other method uses accessible structure information to reconstruct a class of networks with
evolutionary games [18, 19]. Such model, known as compressive sensing reconstruction model
(CSR), is initially proposed to solve the problems of global network reconstruction [20–22]. The CSR
method provides theoretical framework to dealing with networks purely from measured time-series
information. To reconstruct a network with N nodes, the CSR method reconstructs the adjacent
matrix column by column and each column is a vector withN elements [23, 24]. Contrary to the CSR
method, the adjacent matrix is reconstructed by the Element Elimination Method (EEM) in a similar
fashion, but the number of elements in different column might be Ni(Ni ≤ N, i � 1, 2, . . . , N) because
EEM initially eliminates coupling nodes based on priori structure information. Exploiting the natural
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sparsity of the vectors, the pioneering work has applied EEM to
achieve a successful reconstruction in scale-free networks with a
small fraction of hubs [25]. However, in many cases, examples of
real-world networks are not characterized by scale-free [26],
i.e., the collaboration network of film actors [27, 28], the
neural network of the worm Caenorhabditis elegans [26], the
power grid of the western United States [29, 30], and drug
trafficking network [31], et al. In addition, unique structure
could be observed in world airline networks [32, 33] and
Apollonian networks [34–36], which are characterized by
scale-free and also satisfies basic features of small-world. EEM
for reconstructing networks characterized by other features has
not been fully explored. We are interested in, to achieve a
successful reconstruction, the detailed amount of time-series
information required for EEM in spite of the priori structure
information. This motivates us to investigate the application of
EEM to other networks characterized by different features.

In this paper, we investigate the reconstruction of general
networks, which are characterized by four types of synthetic
networks as small-world networks, random networks, regular
networks and Apollonian networks. Typically, the reconstruction
accuracy of EEM is evaluated on four types of networks. We will
show the performance of EEM, characterized by low information
requirements and high reconstruction accuracy. Experiments on
four synthetic networks demonstrate that comparing with the
resource allocation (RA) [12] and the structural perturbation
method (SPM) [16], EEM can effectively enhance the
reconstruction accuracy. Further, three local indices of success
rates demonstrate that the reconstruction accuracy obtained by
EEM when reconstructing three separately local structure in a
network is close. In addition, experiments on four empirical
networks demonstrate that EEM outperforms RA and SPM.
Compared with RA and SPM, EEM has higher reconstruction
accuracy, measured by local indices of success rates, which are
improved by 64.11 and 47.81%, respectively.

2 METHODS AND MODELS

2.1 The Procedure of the Network
Reconstruction
Uncovering a network’s structure has many potential applications
so that we can assess the system’s resilience [37–39], understand
the dynamical mechanisms [40], identify significant nodes in a
network [41, 42], detect community structure [43], locate diffusion
sources Hu et al. [44, 45], and analyze the networks’ properties
[46–48]. In this paper, an Element EliminationMethod (EEM) [25]
is employed to reconstruct the structure of networks. We then give
the illustration of the procedures of employing EEM to reconstruct
synthetic networks: 1) Generate synthetic networks. 2) Extract
time-series information from observed data. 3) Reconstruct the
networks with EEM. Noting that the adjacent relationships
between nodes in the network are sparse and would not change
over time, we could explore the casual relationships between nodes’
time-series information. Consequently, we could uncover the
unknown link set EP of the networks by EEM based on priori
link set ET.

As illustrated in Figure 1, a procedure of network
reconstruction is presented. Supposing the relationships
between node 2 and other 5 nodes should be reconstructed,
and only one adjacent relationship (a blue line in Figure 1A) is
known. However, we are confused about which one is the original
network from vastly different networks with possible connective
relationships. Simultaneously, the network is evolving over the
time, and a few time-series information of nodes’ strategies and
payoffs could be obtained. We then build a model to bridge node
2’s strategies and its payoffs, as Figure 1B illustrated.
Consequently, we can use EEM to reconstruct the network’s
structure and obtain the adjacent relationships as shown in
Figure 1C.

2.2 Generation of Synthetic Network
In order to evaluate the reconstruction performance of EEM in
small-world networks and networks characterized by other
features, we generate four types of synthetic networks. Noting
that small-world network is a model of network that can be tuned
between random network and regular network [26], we also
consider the networks when their connection topology is
assumed to be completely regular or completely random.
Besides, the performance on the Apollonian networks by EEM
has seldom been evaluated. Then, we generate four types of
synthetic networks which are small-world networks, random
networks, regular networks and Apollonian networks. The
precedent findings indicate that the assortative coefficient has
a direct influence on the accuracy of network reconstruction [49].
Therefore, some statistical properties have to be tuned when the
networks are generated.

