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Introduction: Diseases such as celiac disease, environmental enteric dysfunction,
infectious gastroenteritis, type Il diabetes and inflammatory bowel disease are
associated with increased gut permeability. Dual sugar absorption tests, such as the
lactulose to rhamnose ratio (L:R) test, are the current standard for measuring gut
permeability. Although easy to administer in adults, the L:R test has a number of
drawbacks. These include an inability to assess for spatial heterogeneity in gut
permeability that may distinguish different disease severity or pathology, additional
sample collection for immunoassays, and challenges in carrying out the test in certain
populations such as infants and small children. Here, we demonstrate a minimally invasive
probe for real-time localized gut permeability evaluation through gut potential difference
(GPD) measurement.

Materials and Methods: The probe has an outer diameter of 1.2 mm diameter and can
be deployed in the gut of unsedated subjects via a transnasal introduction tube (TNIT) that
is akin to an intestinal feeding tube. The GPD probe consists of an Ag/AgCl electrode, an
optical probe and a perfusion channel all housed within a transparent sheath. Lactated
Ringer’s (LR) solution is pumped through the perfusion channel to provide ionic contact
between the electrodes and the gut lining. The optical probe captures non-scanning
(M-mode) OCT images to confirm electrode contact with the gut lining. A separate skin
patch probe is placed over an abraded skin area to provide reference for the GPD
measurements. Swine studies were conducted to validate the GPD probe. GPD in the
duodenum was modulated by perfusing 45 ml of 45 mM glucose.

Results: GPD values of —13.1 + 2.8 mV were measured in the duodenum across four
swine studies. The change in GPD in the duodenum with the addition of glucose was
-10.5 + 24 mV (p < 0.001). M-mode OCT images provided electrode-tissue contact
information, which was vital in ascertaining the probe’s proximity to the gut mucosa.
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Conclusion: We developed and demonstrated a minimally invasive method for
investigating gastrointestinal permeability consisting of an image guided GPD probe
that can be used in unsedated subjects.

Keywords: intestinal permeability, gut potential difference, transnasal probe, m-mode OCT imaging, duodenum

diagnosis

INTRODUCTION

The intestinal epithelium provides a barrier against antigens and
toxins from the environment and selectively allows absorption of
essential nutrients, electrolytes, and water into the body. Normal
intestinal permeability (IP) refers to the selective movement of
ion, nutrients and water across the mucosa from the intestinal
lumen into the circulating blood [1]. Several studies have shown
that a breakdown of the epithelial barrier and subsequent
alteration of intestinal permeability is associated with
inflammation, infection and autoimmune diseases [2-4].

Changes in intestinal permeability have been specifically
linked to a wide variety of diseases and syndromes including
celiac disease [5], type II diabetes (T2D) [5-8]; inflammatory
bowel disease (IBD) [9-11], irritable bowel syndrome [12,13],
environmental enteric dysfunction [14,15], obesity [16,17],
chronic fatigue [18], fibromyalgia [19] and colon cancer[20,21].

The standard method for measuring intestinal permeability in
human subjects involves the administration of oligosaccharides of
different molecular weights [22,23]. Non-metabolized pairs of
sugars such as lactulose, mannitol or rhamnose are orally
administered and urine elimination measured over a 3-24h
period. Although, the assessment of intestinal permeability by
dual sugar absorption has been proven to be non-invasive and
safe, it is time consuming since urine samples are collected
between 3-24h after sugar-probe administration and then
shipped to a centralized facility for analysis, taking days to
weeks [24,25]. Interpretation of the data can be confounded
by a number of factors including, low urinary volumes,
variable gut surface area and intestinal transit times. In
addition, quantitative analysis of the urine sample requires
high pressure liquid chromatography (HPLC) in combination
with mass spectroscopy or direct enzyme-linked immunosorbent
assay (ELISA) [25]. Lastly, the ability to collect clean urine
samples without fecal contamination in certain populations
such as infants, children and the elderly can be challenging,
affecting the utility of the dual-sugar test for intestinal
permeability evaluation in these population groups [14].

