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In situ impedance measurements, Raman measurements and theoretical calculations
were performed to investigate the electrical transport and vibrational properties of
polycrystalline phenanthrene. Two phase transitions were observed in the Raman
spectra at 2.3 and 5.9 GPa, while phenanthrene transformed into an amorphous
phase above 12.1 GPa. Three discontinuous changes in bulk and grain boundary
resistance and relaxation frequency with pressure were attributed to the structural
phase transitions. Grain boundaries were found to play a dominant role in the carrier
transport process of phenanthrene. The dielectric performance of phenanthrene was
effectively improved by pressure. A significant mismatch between Z″ and M″ peaks was
observed, which was attributed to the localized electronic conduction in phenanthrene.
Theoretical calculations showed that the intramolecular interactions were enhanced under
compression. This study offers new insight into the electrical properties as well as grain
boundary effect in organic semiconductors at high pressure.
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INTRODUCTION

Organic semiconductors have captured much attention due to their outstanding electronic
properties and high mechanical flexibility, which enable improved performance of OLEDs,
organic field-effect transistors, or organic solar cells [1–4]. Polycyclic aromatic hydrocarbons
(PAHs), as the important class of organic semiconductors, are applied in many areas, such as
optoelectronics, electronics, and optical technology [5–7].

Pressure has a significant effect on the structure and properties of PAHs [8–11]. For example,
naphthalene is partially oligomerized above 15 GPa at room temperature, and this can be
promoted by reducing intermolecular distance with the action of pressure [12]; pressure can
effectively reduce the bandgap of oligoacenes, which would affect their electron transport
performance [13].

Phenanthrene (C14H10) is one of the PAHs and has the simplest flat molecule structure composed
of three benzene rings with an armchair configuration. Structure evolution and vibrational features
of phenanthrene under high pressure were investigated by x-ray diffraction (XRD) and Raman
spectroscopy. Huang et al. [14] have reported three phase transitions of phenanthrene under non-
hydrostatic conditions with the space group P21 for phase I (0–2.2 GPa), P2/m for phase II
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(2.2–5.6 GPa), and P2/m + Pmmm for phase III (5.6–11.4 GPa),
whereas the structure has been indexed to the pure Pmmm phase
from 11.4 to 20 GPa. Above 20 GPa, it further changed to
hydrogenated amorphous carbon structure. Capitani et al. [15]
have studied the influence of hydrostatic pressure on the
structure of phenanthrene by XRD experiment with helium as
pressure transmitting medium. They have observed that a phase
transition from P21 to a new phase P1 occurred around 8 GPa.
Moreover, P21 and P1 phases coexisted from 8 to 13 GPa, then
phenanthrene fully transformed to P1 phase above 13 GPa. When
pressure exceeded 20 GPa, the appearance of amorphization could
be detected. Hence, there is an evident influence of non-hydrostatic
environment on the phase transition path in phenanthrene.

Transformations in the crystal structure caused by pressure
inevitably affect the carrier transport behavior and grain
boundary effect in polycrystalline. For example, Li et al. [16]
have reported the grain boundary effect on the electrical transport
properties of β-boron at high pressure. Qin et al. [17] have
investigated the dielectric behavior of polycrystalline CaMoO4,
and they found that the grain boundaries played a key role in
carrier transport process. Zhang et al. [18] have studied the
correlation between structural phase transition and electrical
transport properties of ZnFe2O4 nanoparticles under high
pressure, which concluded that the grain boundary effect was
related to the capacity of the charge bounding.

The charge carriers transport in phenanthrene relies on the
molecular structure and the form of the molecular packing.
Previous studies have clarified the structure and the vibration

FIGURE 1 | High pressure Raman spectra of phenanthrene up to 31.2 GPa. (A) Selective Raman spectra in the frequency range of 50–1200 cm₋1. (B) Selective
Raman spectra in the frequency range of 1350–1750 cm₋1. (C) Pressure dependence of the Raman shift for the observed modes. The dashed lines are results from Ref.
14. Dashed vertical lines represent phase boundaries, and phases are assigned with Roman numbers. The upper arrows and asterisks denote the new appearance and
the disappearance of peaks, respectively.