Supposing a network is composed of N nodes and |E| links. To
minimize the influence from different network structure, we fix a
default mean assortative coefficient 〈r〉 for three types of
synthetic networks, excluding Apollonian networks. Given
wiring rules between nodes, we could generate vastly different
networks with the given number of nodes N. Initially, the
generated synthetic networks should have sufficient links that
the total number of links of the network should exceed the
number of links |E|. Then we randomly delete some of the
links so that the number of the residual links is equal to |E|.
In this way, the generated synthetic networks would haveN nodes
and |E| links. We select one network from the synthetic network
set whose mean assortative coefficient is close to the value of
default 〈r〉 (the absolute error is less than 10–3). The other types
of synthetic networks are generated by another wiring rules in a
similar way. Actually, synthetic networks generated whose
statistical properties are close to default value are limited. On
the other hand, the generation procedure of the regular network
and the Apollonian network results in merely one realization of
the synthetic networks. In this paper, each synthetic network has
performed only one realization for the experiments.

Due to privacy or confidentiality issues, the complete structure
of a network is not accessible. In addition, it is an impossible
mission for us to record nodes’ complete time-series information.
In spite of the difficulties, some priori information about the
adjacent relationships between a few nodes, and discrete records
of nodes’ time-series information might be available. Despite the
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limited information, the connective relationships between nodes
has a direct effect on the individual node, which contributes to
node’s attitude or selection in the next time. The dependence
from the network’s structure on nodes’ interactions provide
information for us to utilize the time-series information of
nodes to describe the adjacent relationships behind them [24, 50].

2.3 The Model of the Evolutionary Game
The main challenge lies in that the structure of the network is
inaccessible, also in that merely limited nodes’ time-series
information is available. Since the time-series information is
closely related to the connective relationships between nodes,
we can reconstruct the unknown structure from the limited time-
series information.

We use an evolutionary game model, the Prisoner Dilemma
Game (PDG) model, to describe the nodes’ dynamics [51–53]. In
each round of the game, the nodes usually weigh the benefits
against the risks and selects a strategy. Here, we use SYi(t) to
define the strategy of node i. We denote vector SYi(t) � (1,0)T to
represent a cooperation strategy, while we denote SYi(t) � (0,1)T

to represent a defection strategy. Here, T stands for ‘transpose’.
When node i and node j trigger a game, the payoff of node i is

dependent on both two nodes’ strategies and a uniform payoff
matrix P, which is defined as:

P � 1 0
b 0

( ) (1)

where b (1 < b < 2) is a parameter characterizing the volume of
payoff when node i select a defection strategy. In the t round,
node i would play with all its different neighbors with the same
strategy. When node i encounters a neighbor j, node i would gain
payoff from node j as:

Fij(t) � SYT
i (t) · P · SYj(t). (2)

In the same round, node i’s total payoffs Gi would be
calculated, and it is the sum of the payoffs from all node i’s
neighbors.

In a new round, node i would attempt to maximize its payoffs
by updating its strategy. According to Fermi rule [54], node i
randomly select a node j from its neighbors after t round. In t + 1
round, node i would then adopt node j’s strategy with the
probability

W(SYi(t + 1)←SYj(t)) � 1
1 + exp[(TGi(t) − TGj(t))/κ], (3)

where TGi(t) is node i’s cumulative payoffs from 1 to t round.
TGj(t) is similarly defined. Parameter κ characterizes node’s
rationality when it update strategies. Parameter κ � 0
corresponds to rational selection behavior of nodes.

Since game occurs among connected nodes, the information of
the adjacent relationships between nodes are hidden in their
dynamical records of strategies or payoffs in the game. Then we
can utilize the information to uncover a networks’ structure when
we collect the time-series information about the strategies and
payoffs of nodes. When we reconstruct a certain network, the
limited time-series information is usually presented in a random
sample of sufficient time-series information.

