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Minimum resolving sets (edge or vertex) have become an integral part of molecular
topology and combinatorial chemistry. Resolving sets for a specific network provide
crucial information required for the identification of each item contained in the network,
uniquely. The distance between an edge e � cz and a vertex u is defined by d(e, u) � min
{d(c, u), d(z, u)}. If d(e1, u) ≠ d(e2, u), then we say that the vertex u resolves (distinguishes)
two edges e1 and e2 in a connected graph G. A subset of vertices RE in G is said to be an
edge resolving set for G, if for every two distinct edges e1 and e2 in G we have d(e1, u) ≠
d(e2, u) for at least one vertex u ∈ RE. An edge metric basis for G is an edge resolving set
with minimum cardinality and this cardinality is called the edge metric dimension edim(G) of
G. In this article, we determine the edge metric dimension of one-pentagonal carbon
nanocone (1-PCNC). We also show that the edge resolving set for 1-PCNC is
independent.

Keywords: one-pentagonal carbon nonacone, metric dimension, resolving set, edge metric dimension, molecular
graph

1 INTRODUCTION

Carbon nanocones (CNC) made their first appearance in 1968, or perhaps earlier, on the surface
of graphite occurring naturally [25]. These chemical structures are exciting due to their
conceivable uses in gas sensors, gas storage, bio-sensors, energy storage, chemical probes,
and nano-electronic devices, see [2, 3, 8, 17, 29]. Nanocones are the networks of the carbon that
can be represented mathematically as cubic planar infinite graphs. Iijima [19], mainly
addressed graphitic carbon helical microtubules. The existence of CNC and their
combinatorial properties have been discussed in [14, 24]. Depending upon the positive
signed curvature, Klein et al. [25] categorized CNC into eight groups. Brinkmann et al.
have classified these structures [7]. Justus et al. [20] have given the expander constants and
boundaries of these nanocones triangle patches. CNC has recently gained considerable
scientific attention due to its peculiar properties and promising applications such as
hydrogen storage and energy [7].

The chemical graph of carbon nanocones CNCp[m], as shown in Figure 1, comprises of
conical structures with a cycle of size and order p at their center and (m − 1)-layers of six-sided
faces (hexagons) placed at the conical surface around its center. Here we are interested for the
case p � 5 i.e., CNC5[m]. When one pentagon is inserted in the honeycomb layer, a disclination
defect in the graphenic plane is generated, resulting in the formation of a conic structure with
positive curvature in which the pentagon is surrounded by the first belt of five hexagons. CNC5

[m] denotes an (m − 1)-dimensional one-pentagonal carbon nanocone (1-PCNC), where m
represents (m − 1)-number of layers consisting of six-sided faces, which include the conical
surface of the nanocone, and five denotes the presence of a single five-sided face on the tip known
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as its center. Along with it, a two-dimensional planar graph of a 1-
PCNC is constructed, with carbon atoms representing vertices and
bonds representing edges between them (see Figure 2).

Resolvability in graph theory aims to understand the behavior
of real-world distance-based frameworks. It has been used in
chemistry, molecular topology, industrial chemistry, and
computer science. It attracts authors from various fields,
including mathematics, because of the fascinating problems
that arise from the symmetries and structures involved. It is
always highly beneficial in an enigmatic network to identify
uniquely the location of vertices (such as atoms) by
establishing an identity with respect to a specific set. Such a
specific set with minimum cardinality is called the metric basis
and this cardinality is the metric dimension [16, 34]. These
findings have been used effectively in drug patterns to access
specific atoms.

The researchers are motivated by the fact that the metric
dimension has a variety of practical applications in everyday life
and so it has been extensively investigated. Metric dimension is
utilized in a wide range of fields of sciences, including robot
navigation [23], geographical routing protocols [27], connected
joints in network and chemistry [10, 11], telecommunications [6],
combinatorial optimization [31], network discovery and
verification [6], etc. NP-hardness and computational
complexity for the resolvability parameters are addressed in
[15, 26].

Many authors have introduced and analyzed certain
variations of resolving sets, such as local resolving set,
partition resolving set, fault-tolerant resolving set, resolving

FIGURE 1 | CNCp[m].

FIGURE 2 | CNC5[m].
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dominating set, strong resolving set, independent resolving
set, and so on. For further details the reader is referred to [1, 6,
10, 21, 22, 32, 33]. In addition to defining other variants of
resolving sets in graphs, Kelenc et al. [22], introduced a parameter
used to uniquely distinguish graph edges and called it the edge
metric dimension. In general, a graph metric was used to describe
each pair of edges based on distances to a specific set of vertices.
This was based on the assumption that a minimum resolving set R
of a connected graph G identifies uniquely all the vertices of G
using distance-vector, but does not necessarily recognize all the
edges of G.