Other methods including assaying endogenous intestinal
biomarkers in the serum, such as zonulin (ZO), intestinal fatty-
acid binding proteins (FABPs), and tight junction (TJ) proteins,
have been proposed for assessment of altered barrier integrity [26].
Bacteria or bacterial products have also been used to indicate
changes of barrier integrity [27]. While simpler and less time
consuming than the dual sugar method, it is currently not clear
whether there is a sufficient correlation between these biomarkers
and functional gut permeability in vivo [25,28].

The Ussing chamber, developed for the measurement of electrolyte
and nutrient transport across epithelial tissues, offers the ability to

measure permeability and ion transport in specific regions of the GI
tract. However, this method measure tissues in ex vivo conditions
requiring invasive collection via an intestinal biopsy sample, with
subsequent issues related to tissue viability during measurements [25].
Since this method of gut permeability assessment uses small biopsies
from specific areas of the gut, it is challenging to measure gut
permeability over wide areas using the Ussing chamber.

There are numerous studies that have shown the applicability of
potential difference (PD) measurements to record intestinal
permeability alterations [29-34]. These experiments used probes
made of salt bridges that consisted of 3% agar in saturated KCl, either
in isolation or in combination with a tube for constant Ringer’s
solution perfusion, to provide ionic contact between the electrodes
placed outside the body and the mucosal lining of the gut. These
probes were placed in the gut invasively through surgical access or
trans-orally under fluoroscopic guidance. The methods reported
above used varying unrefined probes, that were not commercially
available or standardized and were prone to errors due to the
inability to ascertain probe-mucosal contact when measuring PD.

In this paper, we propose a gut PD measurement (GPD) probe
with a capability for real-time measurement of gut potential
difference, providing dynamic real-time measurements of gut
permeability. We have developed an image guided GPD
measurement device that obviates the need for fluoroscopic
guidance and consequent radiation exposure. The probe is a
small caliber device that can be deployed via a trans-nasal
guidance tube or endoscope. In addition, we have eliminated
the need for an agar bridge, making the GPD probe a sterilizable,
transportable, reusable, and convenient to use at the bedside in
humans. We present the design of the GPD probe and show
results to validate its safety and efficacy in measuring gut PD.

MATERIALS AND METHODS

Trans-Nasal GPD Probe

A schematic of the GPD catheter is shown in Figure 1. The GPD
probe used in this study was a 1.2-mm-diameter device that can
be introduced into the GI tract transnasally via an introduction
tube. The probe was enclosed in 1.2m long, 1.2 mm outer
diameter (OD) and 1.0mm internal diameter (ID)
polytetrafluoroethylene (PTFE) tube (ZEUS®, SC, United States).
The device consisted of a 0.5 mm OD Ag/AgCl electrode (World
Precision Instruments (WPI), FL, United States ) contained in a
mini cell located at the distal end of the probe. A PTFE/composite
perfusion tube of OD 0.47mm and 0.26 mm ID (Microlumen®,
FL, United States ) was placed inside the entire length of the
probe to transport Ringer’s solution from a perfusion pump
outside the body to the mini cell at the distal end of the probe.
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FIGURE 1 | The GPD probe consists of a mini cell at the tip and the proximal connectors. (A) The tip is enclosed in a 1.2 mm outer diameter (OD)
polytetrafluoroethylene (PTFE) tube with a 0.5 mm diameter Ag/AgCl electrode, an optical probe consisting of a ball lens and a single mode fiber (SMF), a perfusion tube
that delivers lactated Ringer’s solution to the mini cell and perfusion channel that conducts a drip of lactated Ringer’s solution to the exteriorly located tissue. (B) The
proximal end consists of a Luer lock connector to the perfusion tube from a perfusion pump, an optical connector from an OCT system to the optical probe and an
electrical connector that links a wire from the Ag/AgClI to the isolation head-stage. (C, D) A Magnified view of the GPD probe.
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Ringer’s solution was injected via the perfusion port to provide
ionic contact between the electrode and the intestinal mucosa. A
single mode optical fiber (SMF) placed in the probe carried light to
obtain non-scanning (M-mode) optical coherence tomography
(OCT) images at the probe’s tip to determine when it is in
contact with mucosa and to provide tissue morphological
information. A reference probe was inserted subcutaneously or
implemented via a 3 M™ Red Dot™ ECG monitoring electrode
skin patch, attached over an abraded area of the skin. The GPD was
defined as the voltage measured across the trans-nasal GPD probe
and the reference electrode.