2.4 Element Elimination Method
Given limited time-series information of nodes, an EEM could be
applied to reconstruct a network based on priori structure
information. EEM is a variant of the CSR method, which utilizes
priori structure information to exclude the priori connective
relationships before reconstruction. Suppose that the relationships
between nodes in a certain network can be represented by an
adjacency matrix A with dimensions N × N, where N is the
number of nodes in the network. EEM decomposes the process of
reconstructing the entire network into many subnetwork recovery

FIGURE 1 | (Color Online) An illustration of reconstructing the hidden structure of a node based on priori structure information. (A)Original adjacent relationships of
a node. For a node 2 in red with two neighbors, node 3 and node 6 in purple, we can observe a priori relationship, represented with a blue line, between node 2 and node
3. (B) EEM. We establish vector G2 and matrix Φ2 in the reconstruction form G2 � Φ2 ·A2 from time-series information, where vector A2 captures the adjacent
relationships between node 2 and the other nodes. After subtracting time-series information determined by node 2 and priori neighbor, node 3, on the both sides of
the equation, the unknown connections of node 2 can be reconstructed by optimizing the solution of the following equationG2′ � Φ2′ · A2′ using EEM. (C) A reconstructed
adjacent matrix. The unknown neighbors of node 2 could be uncovered by EEM. The adjacent matrix is presented, in which golden blocks represent reconstructed link.
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problems, and the network structure, namely, the adjacencymatrixA,
is reconstructed column by column [55,56]. An adjacency vectorAi of
a node is used to describe the adjacent relationships between node i
(i � 1, 2, . . . , N) and the other N − 1 nodes in the network, which
contains no loop. The adjacency vector Ai �
(ai1, ai2, . . . , ai,i−1, ai,i+1, . . . , ai,N)T with element aij � 1 when
node i and node j are connected, and aij � 0 otherwise. Suppose
that Ni (Ni ≤ N − 1) nodes in the adjacency vector Ai have
undetermined relationships with node i. EEM is employed to find
out node i’s (i � 1, 2, . . . ,N) direct neighbors fromNi possible nodes,
namely a shorter adjacency vector Ai � (ai1′ , ai2′ , . . . , ai,Ni

′ )T of node i
(i � 1, 2, . . . , N).

The training set ET sheds light on the priori neighbor set ΓKi of
node i, which contains (N − Ni − 1) nodes. Then we could calculate
the sum of payoffsGΓKi

′ of node i obtained from the priori neighbors in
neighbor set ΓKi according to Eq. 2. Subtracting payoffs GΓKi

′ from Gi,
we obtain payoffs Gi′ of node i. The payoffs Gi′ implies the hidden
adjacent relationships between node i and Ni other nodes because
node i gains payoffs merely from its neighbors.

Most real-world networks are characterized by natural sparsity and
the adjacency vectorAi of node i is sparse, which refers to vectorAi has
only a few nonzero elements (i.e. aij � 1). Noting that the value of each
element in node i’s priori adjacency vector AΓKi

is 1, vector Ai′ would
still be sparse because the number of zero elements has not been
changed but the number of nonzero elements has decreased when we
remove the priori adjacency vectorAΓKi

from vectorAi. The sparsity of
Ai′ makes EEM applicable. Initially, the nodes’ strategies and payoffs
are recorded in discrete round t1, t2, . . . , tM. Since new payoffs are
obtained from the game between node i andNi nodes, we can build a
model as Eq. 4. The sparse vector Ai′ then can be reconstructed by
solving the following convex optimization problem [57, 58]:

min‖Ai′‖1
s. t. Gi′ � Φi′ · Ai′ ,

(4)

where ‖Ai′‖1 � ∑Ni
j�1|aij′ | is the L1 norm of vector Ai′ . The available

dynamical payoffs of node i can be expressed by
Gi′ � (Gi′(t1),Gi′(t2), . . . ,Gi′(tM))T . The payoffs of node i
obtained from the corresponding nodes in limited rounds can
be expressed by an M × Ni sensing matrix Φi′ (M ≪ Ni). In
particular, we write Φi′ �

Fi1(t1) Fi,2(t1) . . . Fi,Ni(t1)
Fi1(t2) Fi,2(t2) . . . Fi,Ni(t2)

« « . . . «
Fi1(tM) Fi,2(tM) . . . Fi,Ni(tM)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

The elements in matrix Φi′ could be calculated using the formula
shown in Eq. 2. According to Eq. 4, we could obtain adjacency vector
Ai′ � (ai1′ , ai2′ , . . . , aNi

′ )T by solving the convex optimization problem.
We could obtain the complete adjacency vector Ai �
(ai1, ai2, . . . , aiN )

T by combining the reconstructed vector Ai′ and
the priori neighbor set AΓKi

of node i. In a similar fashion, the
neighbor-connection vectors of all the other nodes can be obtained,
yielding the network’s adjacency matrix A � (A1, A2, . . . , AN).