CNCs are a significant class of carbon nanomaterials that have
been discovered in 1994 by Ge and Sattler [23]. This class of CNC
has recently received considerable attention. Bultheel and Ori [9],
analyzed topological modeling techniques used to study 1-PCNC
and obtained significant findings about the chemical reactivity
and desired sizes. Moreover, they also addressed the topological
roundness and efficiency of CNC5[m] as the long-range
topological potential whose local minima correspond to magic
sizes of nanocones with a greater percentage of formation. In [36],
Zhang et al. calculated analytic expressions of Hosoya polynomial
and certain distance-related indices such as the hyper Harary and
Weiner indices for 1-PCNC. Fereshteh and Mehdi [13], obtained
the adjacent eccentric distance sum index of 1-PCNC. In [5],
Ashrafi et al. proved that W(CNC5[m]) � (623 )m5 + (3103 )m4 +
(12056 )m3 +(11356 )m2 + 86m + 15.

In [30], Saheli et al. proved that
ξ(CNC5[m]) � 5(10m3 + 43

2 m
2 + 31

2 m + 4). For more on CNC5

[m], one can refer to [4, 18, 28].
The flexibility and strength of carbon nanotubes make them

suitable for manipulating another nanoscale structures, implying
that they will play an important part in nanotechnology
engineering. These 3D all-carbon architectures may be used to
create the next generation of power storage, field emission
transistors, photovoltaics, supercapacitors, biomedical devices
& implants, and high-performance catalysis. Because of its
applications, uses, and significance in numerous fields of
study, we are interested in contributing more to this subject.
For our purpose, in 1-PCNC bonds represent the edges and
carbon atoms represent vertices. Recently, a study [17] reveals
that 1-PCNC possesses the minimum metric generator of
cardinality three correspondings to the atoms (vertices)
therein. We now obtain some important results regarding the
edges (bonds) present in 1-PCNC, as there is no such study
regarding the edge metric dimension of 1-PCNC network. So, in
this article, we study some basic properties of 1-PCNC along with
its edge metric dimension.

The main results obtained are as follows:

• The edge metric dimension of 1-PCNC is three.
• Metric dimension (1-PCNC) � Edge metric dimension (1-
PCNC).

• The resolving set and edge resolving set for 1-PCNC are
independent.

The remainder of this paper is structured as: Section 2 introduces
some basic concepts related to the metric dimension and the edge

metric dimension. Some proven outcomes of 1-PCNCwith respect to
the metric dimension are also discussed. We study the edge metric
dimension of 1-PCNC in Sect. 3 and discuss some of its properties.
Finally, the conclusion and future work of the present study are
discussed in Sect. 4.

2 PRELIMINARIES

In this section, we list some basic properties of 1-PCNC, the
definition of metric dimension & edge metric dimension, and
recall some existing results regarding these notions.

Suppose G � (V, E) is a non-trivial, simple, and connected
graph, where V represents a set of vertices and E represents a set
of edges. The distance between two vertices u and w in an
undirected graph G, denoted by d(u, w), is the length of a
shortest u − w path in G.

Definition 1. Chemical Graph: A chemical graph (molecular
graph) is a simple labeled graph in which the vertices
correspond to the atoms of the molecule and the edges
relate to chemical bonds.

Definition 2. One-Pentagonal carbon nanocone: 1-PCNC is
denoted by CNC5[m]; (m ≥ 2). CNC5[m] consists of conical
structures with a cycle of length five at its core and m represents
m − 1 layers of hexagons placed at the conical surface around its
center as shown in Figure 2. The bounded-face boundaries of
CNC5[m] comprises of one five-sided face and 5m(m−1)

2 number of
six sided faces. It has 5m2 number of vertices (or atoms) and
5(m2 + m(m−1)