FIGURE 2 | Nyquist (Z″-Z′) plots (A–D) and Z″-f plots (E–H) of the
impedance data of phenanthrene under different pressures. Inset: the
enlargement of the left arc.
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modes of phenanthrene both at non-hydrostatic/hydrostatic
pressure environments. Nevertheless, it remains unclear how
pressure regulates the electrical transport behavior of
phenanthrene, which limits the design of new phenanthrene-
based applications. Meanwhile, another important factor that
affects the charge transport processes in polycrystalline
phenanthrene is the grain boundary, at which the carrier
scattering effect is usually strengthened. However, the studies on
the transport properties as well as the grain boundary effect of
phenanthrene at high pressure were scarcely tackled. In this work, we
investigated the electrical transport behavior of phenanthrene at high
pressure by in-situ alternating current (AC) impedance
measurements. Raman measurements and density-functional
theory (DFT) calculations were also conducted. The contributions

of bulk and grain boundaries to the electrical transport properties
were evaluated. The influence of pressure on resistance, relaxation
frequency, activation energy, permittivity, and dielectric loss factor of
phenanthrene pressure were discussed.

EXPERIMENTAL AND COMPUTATIONAL
DETAILS

Polycrystalline phenanthrene powders with 99.5% purity were
purchased from Sigma-Aldrich. High pressure was generated by
a diamond anvil cell (DAC) with anvil culet diameter of 300 μm.
The parallel-plate electrodes configuration was used for impedance
measurements. The detailed electrode fabrication procedures were
described in our previous works [19–21]. T301 stainless steel was

FIGURE 3 | Variation of FWHM (ν21 vibration mode) with pressure.

FIGURE 5 | Pressure dependencies of (A) Rt, (B) Rb, (C) Rgb, (D) fb, and
(E) fgb of phenanthrene.

FIGURE 4 | Z′- Z″/f plots of phenanthrene at different pressures. Inset:
the enlargement of the left arc.
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pre-indented to a thickness of 60 μm. The mixture of cubic boron
nitride powder and epoxy was used as the insulating layer. Pressure
was calibrated with the R1 fluorescence peak of the ruby [22].

In situ high-pressure AC impedance measurements were
carried out by a Solartron 1260 impedance analyzer with a 1296
dielectric interface in the frequency range of 10−2∼106 Hz, and the
voltage amplitude was 0.1 V. Impedance measurements were
performed at pressures up to 30.3 GPa. In order to avoid the
induction of unnecessary additional impedance, pressure
transmitting medium was not applied. Raman spectra of
phenanthrene were collected during the process from ambient
pressure to 31.2 GPa. The excitation source is a laser emitting at
532 nm by a Horiba LabRAMHR Evolution. No pressure medium
was used for the Raman measurements to maintain consistency
with the impedance experiments.

The calculations for local structural relaxations and electronic
properties were performed in the framework of density functional
theory within the Perdew-Burke-Ernzerhof generalized gradient
approximation (GGA-PBE) [23] and frozen-core all-electron
projector-augmented wave (PAW) method [24, 25] as
implemented in Vienna ab initio simulation package (VASP)
[26], the pseudopotentials were taken from the VASP library, in
which 2s22p2 and 1s1 were treated as the valence electrons for C
andH atoms, respectively. Cutoff energy of 700 eV and appropriate
Monkhorst-Pack [27] k-mesh with k-points density 0.03 Å-1 were
chosen to ensure that all the enthalpy calculations were well
converged to less than 1 meV/atom. The electron localization
function (ELF) was used to describe the charge redistribution
and the bonding feature of molecules and solid materials.

RESULTS AND DISCUSSION

The selected Raman spectra in the frequency region of
50–1800 cm−1 were shown in Figures 1A,B. With increasing
pressure, all the Raman peaks shift to higher frequencies. The
vibrational modes can be divided into intermolecular modes (L1,
L2) and intramolecular modes, as in Ref. 14. The pressure
dependence of all the vibrational modes was displayed in
Figure 1C. The previous results from Ref. 14 were also drawn
together by dashed lines. It can be seen that the phase transitions
occurred at 2.3 and 5.9 GPa, which are consistent with the results
of Ref. 14. The difference of phase transition paths with Capitani
et al.15 was caused by nonhydrostatic/hydrostatic pressure
environment. With increasing pressure, the C-C-C bending
mode (]1) and intermolecular modes (L1) were split, the
intramolecular vibration mode (ν3) disappeared, suggesting
that the sample undergoes its first phase transition around

2.3 GPa. Up to 5.9 GPa, the CCC bending mode (ν4) and the
C-C stretching mode (ν11) were split, several intramolecular
vibration modes (ν12, ν13, ν14, ν19, ν20) disappeared, along with

TABLE 1 | Calculated pressure dependence of the bulk activation energy.