3 EXPERIMENTAL RESULTS

3.1 Datasets
In order to understanding the performance of EEM in
reconstructing the synthetic networks, the experiments are
conducted in four types of networks. The basic statistical
properties of the synthetic networks are presented in Table 1.
N and |E| are the number of nodes and links. 〈k〉 is the mean
degree, 〈r〉 is the mean assortative coefficient, 〈C〉 is the mean
clustering coefficient, and 〈D〉 is the mean shortest distance.
Here, we use abbreviation WS, RM, RG and AP to represent
small-world networks, random networks, regular networks and
Apollonian networks, respectively.

We assume that the strategies and payoffs of each node in a certain
round t is one piece of time-series information. In the experiments, we
use M pieces of accessible time-series information obtained from
discrete round t1 to round tM to reconstruct different networks. In this
paper, we set N, namely the number of nodes in the network, as the
maximum value of M. Then we use an index of information
sufficiency η(η ≡ M/N) to represent the size of the time-series
information used in the network reconstruction. Intuitively, the
time-series information is sufficient when the pieces of the
accessible time-series information M � N, while the time-series
information is insufficient when 0 < M < N. Correspondingly, the
accessible time-series information is sufficient when the index of
information sufficiency η � 1 and the accessible time-series
information is insufficient when 0 < η < 1. The reconstruction
models are also applied to reconstruct networks with different
priori information of the structure, measured by a probability Ps(0
≤ Ps ≤ 1).

In addition, the performance of EEM is also evaluated in
reconstructing the empirical networks. Table 2 shows the basic
statistical properties of all four networks. These networks are
chosen because they are characterized by large clustering
coefficient and short distance.

3.2 Metrics
To test the EEM’s accuracy, the original existent link set, E, are
randomly divided into two parts: the priori set ET, and the probe

TABLE 1 | The statistical properties of four synthetic networks.

Networks N |E| 〈k〉 〈r〉 〈C〉 〈D〉

WS network 120 480 8 −0.05 0.50 3.38
RM network 120 480 8 −0.05 0.10 2.53
RG network 120 480 8 NAN 0.64 7.94
AP network 124 366 5.90 −0.27 0.81 2.57
WS network 250 1,000 8 −0.05 0.50 4.07
RM network 250 1,000 8 −0.05 0.10 Inf
RG network 250 1,000 8 NAN 0.64 16.06
AP network 367 1,095 5.97 −0.21 0.82 2.96

TABLE 2 | The statistical properties of four empirical networks.

Networks N |E| 〈k〉 〈r〉 〈C〉 〈D〉

FWMW [59] 97 1,446 29.81144 −0.1506 0.4683 1.6929
FWFW [59] 128 2075 32.4219 −0.1117 0.3346 1.7763
Jazz musicians [60] 198 2,742 27.6970 0.0202 0.6175 2.2530
C. elegans [26] 297 2,148 14.4646 −0.1632 0.2924 2.4553
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set EP. Clearly, E � ET ∪ EP and ET ∩ EP � ∅. In this paper, the
priori set always contains Ps of links, and the remaining 1 − Ps of
links constitute the probe set. We apply four standard indices to
quantify the reconstruction accuracy: the success rates of existent
links SR, the success rates of nonexistent links SN [24], precision
PRE [61, 62] and the area under the receiver operating
characteristic curve AUC [63] are applied. In addition, we
apply local indices of success rates in the experiments.

Both the success rates of existent links SR and the success rates
of nonexistent links SN estimate the similarity of the
reconstructed networks and the original networks. The success
rates of existent links SR denotes the ratio of the number of links
reconstructed by the reconstruction models to the number of real
existent links in the network. The success rates of nonexistent
links SN denotes the ratio of the number of nonexistent links
distinguished by the reconstruction models to the number of real
nonexistent links in the network. We obtain

SR � 1
N

∑N
i�1

|Γio ∩ Γir|
|Γio| (5)

SN � 1
N ∑N

i�1 |�Γio∩ �Γir|
|�Γio| (6)

where Γio and Γir denote real neighbor set of node i and neighbor
set of node i reconstructed by the reconstruction models,
respectively. |·| denotes the number of elements in a set ·. Γio

̄

and Γir
̄

are the supplementary set of set Γio and Γir. Each node in
set Γio

̄
is not adjacent to node i. Correspondingly, each node in

reconstructed set Γir
̄

is not adjacent to node i. A successful
reconstruction is achieved when the success rates of existent links
SR (0 ≤ SR ≤ 1) and the success rates of nonexistent links SN(0 ≤
SN ≤ 1) are close to the value of 1.