2 ); m ≥ 1 number of edges (or bonds). By V(CNC5

[m]) and E(CNC5[m]) respectively, we denote the vertex set and
the edge set of 1-PCNC, whereV(CNC5[m]) � {ui,1, ui,2, ui,3, ui,4, . . .,
ui,10i−5|1 ≤ i ≤ m} and E(CNC5[m]) � {ui,1ui,2, ui,2ui,3, ui,3ui,4, . . .,
ui,10i−7ui,10i−6, ui,10i−6ui,10i−5, ui,10i−5ui,1|1 ≤ i ≤m} ∪ {u1,1u2,1, u1,2u2,4,
u1,3u2,7, u1,4u2,10, u1,5u2,13} ∪ {ui,2ui+1,1, ui,2j+1ui+1,2j+2|1 ≤ j ≤ i & 2 ≤
i ≤ m − 1} ∪ {ui,2jui+1,2j+3|i + 1 ≤ j ≤ 2i & 2 ≤ i ≤ m − 1} ∪
{ui,2j−1ui+1,2j+4|2i + 1 ≤ j ≤ 3i & 2 ≤ i ≤ m − 1} ∪ {ui,2j−2ui+1,2j+5|3i +
1 ≤ j ≤ 4i & 2 ≤ i ≤ m − 1} ∪ {ui,2j−3ui+1,2j+6|4i + 1 ≤ j ≤ 5i − 1 & 2 ≤
i ≤ m − 1}.

Definition 3. Metric dimension: A vertex w ∈ V(G) resolves
(recognize) a pair of distinct vertices w1, w2 ∈ V(G) if d(w, w1)
≠ d(w, w2). A set of vertices R 4 V(G) is said to be a resolving
set for G if every pair of different vertices in G are recognized
by at least one vertex from R. For a subset of distinct
(ordered) vertices R � {w1, w2, w3, . . ., wz}4 V(G), the
metric co-ordinate (code) of w ∈ V(G) with respect to R is
the z-vector r(w) � r(w|R) � (d(w, w1), d(w, w2), d(w, w3), . . .,
d(w, wz)). The metric dimension of G, denoted by dim(G), is
defined as dim(G) � min{|R| : R is resoving set in G}. These
notions were introduced, independently by Slater [34] and
Harary and Melter [16].

Definition 4. Independent set: A set of vertices I in a graph G is
said to be an independent set (also known as stable set) if no two
vertices in I are adjacent [12].
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Definition 5. Independent resolving set: A subset of vertices R in
G is said to be an independent resolving set forG, if RE is resolving
as well as independent set [12].

One can see that the metric dimension deals with the vertices
of the graph by its definition, a similar concept dealing with the
edges of the graph introduced by Kelenc et al. in [22], called the
edge metric dimension of graph G, which uniquely identifies the
edges related to graph G.

Definition 6. Edge metric dimension: For an edge e � cz and a
vertex w the distance between them is defined as d(e, w) � min
{d(c, w), d(z, w)}. A subset RE is called an edge resolving set for
G, if for any two distinct edges e1 and e2 of G are recognized by
at least one vertex w of RE. For a subset of distinct (ordered)
vertices RE � {w1, w2, w3, . . ., wz}4 V(G), the edge metric co-

ordinate (edge code) of e ∈ E(G) with respect to RE is the z-
vector rE(e) � rE(e|RE) � (d(e, w1), d(e, w2), d(e, w3), . . ., d(e,
wz)). The edge resolving set with minimum cardinality is
termed as edge metric basis, and that cardinality is known
as the edge metric dimension of graph G, denoted by
edim(G) [22].

Definition 7. Independent edge resolving set (IERS): A subset RE
of distinct vertices in G is said to be an IERS for G, if RE is edge
resolving as well as independent set.

In [17], Hussain et al. obtained the metric dimension of CNC5

[m]. They proved that CNC5[m] denotes a class of plane graph
with constant and bounded metric dimension i.e., the metric
dimension does not depend upon the value of m. For metric
dimension, they gave the following result.

FIGURE 3 | CNC5 [m] for Case 1.

TABLE 1 | Case 1: When both of the vertices ul,1, uz,j lie on the same ith-cycle i.e., l � z � i

Subcase RE Contradictions

1 RE � {ui,1, ui,j}; i � 1 & 2 ≤ j ≤ 5 rE(u2,1u2,2|RE) � rE(u2,1u2,15|RE), a contradiction.
2 RE � {ui,1, ui,j}; i � 2 & 2 ≤ j ≤ 10i − 5 rE(ui,1ui,2|RE) � rE(ui,1ui,10i−5|RE) or rE(ui,1ui,2|RE) � rE(ui,1ui−1,1|RE) or rE(ui,1ui,10i−5|RE) � rE

(ui,1ui−1,1|RE), a contradiction.
3 RE � {ui,1, ui,j}; 3 ≤ i ≤ m & 2 ≤ j ≤ 10i − 5 rE(ui,1ui,2|RE) � rE(ui,1ui−1,2|RE) or rE(ui,1ui,10i−5|RE) � rE(ui,1ui−1,2|RE) or rE(ui,1ui,2|RE) � rE

(ui,1ui,10i−5|RE) or rE(u1,1u1,2|RE) � rE(u1,2u2,4|RE), a contradiction.
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Proposition 1. dim (CNC5[m]) � 3, for every m ≥ 1.
Using the definition of an independent set and Theorem 2 in

[17], we obtain the following result regarding CNC5[m].