Phase Pressure region (GPa) dH/dP (meV/GPa)

I 0.9–2.1 0.58
II 2.9–6.2 8.73
III 7.5–13.8 1.96
IV 16.2–30.3 −0.43

FIGURE 6 | (A) Variation of the relative permittivity εr with pressure.
(B–D) Frequency dependencies of, ε′, ε″ and tanδ of phenanthrene under
different pressures. Inset shows the dielectric loss factor (tanδ) at 0.9 GPa
during compression and at 0.4 GPa after decompression.
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discontinous change in the slope of frequency of the
intermolecular modes (L1, L2) around 6.0 GPa (as shown in
Supplementary Figure S1), which indicates that the sample
transforms from phase II to phase III around 5.9 GPa. The
stretching vibration of the C-H bond in the high frequency
region under different pressures was shown in the
Supplementary Figure S2). Furthermore, the Raman peak of
the intermolecular modes had a large blue shift which was
attributed to the reduction of the intermolecular distance and
the enhancement of the intermolecular interaction [28]. Above
12.1 GPa, phenanthrene transformed to an amorphous state.

Impedance spectroscopy method can distinguish the
contribution of bulk and grain boundaries to electrical transport
properties. The impedance spectra of phenanthrene at different
pressures were shown in Figure 2. There was a big deviation
from the ideal semicircle in the Nyquist plots (Z″∼ Z′), which
was due to the dispersion effect in the process of electron
transportation [29]. In Nyquist plots, bulk and grain boundaries
had a large difference in frequency responses. Below 8.6 GPa, Z″
slowly approached Z′ axis in the low-frequency region, and a
relatively complete semicircle arc of the grain boundary was
shown in Figures 2A,B. However, from 8.6 to 30.3 GPa, the
grain boundary resistance increased significantly with pressure, so
incomplete arcs appeared in the low-frequency region, as shown in
Figures 2C,D. Nyquist plots of phenanthrene indicated that the
contributions of bulk and grain boundaries to the electrical transport
properties were significantly different, whereas the grain boundary
effect played a dominant role. The relaxation frequency which
corresponds to the imaginary impedance peak is equal to the
reciprocal of the relaxation time constant. As shown in Figures
2E,H the relaxation peaks of the grain boundaries shifted towards
lower frequencies with pressure. This indicates that the grain
boundary and associated lattice scattering effect on carriers were
improved by pressure, which was also convinced by Raman
measurements results. Take the ]21 vibration mode (1442 cm−1)
for example, as shown in Figure 3, the FWHM increased with
increasing pressure, the crystallinity of the sample was weakened, the
defects were increased, and the disorder was increased, indicating
that the grain boundary effect enhanced lattice scattering on carriers.

However, due to the large difference in the contribution of
bulks and grain boundaries, the bulk relaxation peak was not
obvious in the Bode plots (Z″∼f). The separation between bulk
and grain boundary relaxation process will be clearly illustrated
through the modulus representation later.

Since there was a big difference between the frequency
responses from bulk and grain boundaries of phenanthrene,
the representation as reported by Abrantes et al. was adopted
to process the data [30]. The plots of selected impedance data in
the Z′- (Z″/f) representation were shown in Figure 4. Three
distinct segments were observed in each plot corresponding to
different frequency regions. In the high frequency region,

Z′≈ fb(Z″/f) (1)

In the moderate frequency region, (fgb<<f<fb),

Z′≈ Rb + (Z″/f)fgb (2)

In the low frequency region (f<<fgb),

Z′≈ Rb + Rgb + (Z″/f)fel (3)

where Rb, Rgb, fb, fgb represent the resistance and the relaxation
frequency of the bulk and grain boundary respectively, and fel
corresponds to the electrode relaxation frequency. From Eq. 1,
Eq. 2 and Eq. 3), the electrical parameters (Rt� Rb + Rgb, Rb, Rgb,
fb, fgb) of phenanthrene were obtained by fitting the experimental
data, as shown in Figure 5.