Precision PRE is defined as the ratio of existent links
reconstructed by models to the number of the whole unknown
existent links. In our case, to calculate precision we need to rank
all the unknown links in decreasing order according to existent
possibilities computed by reconstruction models. Then we focus
on the top-L (here L � |EP|) links. If there are H links successfully
reconstructed, then

PRE � H
L

(7)

The area under the receiver operating characteristic curve
AUC evaluates the reconstruction models’ performance
according to the whole unknown link list. Provided the
existent possibility of all unknown links, AUC can be
interpreted as the probability that a randomly chosen
unknown existent link is given a higher existent possibility
than a randomly chosen nonexistent link. In the
implementation, the value of AUC is calculated with a
function perfcurve by Matlab.

Clearly, a higher value of the success rates of existent links SR,
the success rates of nonexistent links SN, precision PRE or the
area under the receiver operating characteristic curve AUCmeans
a higher reconstruction accuracy. We conduct 50 times
independent simulation for averaging the indices of
reconstruction accuracy as the mean success rates of existent

links 〈SR〉, the mean success rates of nonexistent links 〈SN〉, the
mean precision 〈PRE〉 and the mean area under the receiver
operating characteristic curve 〈AUC〉.

To understand the reconstruction performance of EEMwhen
reconstructing local structure of the network divide the
structure of each type of network into separately local
structure. Supposing that the roles of nodes in the network
are leaders, brokers and peripheral executors. We denote leaders
are nodes with small degrees and the number of leaders in each
type of network is 6. In addition, the subnetwork composed of
leaders is a connected subgraph. Then brokers are nodes
which are connected with leaders, and the residual nodes are
peripheral executors. The sets of leaders, brokers and peripheral
executors are not overlapped. We use letters L, B and P to
represent the adjacent relationships between leaders, the
adjacent relationships between leaders and brokers, and the
adjacent relationships among peripheral executors and brokers,
respectively. Then, we could obtain the success rates of existent
links of each local structure normalized by the number of real
existent links |Γio| of the network.

SRLr � 1
N

∑N
i�1

|ΓLio∩ΓLir|
|Γio| (8)

SRBr � 1
N

∑N
i�1

|ΓBio∩ΓBir|
|Γio| (9)

SRPr � 1
N

∑N
i�1

|ΓPio∩ΓPir|
|Γio| (10)

The sum of three local success rates of existent links is equal
the global success rates of existent links.

SR � SRLr + SRBr + SRPr (11)

Correspondingly, the maximum of three local success rates of
existent links would be

SRLo � 1
N

∑N
i�1

|ΓLio|
|Γio| (12)

SRBo � 1
N

∑N
i�1

|ΓBio|
|Γio| (13)

SRPo � 1
N

∑N
i�1

|ΓPio|
|Γio| (14)

when the original network is successfully reconstructed. To
quantify the success rates of three different local structure, we
define local indices of success rates as follows:

APPSRL � SRLr

SRLo
(15)

APPSRB � SRBr

SRBo
(16)

APPSRP � SRPr

SRPo
(17)

Similarly, a higher value of local index of success rates APPSRL,
APPSRB, or APPSRP means a higher reconstruction accuracy. We
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conduct 50 times independent simulation for averaging the
indices of success rates 〈APPSRL〉, 〈APPSRB〉 and 〈APPSRP〉.