Proposition 2. For every m ≥ 2, the independent resolving
number is three for CNC5[m].

3 MAIN RESULTS

Each chemical structure can be represented as a graph in chemical
graph theory, where edges are alternated to bonds and atoms to
vertices. The recent advanced topic is resolvability parameters of a
graph, in which the entire structure is designed in such a way that

each atom (bond) has a unique position. In this section, we show
that the minimum edge resolving set for 1-PCNC has cardinality
three, with atoms/vertices chosen from all possible atom/vertex
combinations.

Theorem 1. edim (CNC5[m]) ≥ 3, for every m ≥ 2.

Proof. To show this, we have to prove that there exists no edge
resolving set RE for CNC5[m] such that |RE| ≤ 2. Since 1-PCNC is
not a path graph, so the possibility of a singleton edge resolving
set for CNC5[m] is ruled out [32]. Next, suppose on the contrary
that |RE| � 2, such that RE � {ul,1, uz,j}. Then, we have the
following possibilities to be considered (see, Table 1, Table 2,
and Table 3).

FIGURE 4 | CNC5 [m] for Case 2.

TABLE 2 | Case 2: When one vertex ul,1 lies on ith cycle and other uz,j lies on the z � (i + 1)th cycle.

Subcase RE Contradictions

1 RE � {ui,1, uz,j}; i � 1 & 1 ≤ j ≤ 15 rE(u3,1u3,2|RE) � rE(u3,1u3,25|RE) or rE(u2,2u3,1|RE) � rE(u2,2u2,3|RE), a contradiction.
2 RE � {ui,1, uz,j}; i � 2 & 1 ≤ j ≤ 25 rE(u2,1u1,1|RE) � rE(u2,1u2,15|RE) or rE(u2,1u2,2|RE) � rE(u2,1u1,1|RE) or rE(u2,1u2,2|RE) � rE(u2,1u2,15|RE) or rE(u3,25u3,24|

RE) � rE(u3,24u3,23|RE), a contradiction.
3 RE � {ui,1, uz,j}; 3 ≤ i ≤m − 1 & 1 ≤ j ≤ 10z − 5 rE(ui,1ui−1,2|RE) � rE(ui,1ui,10i−5|RE) or rE(ui,1ui,2|RE) � rE(ui,1ui−1,2|RE) or rE(ui,1ui,2|RE) �

rE(ui,1ui,10i−5|RE) or rE(u1,1u1,2|RE) � rE(u1,2u2,4|RE), a contradiction.
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For subcases 1 and 2 (Table 1), one can find contradictions easily.
Now, for 3 ≤ i ≤m,we find that the vertex ui,1 (in black color) and
the vertices in yellow, brown, pink, and purple color on ith cycle as

shown in Figure 3 are at the same distance from the edges
{ui,1ui,2, ui,1ui−1,2}, {ui,1ui,10i−5, ui,1ui−1,2}, {ui,1ui,2, ui,1ui,10i−5}, and
{u1,1u1,2, u1,2u2,4} respectively, a contradiction.

FIGURE 5 | CNC5 [m] for Case 3 (Subcase 1 (Panel A) and 2 (Panel B)).

FIGURE 6 | CNC5 [m] for Case 3 (Subcase 3).
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TABLE 3 | Case 3: When the vertices ul,1 and uz,j lie on two distinct cycles that are not neighboring.

Subcase RE Contradictions

1 RE � {u1,1, ui,j}; 3 ≤ i ≤ m & 1 ≤ j ≤ 10i − 5 rE(u1,1u1,2|RE) � rE(u1,1u1,5|RE) or rE(u1,1u2,1|RE) � rE(u1,1u1,2|RE) or rE(u1,1u2,1|RE) � rE(u1,1u1,5|RE), a
contradiction.

2 RE � {ui,1, uk,j}; i � 2; 4 ≤ k ≤ m & 1 ≤ j ≤ 10k − 5 rE(ui,1ui−1,1|RE) � rE(ui,1ui,10i−5|RE) or rE(ui,1ui−1,1|RE) � rE(ui,1ui,2|RE) or rE(ui,1ui,2|RE) �
rE(ui,1ui,10i−5|RE), a contradiction.