In humans, the concept will involve inserting the probe into
the gut using either OCT image guidance or an equivalent
method to confirm anatomical placement [35,36]. When using
OCT for placement, a separate introduction tube containing a
mechanically scanning optical probe in its working channel will
be deployed in the gut. The B-mode frames provided by the
scanning optics will be used to localize the introduction tube in
the gut. After retraction of the optics, the GPD probe will be
inserted through the working channel of the introduction tube.
After the probe is situated in the duodenum, fluid will be perfused
via the port and the probe brought in contact with the mucosa as
confirmed with OCT. GPD will then be measured.

GPD Measurement System
Figure 2A shows the GPD measurement system, which consisted
of an isolation head-stage (ISO-Z, CWe Inc., PA, United States ) to

which the trans-nasal GPD and reference probes were connected.
The signal from the isolation head-stage was then connected to a
bioamplifier (BMA-200, CWe Inc. PA, United States). The
amplified signal from the bioamplifier was sent to a digitizer
(Power Lab 4/26, AD instruments Inc., CO, United States) for
conversion to a digital signal and logged with LabChart software
(AD instruments Inc., CO, United States ) on a computer at a rate
of 1k sample/s. The GPD system was adapted from a nasal
potential ~ difference measurement system with similar
equipment [37,38].

Swine Studies

The GPD probe was connected to an OCT system consisting of
an Axsun OCT engine (Excelitas, MA, United States )
operating at 1,310 nm center wavelength and acquiring
OCT image frames at 100kHz [39]. The optical probe
acquired a non-scanning form of OCT images known as
M-mode OCT. M-mode OCT was used to ensure that the
probe was in contact with the mucosal tissue while the GPD
values were measured. To validate the ability of the probe to
measure real-time changes in GPD, a transient gut sodium ion
concentration modulator (45 mM glucose) was perfused while
potential difference measurements were taken. Electrogenic
absorption of glucose causes a local reduction in the sodium
ion concentration on the luminal side of the mucosa resulting
in a change in the apical GPD. The swine studies were
approved by the Massachusetts General Hospital (MGH)
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FIGURE 2 | Experiment schematic for gut potential difference (GPD) measurement in swine. (A) PD measurement system consisting of an isolation head-stage, a
bioamplifier, an analog-to-digital converter and a computer. (B) An offset zeroing setup made of a cup filled with Ringer’s solution and a skin patch. (C) The pig’s small
intestine was intubated using a pediatric gastroscope and the IPD probe inserted through the working channel of the endoscope. The GPD signal was acquired via an
isolation headstage and a bioamplfier in the GPD measurement system. The GPD signal was converted to a digital signal and logged using a computer. Optical
coherence tomography (OCT) M-mode images were simultaneously acquired. (D) Detailed view of the duodenum and the GPD probe.
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Institutional Animal Care and Use Committee (IACUC)
protocol number 2016N000215.

Procedure

1) Prior to the procedure, the swine were anesthetized and
intubated by the staff at the Knight Surgery and Research
Laboratory (KSRL) at MGH. Vitals were monitored to ensure
the animal was in good physiological condition.

A convenient portion of the skin was shaved and abraded until
interstitial fluid was exposed.

A skin patch was placed over the abraded area.

An endoscope was introduced trans-orally and advanced to
the first segment of the duodenum.

Before any measurement was taken, the potential difference
offset between the GPD probe and the skin patch was zeroed
using the calibration setup shown in Figure 2B.

The reference cable from the isolation head-stage was then
connected to the skin patch on the swine skin.

The GPD probe connected to the perfusion pump delivering
Lactated Ringer’s solution to the probe at 1 ml/hr was inserted
via the working channel of the scope.

Baseline GPD measurements were taken after 30 min of probe
equilibration.

A secondary tube was inserted via the working channel in
which glucose was perfused.