3.3 Experimental Results on Synthetic and
Empirical Networks
In order to understand the performance of EEM, four types of
synthetic networks hosting a PDG dynamical process are
considered in our paper. Figure 2A depicts the index of
reconstruction accuracy for a synthetic small-world network,
measured by the mean success rates of existent links 〈SR〉,
based on 90% priori structure information. The mean success
rates of existent links 〈SR〉 increases monotonously when the
index of information sufficiency η is varying from 0.1 to 0.4.
Especially the mean reconstruction accuracy 〈SR〉 reaches the
maximum value of 1 when the index of information sufficiency η
� 0.4. The increment rate of the mean reconstruction accuracy
〈SR〉 is 9.97%. Then the mean reconstruction accuracy 〈SR〉
keeps the value of 1 when the index of information sufficiency η is
larger than 0.4. As shown in Figures 2B–H, the mean
reconstruction accuracy 〈SR〉 increases monotonously when
the index of information sufficiency η is less than 0.4. In
addition, the mean reconstruction accuracy 〈SR〉 reaches 1 for
the different types of synthetic networks when the index of
information sufficiency η exceeds 0.4.

Moreover, we compare the experimental results between EEM
and two link prediction models which are the resource allocation
(RA) and the structural perturbation method (SPM). Figures
2A–H show that when the index of information sufficiency η is
low (i.e., η � 0.1), the mean success rates of existent links 〈SR〉

obtained by EEM on small-world networks, random networks,
regular networks and Apollonian networks reaches 0.9093,
0.9085, 0.9021, 0.9361, 0.9823, 0.9897, 0.9402 and 0.9982,
respectively. Compared with RA and SPM, EEM’s mean
success rates of existent links 〈SR〉 are higher, which is
improved by at least 8.07 and 12.22% on the networks with
120–124 nodes, respectively. Compared with RA and SPM,
EEM’s mean success rates of existent links 〈SR〉 are higher,
which is improved by at least 17.53 and 22.81% on the
networks with 250–367 nodes, respectively. The experimental
results of Figure 2 indicate that EEM has a well tradeoff that
provides high quality reconstruction accuracy while requiring less
time-series information.

Intuitively, a network’s structure would be accurately
reconstructed when more priori information about the
structure of the network are presented. Figure 3 shows the
dependence of the values of 〈SR〉 on probability Ps, the priori
information of the structure, where we see that, in the cases of
lower index of information sufficiency η (η ≤ 0.4), 〈SR〉 increases
monotonously when the probability Ps increases. On the other
hand, the mean success rates of existent links 〈SR〉 approaches
the maximum value of 1 when the index of information
sufficiency η is larger than 0.4. In terms of the probability Ps,
the highest performance is achieved for the highest Ps. The
intuitive reason for the relatively superior performance with
the four synthetic networks lies in the sufficiency of the
available information of the networks’ structure.

In the following, we verify the performance of EEM in local
structure of the networks. We divide the structure of each type of
network into three separately local structure with subscript L, B, P

FIGURE 2 | (Color Online) The mean success rates of existent links 〈SR〉 of reconstructing four types of networks: (A) small-world network with 120 nodes, (B)
random network with 120 nodes, (C) regular network with 120 nodes, (D) Apollonian network with 124 nodes, (E) small-world network with 250 nodes, (F) random
network with 250 nodes, (G) regular network with 250 nodes, (H) Apollonian network with 367 nodes, hosting a PDG dynamical process. The lines with circle, triangle
and inverted triangle symbols are the mean success rates of existent links 〈SR〉 obtained by RA, SPM and EEM based on 90% priori structure information. The
mean reconstruction accuracy indices are achieved by averaging over 50 independent experimental results. For each experiment, measurements are randomly picked
from a time series of temporary evolution. The index of information sufficiency rate η indicates the amount of the available time-series information used in the
reconstruction. The payoff parameter for the PDG is b � 1.2.

Frontiers in Physics | www.frontiersin.org August 2021 | Volume 9 | Article 7328356

Fu et al. Network Reconstruction

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


for them. Figure 4A depicts reconstruction success rate of a
small-world network, measured by the mean local index of
success rates 〈APPSRL〉, 〈APPSRB〉, and 〈APPSRP〉, based on
90% priori structure information.