3 RE � {ui,1, uk,j}; 3 ≤ i ≤m − 2; i + 2 ≤ k ≤m & 1 ≤ j ≤ 10k − 5 rE(ui,1ui−1,2|RE) � rE(ui,1ui,2|RE) or rE(ui,1ui−1,2|RE) � rE(ui,1ui,10i−5|RE) or rE(ui,1ui,2|RE) �
rE(ui,1ui,10i−5|RE) or rE(u1,1u1,2|RE) � rE(u1,2u2,4|RE), a contradiction.

Case 3B |

Edges Codes rE(e) Edges Codes rE(e) Edges Codes rE(e)

u21,2 (2 m-5,2 m-3,2 m) u210,11 (2 m,2 m + 1,2 m) u2,35,6
(2 m-3,2 m-3,2 m-4)

u22,3 (2 m-5,2 m-4,2 m-1) u211,12 (2 m,2 m + 2,2 m + 1) u2,36,9
(2 m-1,2 m-1,2 m-5)

u23,4 (2 m-4,2 m-4,2 m-2) u212,13 (2m-1,2 m + 1,2 m + 1) u2,38,11
(2 m + 1,2 m + 1,2m-3)

u24,5 (2m-3,2 m-3,2 m-3) u213,14 (2m-2,2 m,2 m + 1) u2,39,14
(2 m + 1,2 m + 2,2 m-1)

u25,6 (2 m-2,2m-2,2m-4) u214,15 (2m-3,2m-1,2 m + 2) u2,311,16
(2 m + 1,2 m + 2,2 m + 1)

u26,7 (2m-1,2m-1,2m-4) u215,1 (2m-4,2m-2,2 m + 1) u2,312,19
(2 m,2 m + 2,2 m + 2)

u27,8 (2 m,2 m,2m-3) u2,32,1
(2m-6,2m-4,2 m) u2,314,21

(2m-2,2 m,2 m + 2)

u28,9 (2 m + 1,2 m + 1,2m-2) u2,33,4
(2m-5,2m-5,2m-2) u2,315,24

(2m-4,2m-2,2 m + 2)

u29,10 (2 m,2 m + 1,2m-1)

Case 3C |

Edges Codes rE(e) Edges Codes rE(e) Edges Codes rE(e)

u31,2 (2 m-7,2 m-5,2 m) u310,11 (2 m + 1,2 m + 1,2m-4) u318,19 (2 m + 1,2 m + 3,2 m + 3)

u32,3 (2 m-7,2 m-6,2 m-1) u311,12 (2 m + 2,2 m + 2,2m-3) u319,20 (2 m,2 m + 2,2 m + 3)

u33,4 (2 m-6,2 m-6,2 m-2) u312,13 (2 m + 3,2 m + 3,2m-2) u320,21 (2m-1,2 m + 1,2 m + 3)

u34,5 (2 m-5,2 m-5,2 m-3) u313,14 (2 m + 2,2 m + 3,2m-1) u321,22 (2m-2,2 m,2 m + 3)

u35,6 (2 m-4,2 m-4,2 m-4) u314,15 (2 m + 2,2 m + 3,2 m) u322,23 (2m-3,2m-1,2 m + 4)

u36,7 (2 m-3,2 m-3,2 m-5) u315,16 (2 m + 2,2 m + 3,2 m + 1) u323,24 (2m-4,2m-2,2 m + 3)

u37,8 (2 m-2,2 m-2,2 m-6) u316,17 (2 m + 2,2 m + 3,2 m + 2) u324,25 (2m-5,2m-3,2 m + 2)

u38,9 (2 m-1,2 m-1,2 m-6) u317,18 (2 m + 2,2 m + 4,2 m + 3) u325,1 (2m-6,2m-4,2 m + 1)

u39,10 (2 m,2 m,2m-5)

Case 3D |

Edges Codes rE(e) Edges Codes rE(e) Edges Codes rE(e)

u3,42,1
(2 m-8,2 m-6,2 m) u3,410,13

(2 m + 1,2 m + 1,2m-5) u3,418,25
(2 m + 2,2 m + 4,2 m + 4)

u3,43,4
(2 m-7,2 m-7,2 m-2) u3,412,15

(2 m + 3,2 m + 3,2m-3) u3,420,27
(2 m,2 m + 2,2 m + 4)

u3,45,6
(2 m-5,2 m-5,2 m-4) u3,413,18

(2 m + 3,2 m + 4,2 m-1) u3,422,29
(2m-2,2 m,2 m + 4)

u3,47,8
(2 m-3,2 m-3,2 m-6) u3,415,20

(2 m + 3,2 m + 4,2 m + 1) u3,423,32
(2m-4,2m-2,2 m + 4)

u3,48,11
(2 m-1,2 m-1,2 m-7) u3,417,22

(2 m + 3,2 m + 4,2 m + 3) u3,425,34
(2m-6,2m-4,2 m + 2)