For each parameter versus pressure, three discontinuous changes
can be found at 2.9, 7.5, and 13.8 GPa, respectively, which was

FIGURE 7 | (A) Complex modulus plots (M″ ∼M′) at different pressures;
(B, C) variations of M′ and M″ with frequency at different pressures; (D)
frequency dependencies of M″ and Z″ in phenanthrene at 2.9 GPa.
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attributed to the pressure-induced structural phase transitions [14].
Below 13.8 GPa, both bulk and grain boundary resistances increased
with pressure. The increase in grain boundary resistance probably
resulted from the higher grain boundary density under pressure, which
consequently generated additional dangling bonds. This statement was
consistentwith the decreased grain boundary relaxation frequencywith
pressure, as shown inFigure 5E. Above 13.8 GPa, therewas noobvious
variation in resistance in Phase IV, which was related to the emergence
of the amorphous structure. This conclusion was consistent with the
Raman results. With the increasing of disorder, the electronic states of
the system became more localized [31].

Both bulk and grain boundary relaxation frequencies of
phenanthrene decreased significantly with pressure in Phases I
and II. Above 7.5 GPa, the relaxation frequency was almost
constant as the pressure increases in Phases III and IV. The
variation of the relaxation frequencies in both bulk and grain
boundary regions below 7.5 GPa indicated that the relaxation
time of phenanthrene increased with pressure. The electrical
transport parameters (Rt, Rb, Rgb, fb, and fgb) of Phase III
changed slowly with increasing pressure. The electrical transport
mechanism of phenanthrene was modulated by pressure, the
electrons transport channels became narrower under compression
and were finally fully closed in Phase IV (amorphous state).

In order to analyze the relaxation process of phenanthrene
under compression, the pressure dependence of the relaxation
activation energy was evaluated. According to the Arrhenius
equation, the relationship between the relaxation frequency
and the activation energy can be depicted as:

f � f 0 exp(−H/kBT) (4)

where H represents activation energy, kB is the Boltzmann
constant, and T is the temperature. Assume f and H are only
the function of pressure, and f0 remains a constant, we have

d(lnf)
dP

� z(Inf0)
zP

− ( 1
kBT

)(zH
zP

) (5)

By linear fitting to the curve lnf-P, the pressure dependence of the
activation energy was shown in Table 1.

Below 13.8 GPa, the dH/dP was positive indicating that the
required energy for carriers to reach the equilibrium increased
with pressure. Therefore, the activation energy increased with
increasing pressure. However, in Phase IV, dH/dP of
phenanthrene turned to be negative (−0.43 meV/GPa). The
decreased activation energy indicated that pressure promotes
electrical conductivity [32].

FIGURE 8 | Electronic properties of Phase I and Phase II in phenanthrene at 0.5 and 4 GPa. Electron localization function (ELF) (A, B), band structure (left), and
Partial DOSs (right) (C, D).
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To obtain a deep insight into the carrier transport process of
phenanthrene, the dielectric behavior was investigated. The bulk
relative permittivity (εr) of phenanthrene can be obtained from:

εr(P) � d/(2πRbε0f bS) (6)

where d is the thickness of a sample, ε0 is the vacuum permittivity,
S is the area of the electrode, and fb is the bulk relaxation
frequency.

As displayed in Figure 6A, three discontinuous changes at 2.9,
7.5, and 13.8 GPa were observed in the relative permittivity εr of
phenanthrene at different pressures. εr decreased with increasing
pressure, which was caused by the decreased dipole moment in
alternating electric fields under high pressure. The frequency
dependence of both real (ε′) and imaginary (ε″) parts of the
complex dielectric permittivity of phenanthrene under high
pressure was shown in Figures 6B,C. The value of ε′ implies the
energy storage and polarization ability [33], whereas the imaginary
part (ε″) reflects the dielectric loss. Below 105 Hz, ε′ decreased with
increasing frequency at each pressure. However, when the frequency
exceeded 105 Hz, ε′ showed gradually reduction with frequency. In
high-frequency region, the electric field alternates too fast to affect the
rotation of the dipole. Therefore, the polarization of orientation
weakened, and the inflection pointmoved to lower frequencies, while
the real and imaginary parts decreased.

At high frequency, the electric field changes so rapidly that
there is a time delay (relaxation) between the space charge
polarization and the applied electric field, which resulted in
the dielectric loss [34]. The frequency-dependent dielectric loss
factor (tanδ) at different pressures was illustrated in Figure 6D.

Moreover, when pressure was released to 0.4 GPa, as shown in the
inset of Figure 6D, the dielectric loss factor in the low-frequency
region became much lower than that at 0.9 GPa under
compression. Therefore, the dielectric performance of
phenanthrene was effectively improved after a pressure cycle.