As illustrated in the main graph in Figure 4A, the mean local
index of success rates 〈APPSRL〉 obtained by EEM is higher than
RA or SPM. Especially the mean local index of success rates

〈APPSRL〉 obtained by EEM reaches 96.41% when the index of
information sufficiency η � 0.1, while the mean local index of
success rates 〈APPSRL〉 obtained by RA and SPM are both
88.95%. The mean local index of success rates 〈APPSRB〉 and
〈APPSRP〉 obtained by EEM are 93.95 and 86.68% when the index
of information sufficiency η � 0.1, as shown in the subgraph
(α)-(β) in Figure 4A. Correspondingly, the mean local index of

FIGURE 3 | (Color Online) The mean success rates of existent links 〈SR〉 of reconstructing four types of networks: (A) small-world network with 120 nodes, (B)
random network with 120 nodes, (C) regular network with 120 nodes, (D) Apollonian network with 124 nodes, hosting a PDG dynamical process. The lines with different
symbols are the mean success rates of existent links 〈SR〉 obtained by EEM when the index of information sufficiency rate η catches different values. The mean
reconstruction accuracy indices are achieved by averaging over 50 independent experimental results. For each experiment, measurements are randomly picked
from a time series of temporary evolution. The priori information of the structure, measured by a probability Ps, indicates the amount of available priori information of the
structure used in the reconstruction. The payoff parameter for the PDG is b � 1.2.

FIGURE 4 | (Color Online) The mean local indices of success rates 〈APPSRL〉, 〈APPSRB〉, and 〈APPSRP〉 of reconstructing four types of networks: (A) small-world
network with 120 nodes, (B) random network with 120 nodes, (C) regular network with 120 nodes and (D) Apollonian network with 124 nodes, hosting a PDGdynamical
process. The lines with circle, triangle and inverted triangle symbols are the mean local indices of success rates 〈APPSRL〉, 〈APPSRB〉, and 〈APPSRP〉 obtained by RA,
SPM and EEM based on 90% priori structure information. The mean reconstruction accuracy indices are achieved by averaging over 50 independent experimental
results. For each experiment, measurements are randomly picked from a time series of temporary evolution. The index of information sufficiency rate η indicates the
amount of the available time-series information used in the reconstruction. The payoff parameter for the PDG is b � 1.2.
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success rates 〈APPSRB〉 and 〈APPSRP〉 obtained by RA are 62.67
and 79.51%, 〈APPSRB〉 and 〈APPSRP〉 obtained by SPM are 62.67
and 73.06%. The similar experimental results could also be found
in the cases of random network, regular network and Apollonian
network in Figures 4B–D, which indicate that EEM can achieve
higher reconstruction accuracy with low time-series information
than RA or SPM.

The underlying reason that EEM could obtain higher
reconstruction accuracy than RA or SPM might be twofold.
Firstly, EEM is applicable to reconstruct networks with sparse
connective relationships because Wang et al. developed a
paradigm [19, 24, 25] to address the network reconstruction
problems and Candès et al. provided the theoretical framework
for this paradigm [57, 58]. Both EEM and two link prediction
models utilize the identical priori structure information of the
network to obtain direct information of the unknown structure.
In addition, EEM bridges the relationships between the nodes’
payoffs and strategies by virtue of time-series information
because the payoffs can merely be obtained from each node’s
neighbors. Then EEM could extract indirect information of the
unknown structure from the above relationships which
strengthens the reliability of the experimental results. RA and
SPM could also extract valuable indirect information of the
unknown structure, but the valuable information still
originates from the priori structure information of the
network due to lack of a universal theoretical framework.

Secondly, both the reconstruction accuracy of the local
structure and the reconstruction accuracy of the global
structure obtained by EEM highly consist. As illustrated in
Figure 4, the absolute error between three mean local index of
success rates 〈APPSRL〉, 〈APPSRB〉 and 〈APPSRP〉 obtained by
EEM on each network is less than 0.1, which indicates that the
reconstruction accuracy on three separate local structure
obtained by EEM is almost the same. Consequently, the global
reconstruction accuracy and the local reconstruction accuracy
highly consist because the global reconstruction accuracy is the
linear combination of three mean local index of success rates
as: 〈SR〉 � SRLo · 〈APPSRL〉 + SRBo · 〈APPSRB〉 + SRPo · 〈APPSRP〉,
where SRLo, SRBo and SRPo are constant for each network. The high
reconstruction accuracy of three separately local structure
contribute to a high reconstruction accuracy of the global
structure. We also observe that the reconstruction accuracy on
three separate local structure obtained by RA or SPM fluctuates.
Especially in the reconstruction experiments on synthetic random
networks, the maximum absolute error between three mean local
index of success rates obtained by RA or SPM reaches 0.3837. The
experimental results indicate that the reconstruction accuracy
obtained by RA and SPM is largely dependent on the priori
structure information of the network. The reconstruction
accuracy of RA or SPM would be high when the local priori
structure is consistent with the global structure, and the
reconstruction accuracy would be low otherwise.