Case 3A |

Edges Codes rE(e) Edges Codes rE(e) Edges Codes rE(e)

u11,2 (2 m-3,2 m-2,2 m-1) u15,1 (2 m-3,2 m-1,2 m) u1,23,7
(2 m-1,2 m-1,2 m-3)

u12,3 (2 m-2,2 m-2,2 m-2) u1,21,1
(2 m-4,2 m-2,2 m) u1,24,10

(2 m-1,2 m,2 m-1)

u13,4 (2 m-1,2 m-1,2 m-2) u1,22,4
(2 m-3,2 m-3,2 m-2) u1,25,13

(2 m-2,2 m,2 m)

u14,5 (2m-2,2 m,2m-1)
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Case 3E |

Edges Codes rE(e) Edges Codes rE(e) Edges Codes rE(e)

u41,2 (2 m-9,2 m-7,2 m) u413,14 (2 m + 2,2 m + 2,2m-5) u425,26 (2 m + 2,2 m + 4,2 m + 5)

u42,3 (2 m-9,2 m-8,2 m-1) u414,15 (2 m + 3,2 m + 3,2m-4) u426,27 (2 m + 1,2 m + 3,2 m + 5)

u43,4 (2 m-8,2 m-8,2 m-2) u415,16 (2 m + 4,2 m + 4,2m-3) u427,28 (2 m,2 m + 2,2 m + 5)

u44,5 (2 m-7,2 m-7,2 m-3) u416,17 (2 m + 5,2 m + 5,2m-2) u428,29 (2m-1,2 m + 1,2 m + 5)

u45,6 (2 m-6,2 m-6,2 m-4) u417,18 (2 m + 4,2 m + 5,2m-1) u429,30 (2m-2,2 m,2 m + 5)

u46,7 (2 m-5,2 m-5,2 m-5) u418,19 (2 m + 4,2 m + 5,2 m) u430,31 (2m-3,2m-1,2 m + 6)

u47,8 (2 m-4,2 m-4,2 m-6) u419,20 (2 m + 4,2 m + 5,2 m + 1) u431,32 (2m-4,2m-2,2 m + 5)

u48,9 (2 m-3,2 m-3,2 m-7) u420,21 (2 m + 4,2 m + 5,2 m + 2) u432,33 (2m-5,2m-3,2 m + 4)

u49,10 (2 m-2,2 m-2,2 m-8) u421,22 (2 m + 4,2 m + 5,2 m + 3) u433,34 (2m-6,2m-4,2 m + 3)

u410,11 (2 m-1,2 m-1,2 m-8) u422,23 (2 m + 4,2 m + 5,2 m + 4) u434,35 (2m-7,2m-5,2 m + 2)

u411,12 (2 m,2 m,2m-7) u423,24 (2 m + 4,2 m + 6,2 m + 5) u435,1 (2m-8,2m-6,2 m + 1)

u412,13 (2 m + 1,2 m + 1,2 m-6) u424,25 (2 m + 3,2 m + 5,2 m + 5)

Case 3F |

Edges Codes rE(e) Edges Codes rE(e) Edges Codes rE(e)

u4,52,1
(2 m-10,2 m-8,2 m) u4,514,17

(2 m + 3,2 m + 3,2m-5) u4,526,33
(2 m + 2,2 m + 4,2 m + 6)

u4,53,4
(2 m-9,2 m-9,2 m-2) u4,516,19

(2 m + 5,2 m + 5,2m-3) u4,528,35
(2 m,2 m + 2,2 m + 6)

u4,55,6
(2 m-7,2 m-7,2 m-4) u4,517,22

(2 m + 5,2 m + 6,2m-1) u4,530,37
(2m-2,2 m,2 m + 6)

u4,57,8
(2 m-5,2 m-5,2 m-6) u4,519,24

(2 m + 5,2 m + 6,2 m + 1) u4,531,40
(2m-4,2m-2,2 m + 6)

u4,59,10
(2 m-3,2 m-3,2 m-8) u4,521,26

(2 m + 5,2 m + 6,2 m + 3) u4,533,42
(2m-6,2m-4,2 m + 4)

u4,510,13
(2 m-1,2 m-1,2 m-9) u4,523,28

(2 m + 5,2 m + 6,2 m + 5) u4,535,44
(2m-8,2m-6,2 m + 2)

u4,512,15
(2 m + 1,2 m + 1,2 m-7) u4,524,31

(2 m + 4,2 m + 6,2 m + 6)