The analysis of complex modulus plots (M* � jωC0Z*) can
help us have a further understanding of the dielectric behavior of
phenanthrene. Two representative Z″ and M″ plots are
complementary, the former emphasizes phenomena with large
resistance, while the latter shows electrical responses with small
capacitance [35, 36]. Two semicircle arcs corresponding to the
bulk and grain boundary regions of phenanthrene were shown in
Figure 7A. The real partM′ as a function of frequency at different
pressures was displayed in Figure 7B. TheM′ started to increase
with increasing frequency, but then kept a constant value in the
high-frequency region. The imaginary part M″ as a function of
frequency was shown in Figure 7C. Two peaks in the M″-f plots
indicated two types of electrical response mechanisms existing in
phenanthrene that represent change from long-range to short-
range carrier mobility with increasing frequency [17].

The frequency variation of Z″ and M″ of phenanthrene at
2.9 GPa was shown in Figure 7D. High-frequency peak reflects
the dipole relaxation at the bulk, whereas the low-frequency peak
corresponds to the grain boundary. For an ideal Debye relaxation,
the Z″and M″peaks of a particular Resistance-Capacitance
component should be coincident on the frequency scale [37].
However, a significant mismatch between Z″and M″peaks was
observed, which can be attributed to the localized electronic
conduction in phenanthrene [38].

To obtain a deeper insight into the mechanism of the electrical
properties of phenanthrene, DFT theoretical calculations were
performed. The electron localization functions (ELF), energy
band structure, and densities of states of phenanthrene at
different pressures were shown in Figure 8. The electron
localization function was used to describe the charge
redistribution and bonding feature of molecules. Figures 8A,B
suggested that the bonds in the C6 ring were covalent bonds,
whereas intermolecular H atoms formed lone pairs of Phase I and
Phase II at 0.5 and 4 GPa. The bandgap of phenanthrene decreased
from 2.98 eV (0 GPa in Phase I) to 1.50 eV (4 GPa in Phase II)
under compression. Because density functional calculations usually
lead to a considerable underestimation of the energy gap, the actual
band gaps are expected to be much larger, but we can conclude that
the bandgap of phenanthrene decreased significantly with pressure.
The decreased bandgap improves the transport of electrons at
LUMO to HOMO, giving rise to the holes transfer integral in both
directions [39]. According to Marcus theory [40], the hopping
process is the exchange of electrons and holes between neighboring
molecules and the charge transfer rate between two molecules
depends on the recombination energy and charge transfer integral.
Thus, the calculated decreased bandgap of phenanthrene was
caused by increased charge transfer integral and/or by decreased
recombination energy. Compared with the experimental results,
the increased bulk resistance with pressure could be due to the
increased grain boundary density and/or the pressure-induced
disordering, which results in the enhancement of lattice
scattering with increasing pressure.

FIGURE 9 | (A, C) Intramolecular C-C distances; (B, D) intermolecular
bond distances of phenanthrene under different pressures at phases I and II.
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The arrangement of molecules in the crystal structure is mainly
determined by molecular conformation and intramolecular
interactions. Due to the non-hydrostatic environment, the
intramolecular interactions of phenanthrene demonstrated
anisotropic changes with pressure. As shown in Figure 9, the
intramolecular and intermolecular distances of phenanthrene
decreased with pressure, leading to enhanced intramolecular
interaction. This can provide an explanation for both increased bulk
resistance and reduced relaxation frequency. The pressure dependence
of intramolecular and intermolecular bond distance was shown in
Supplementary Table S1. It can be seen that the intermolecular C-C
and H-H interaction was more sensitive with pressure than the
intramolecular C-C ones.

CONCLUSION

In summary, the vibrational and electrical properties of phenanthrene
were investigated by high-pressure in situ impedance spectra
measurements, Raman measurements and DFT calculations. Two
phase transitions occurred at 2.3 and 5.9GPa, and then transformed to
an amorphous state above 12.1 GPa. Below 13.8 GPa, both bulk and
grain boundary resistance increased with pressure. The dielectric
performance of phenanthrene was effectively improved after a
pressure cycle. A significant mismatch between Z″and M″peaks
was observed, which can be attributed to the localized electronic
conduction in phenanthrene. The calculated decreased bandgap of
phenanthrene was caused by increased charge transfer integral and/or
by decreased recombination energy. Our results provide a better
understanding of the correlation between structural modification
and electrical transport properties in phenanthrene and establish
general guidelines for optimization of the applications of new
organic semiconductors.
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