2)

3)

5)

6)

7)

8)

9)

RESULTS

Initially, an endoscope was safely deployed into the
duodenum and through its working channel the GPD
device inserted as shown in Figure 3A. Then, M-mode
OCT images were acquired to ensure contact of the probe
with the mucosa while PD values were recorded. The right
half of Figure 3B demonstrates a representative M-mode
OCT image with the red arrow indicating probe-tissue
contact shown by the ring-like scattering pattern from the
tissue that abuts the outside of the probe (yellow arrow). The
measured average baseline GPD across four swine was
-13.1 + 2.8 mV.

Figure 3C shows a rapid time response of under 2 s when the
GPD probe was not in contact with the mucosa was brought
in contact with the tissue. We also evaluated the potential
difference change that resulted from perfusion of 45mM
glucose over a duration of 60 s at a rate of 1 ml/s to stimulate
gut electrolyte absorption as shown in Figure 3D. The total
change in GPD was —10.5 + 2.4 mV (p < 0.001), due to the glucose
mediated active Na * transport across the mucosa. Figure 3E
shows the initial baseline PD, while Figure 3F shows the PD
between the probe and the reference skin patch after the device
was retracted from the scope demonstrating the absence of a
residual offset potential.
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FIGURE 3 | (A) Endoscopic image of the duodenum showing the GPD probe not in contact with the mucosa and the corresponding M-mode OCT image. (B)

Endoscopic image showing the IPD probe in contact with the mucosa. An M-mode OCT frame corresponding to the endoscopy frame depicting the GPD probe in
contact with the duodenal mucosa, as shown by the dark ring pointed by the red arrow. (C) GPD values measured by the probe in contact and not in contact with the
mucosa. (D) This figure shows a change in the gut potential difference after glucose perfusion. The baseline GPD value changed in presence of 45 mM glucose

solution by as much as —10.5 mV. The single asterisk demarcates the region enclosed by the dashed rectangle before glucose infusion while the double asterisks point
to the region in the rectangle depicting the potential difference across the probe and the reference skin patch after the probe was retracted from the body. (E) The graph
shows baseline GPD value of the duodenum before infusion of glucose. (F) After probe retraction from the duodenum, the graph shows the GPD between the GPD
probe and the skin patch was about zero, indicating that the change in GPD prior to retraction was solely due to the presence of glucose, and not because of a walk-off
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FIGURE 4 | PD values of proximal esophagus, mid esophagus, distal
esophagus, body fundus, stomach (body) and the pyloric antrum. Error bars
indicate SD.

In addition, GPD measurements were acquired in different
anatomical regions of the upper GI tract. Figure 4 demonstrates
the PD values measured in three sections of the esophagus
(proximal esophagus, mid esophagus and distal esophagus)
measured over 15s. The mean PD values measured in these
organs was —11.6 + 0.7, —20.4 + 2.1, and —34.1 + 1.3 mV for the
proximal esophagus, mid esophagus and distal esophagus,
respectively. In the stomach, as shown in the figure, the
average PD measured in the stomach fundus, body and
pyloric antral regions over a duration of 15s was —34.2 + 1.4,
-20.2 £ 2.2, =12.7 = 2.1 mV, respectively.

DISCUSSION

Here, we have presented a design for a trans-nasal minimally
invasive GPD measurement device. We validated the GPD
probe in swine by measuring swine esophageal, stomach and
duodenal potential difference. These duodenal potential
difference values measured by the GPD probe approximated
the PD values measured in human duodenum reported by
Gustke et al [40]. Gastric PD measurements obtained with
our GPD probe are different from those reported by Geall et
al [31]. by about —10 to —15mV. This discrepancy may be
attributed to the lateral recumbent position of the swine during
scoping that allowed for a small pool of gastric contents to
remain lodged in the distal portion of the esophagus providing
ionic connectivity to the stomach mucosa. The PD value
measured with this probe in the proximal region of the
esophagus is consistent with the potential difference values
measured in the same region in humans [41]. Since there is

Gut Potential Measurement Probe

insufficient information on GPD values in swine, further studies
need to be done to establish the similarities and differences
between human and swine GPD.

In addition to baseline GPD we also showed a change in
duodenal PD after infusion of glucose solution and subsequent
induction of electrogenic glucose uptake. This glucose absorption
is coupled with sodium ion intake by the sodium/glucose
cotransporter 1 (SLGT1) across the intestinal epithelium. Our
results showed the expected decrease in transepithelial potential
consistent with electrogenic Na*-glucose co-transport across the
epithelium.