Case 3G |

Edges Codes rE(e) Edges Codes rE(e) Edges Codes rE(e)

u51,2 (2 m-11,2 m-9,2 m) u516,17 (2 m + 3,2 m + 3,2m-6) u531,32 (2 m + 4,2 m + 6,2 m + 7)

u52,3 (2 m-11,2 m-10,2 m-1) u517,18 (2 m + 4,2 m + 4,2m-5) u532,33 (2 m + 3,2 m + 5,2 m + 7)

u53,4 (2 m-10,2 m-10,2 m-2) u518,19 (2 m + 5,2 m + 5,2m-4) u533,34 (2 m + 2,2 m + 4,2 m + 7)

u54,5 (2 m-9,2 m-9,2 m-3) u519,20 (2 m + 6,2 m + 6,2m-3) u534,35 (2 m + 1,2 m + 3,2 m + 7)

u55,6 (2 m-8,2 m-8,2 m-4) u520,21 (2 m + 7,2 m + 7,2m-2) u535,36 (2 m,2 m + 2,2 m + 7)

u56,7 (2 m-7,2 m-7,2 m-5) u521,22 (2 m + 6,2 m + 7,2m-1) u536,37 (2m-1,2 m + 1,2 m + 7)

u57,8 (2 m-6,2 m-6,2 m-6) u522,23 (2 m + 6,2 m + 7,2 m) u537,38 (2m-2,2 m,2 m + 7)

u58,9 (2 m-5,2 m-5,2 m-7) u523,24 (2 m + 6,2 m + 7,2 m + 1) u538,39 (2m-3,2m-1,2 m + 8)

u59,10 (2 m-4,2 m-4,2 m-8) u524,25 (2 m + 6,2 m + 7,2 m + 2) u539,40 (2m-4,2m-2,2 m + 7)

u510,11 (2 m-3,2 m-3,2 m-9) u525,26 (2 m + 6,2 m + 7,2 m + 3) u540,41 (2m-5,2m-3,2 m + 6)

u511,12 (2m-2,2m-2,2m-10) u526,27 (2 m + 6,2 m + 7,2 m + 4) u541,42 (2m-6,2m-4,2 m + 5)

u512,13 (2 m-1,2 m-1,2 m-10) u527,28 (2 m + 6,2 m + 7,2 m + 5) u542,43 (2m-7,2m-5,2 m + 4)

u513,14 (2 m,2 m,2m-9) u528,29 (2 m + 6,2 m + 7,2 m + 6) u543,44 (2m-8,2m-6,2 m + 3)

u514,15 (2 m + 1,2 m + 1,2m-8) u529,30 (2 m + 6,2 m + 8,2 m + 7) u544,45 (2m-9,2m-7,2 m + 2)

u515,16 (2 m + 2,2 m + 2,2m-7) u530,31 (2 m + 5,2 m + 7,2 m + 7) u545,1 (2m-10,2m-8,2 m + 1)

Case 3H |

Edges Codes rE(e)

ui,i+12,1
(2 m-2i-2, 2 m-2i, 2 m)

ui,i+12j+1,2j+2; 1 ≤ j ≤ i (2 m+2j-2i-3, 2 m+2j-2i-3, 2m-2j)

ui,i+12j,2j+3; i + 1 ≤ j ≤ 2i (2 m+2j-2i-3, 2 m+2j-2i-3, 2m-4i+2j-3)

ui,i+12j−1,2j+4; 2i + 1 ≤ j ≤ 3i (2 m+2i-3, 2 m+2i-2, 2m-4i+2j-3)

ui,i+12j−2,2j+5; 3i + 1 ≤ j ≤ 4i (2 m+8i-2j-2, 2 m+8i-2j, 2 m+2i-2)

ui,i+12j−3,2j+6; 4i + 1 ≤ j ≤ 5i − 1 (2 m+8i-2j-2, 2 m+8i-2j, 2 m + 10i-2j)