Finally, we test the results for four empirical networks. As
shown in Table 3, we reconstruct the network structure by EEM,
RA and SPM with 90% priori structure information. The
empirical results indicate that four indices of reconstruction
accuracy obtained by EEM are higher than RA and SPM for

four empirical networks when the index of information
sufficiency rate η � 0.1. Four indices of reconstruction
accuracy obtained by EEM are higher than RA and SPM.
Compared with RA, EEM’s reconstruction accuracy, measured
by the mean success rates of existent links 〈SR〉, which are
improved by 355.54, 456.38, 96.37 and 64.11%, corresponding
to FWMW, FWFW, Jazz musicians, Neural network of C. elegans.
Compared with SPM, EEM’s reconstruction accuracy, measured
by the mean success rates of existent links 〈SR〉, which are
improved by 355.54, 154.07, 47.81 and 69.38%,corresponding
to FWMW, FWFW, Jazz musicians, Neural network of C. elegans.
Empirical results indicate that the empirical networks
reconstructed by EEM are closer to the original networks than
those reconstructed by RA and SPM.

3.4 CONCLUSION

In summary, we have investigated the performance of EEM
for reconstructing synthetic networks, which are
characterized by four types of networks as small-world
networks, random networks, regular networks and
Apollonian networks, based on priori structure
information. The mean success rates of existent links 〈SR〉
obtained by EEM could achieve at least 0.9021 when the index
of information sufficiency η is 0.1. Compared with RA and
SPM, EEM has higher mean success rates of existent links
〈SR〉, which is improved by 8.07 and 12.22% on the networks
with 120–124 nodes, respectively. Compared with RA and
SPM, EEM has higher mean success rates of existent links
〈SR〉, which is improved by 17.53 and 22.81% on the
networks with 250–367 nodes, respectively. The
experimental results also indicate that separately local
structure in each type of network could be accurately
reconstructed by EEM. In addition, EEM’s reconstruction
accuracy is also evaluated on four empirical networks.
Compared with RA and SPM, EEM has higher mean

TABLE 3 | The value of four indices of reconstruction accuracy for four empirical
networks.

Network Accuracy RA SPM EEM

η = 0.1 η = 0.6

FWMW SR 0.1833 0.1833 0.8351 0.9996
SN 0.0016 0.0016 0.9577 0.9996
PRE 0 0.0003 0.5730 0.9989
AUC 0.6786 0.6968 0.8836 1

FWFW SR 0.1575 0.3450 0.8765 1
SN 0.9742 0.9712 0.9567 0.9999
PRE 0.0385 0.2043 0.6143 0.9999
AUC 0.4191 0.7816 0.9375 1

Jazz musicians SR 0.4488 0.5962 0.8813 1
SN 0.9902 0.9894 0.9723 0.9999
PRE 0.2291 0.3486 0.5544 0.9980
AUC 0.9151 0.9085 0.9807 1

C. elegans SR 0.4770 0.4621 0.7828 0.9998
SN 0.9927 0.9948 0.9965 0.9993
PRE 0.0512 0.0446 0.4834 0.9539
AUC 0.7817 0.7598 0.9243 0.9999
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success rates of existent links 〈SR〉, which is improved by
64.11 and 47.81%, respectively. The reason that EEM obtain
higher reconstruction accuracy than RA or SPM might lie in
that EEM could utilize time-series information to strengthen
the reliability of the experimental results and EEM’s
capability to reconstruct the local structure and the global
structure highly consist. The evaluation of EEM on both
synthetic networks and empirical networks suggest that
EEM is applicable for networks with sparsely connective
relationships and it has high reconstruction accuracy by
low information requirements.

Although the efficiency of EEM has been measured in
reconstructing network’s structure with both synthetic
networks and empirical networks, there are still a lot of
questions to be considered further. For example, the
results show that EEM can give remarkably higher
reconstruction accuracy on a network hosing a PDG
dynamical process, but the performance of EEM has not
been validated under another dynamical process. Although
EEM could also be extended to cases with large-scale network,
the computing time might increase exponentially. In
addition, EEM’s capability to identify spurious links has
not been explored. Noting that EEM can well capture the
adjacent relationships from limited information and thus give
more accurate reconstruction, such features make EEM
appealing to reconstructing general networks with
extremely low data requirement. Despite underlying
challenges, we will make attempt to continue our research
referring to the problems of network reconstruction.
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