A major advantage of our device that enables blind
(non-endoscopic) insertion is the integrated M-mode OCT
imaging technology. M-mode imaging was able to indicate
when the GPD probe was in contact with the intestinal
wall. Thus, M-mode OCT allows for accurate GPD
measurements by ensuring that PD values are acquired
only when the device in contact with the mucosa. This
feature is especially critical when the device is deployed
trans-nasally, without endoscopic guidance, allowing for
precise placement of the probe and accurate measurement
of GPD. This was particularly important for measurement of
positive potential changes that occur during intestinal
electrolyte and fluid secretion, which would otherwise be
erroneously attributed if the probe was not in contact
with the mucosa. This will be particularly important in
future studies caried out without the benefit of endoscopic
guidance.

Real-time GPD measurement offers an attractive prospect
for the investigation of gut transport function in a rapid and
minimally invasive manner. As an example, targeted
functional evaluation of ion channels such as the cystic
fibrosis transmembrane conductance regulator (CFTR) can
be performed with the aid of this GPD device. PD changes
due to chloride transport via CFIR in response to
electrochemical gradients using chloride free solution
infusions with or without solutions containing cyclic
adenosine monophosphate (cAMP) agonists, can be
measured to ascertain the functional integrity of this critical
ion channel [38]. Gut PD measurement may also play a role in
further understanding the dynamics of secretory diarrheas
such as cholera in humans [42] or deliver functional
assessments of electrolyte and nutrient transport in a
variety of disease states in infants including congenital
diarrheas, allergic enteropathies and environmental enteric
dysfunction [43-45]. Further, gut permeability to larger
molecules can be measured and localized using this device.
In contrast to the dual sugar method where heterogeneity of
gut permeability may be hard to address, GPD measurements
can provide spatial and segmental gut permeability data that
may allow dynamic mapping of permeability along the length
of the intestine. Lastly, PD measurements as a means for
assessing “leaky-gut” conditions, may also be appealing in
low resource settings. GPD measurement offers a low-cost
and more practical alternative to the dual-sugar test, which
does not require advanced ELISA/chromatography analysis of
collected samples.
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Several challenges may still hamper gut transport evaluation
using this method. One major challenge is the temperature
drift between the reference and the measurement probe
brought about by a change in fluid temperature as it is
perfused through the perfusion channel to the gut mucosa.
This drift in temperature causes a small drift in the measured
PD values [46]. Also, formation of bubbles within the
perfusion channel creates areas of discontinuity affecting
the PD values registered, a well-known impediment to nasal
PD performance [37]. To minimize the formation of gas
bubbles, we degas Ringer’s solution before each GPD
measurement procedure by sonication for 30 min and then
placing the solution in a vacuum at a pressure of about —75 kPa
for another 30 min. Another issue that may affect PD
measurement in vivo is the PD fluctuation due to
movement of either the probe or the subject resulting in
motion artifacts on the PD signal. External potential
sources of noise to the PD signal that should be considered
include background radiofrequency from the environment
which can be eliminated by applying a low-pass filter to PD
signal with cut-off frequency about 10 Hz, as has been
successful employed in NPD [37].

We also note that GPD is an indirect measurement of gut
permeability. While it is true that when the gut epithelium is
completely permeable, GPD will go to zero, there are other
processes that could cause the PD to diminish. For example,
the efflux of negative ions from the lumen or influx of positive
ions to the lumen will push PD values towards zero. For this
reason, in the future, it will be important to measure both
transepithelial voltage and current to determine the
transepithelial resistance and short-circuit current [47].
While studies have shown a correlation between
dysregulation of the tight junction proteins involved in gut
permeability and a change in baseline GPD [48,49], more
work needs to be done in the future to understand the
correlation of GPD and ionic versus macromolecular
intestinal permeability.

The minimally invasive gut transport measurement probe
presented here is compatible with pediatric trans-nasal
introduction in a similar manner to commonly used
nasogastric/nasojejunal feeding tubes (7Fr). This device can be
not only be used for assessment of gut permeability through PD
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