Case 3I |

Edges Codes rE(e)

um−1,m
2,1

(0, 2, 2 m)

um−1,m
2j+1,2j+2; 1 ≤ j ≤ m − 1 (2j, 2j-1, 2 m-2j)

um−1,m
2j,2j+3 ; m ≤ j ≤ 2m − 2 (2j-1, 2j-1, 2j-2m + 1)

um−1,m
2j−1,2j+4; 2m − 1 ≤ j ≤ 3m − 3 (4m-5, 4m-4, 2j-2m + 1)

um−1,m
2j−2,2j+5; 3m − 2 ≤ j ≤ 4m − 4 (10m-2j-10, 10m-2j-8, 4m-4)

um−1,m
2j−3,2j+6; 4m − 3 ≤ j ≤ 5m − 6 (10m-2j-10, 10m-2j-8, 12m-2j-10)
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For subcases 1 and 2 (Table 2), one can find contradictions easily.
Now, for 3 ≤ i ≤m − 1, we find that the vertex ui,1 (in black color)
and the vertices in yellow, brown, pink, and purple color on (i +
1)th cycle as shown in Figure 4 are at the same distance from the

edges {ui,1ui−1,2, ui,1ui,10i−5}, {ui,1ui,2, ui,1ui−1,2}, {ui,1ui,2,
ui,1ui,10i−5}, and {u1,1u1,2, u1,2u2,4} respectively, a contradiction.
From subcase 1 (Table 3), we find that the vertex u1,1 and the
vertices in red, green, and blue color on ith (3 ≤ i ≤ m) cycle as
shown in Figure 5A are at the same distance from the edges
{u1,1u1,5, u1,1u1,2}, {u1,1u1,5, u1,1u2,1}, and {u1,1u2,1, u1,1u1,2}
respectively, a contradiction.

Next, from subcase 2, we find that the vertex u2,1 and the
vertices in red, green, and blue color on kth (4 ≤ k ≤ m) cycle as
shown in Figure 5B are at the same distance from the edges
{u2,1u2,2, u2,1u2,15}, {u2,1u2,2, u2,1u1,1}, and {u1,1u2,1, u2,1u2,15}
respectively, a contradiction.

Finally, for subcase 3, we find that the vertex ui,1 (for i � 3, see
Figure 6) and the vertices on the kth (i + 2 ≤ k ≤m) cycle are at the
same distance from the edges {ui,1ui−1,2, ui,1ui,2} or {ui,1ui−1,2,
ui,1ui,10i−5} or {ui,1ui,2, ui,1ui,10i−5} or {u1,1u1,2, u1,2u2,4}, a
contradiction.

Now, by symmetry of graphs other relations can be obtain
(i.e., for 4 ≤ i ≤ m − 2; i + 2 ≤ k ≤ m and 1 ≤ j ≤ 10k − 5), which
shows the same kind of contradictions as we obtained for i � 3, a
contradiction.

Hence, from the above cases, we conclude that there is no edge
metric generator RE for 1-PCNC such that |RE| � 2. However,
symmetry of graphs can be used to derive alternative relations
that show the same kind of contradictions. Therefore, we must
have |RE|≥ 3 i.e., edim (CNC5[m]) ≥ 3.

Next, we prove that the upper bound for the edge metric
dimension of 1-PCNC is also three.

Theorem 2. edim (CNC5[m]) ≤ 3, for every m ≥ 2.

Proof. Suppose RE is an edge resolving set for CNC5[m]. To prove
that the edge resolving set RE of 1-PCNC has cardinality less than
or equal to three (i.e., |RE| � 3, because of Theorem 1), we have to
show that the edge codes corresponding to RE are distinct for any
pair of different edges in CNC5[m]. Let RE � {um,1, um,3, um,2m+2}.
Then, we will show that RE is an edge resolving set for CNC5[m]
with cardinality three. Next, we give edge codes to every edge of
CNC5[m] with respect to RE. For our convenience, we denote the
edges on the CNC5[m] by ui,jui,k � uij,k and ui,juk,l � ui,kj,l .

The edge metric codes for the edges of first cycle and edges
joining first and second cycles are as shown in Case 3A.

The edge metric codes for the edges of second cycle and edges
joining second and third cycles are as shown in Case 3B.

The edge metric codes for the edges of third cycle are as shown
in Case 3C.

The edge metric codes for the edges joining the third and
fourth cycle are as shown in Case 3D.

The edgemetric codes for the edges of fourth cycle are as Case 3E.
The edge metric codes for the edges joining the fourth and fifth

cycle are as shown in Case 3F.
The edge metric codes for the edges of fifth cycle are Case 3G.
Next, the edge metric codes for the edges joining the ith and

(i + 1)th; (5 ≤ i ≤ m − 2) cycles are as shown in Case 3H.
The edge metric codes for the edges joining the i � (m − 1)th

and i + 1 � mth cycles are as shown in Case 3I.

Case 3J |

Edges Codes rE(e)

ui1,2 (2m-2i-1, 2m-2i+1, 2 m)

ui2,3 (2m-2i-1, 2m-2i, 2m-1)

uij,j+1; 3 ≤ j ≤ 2i + 1 (2m-2i + j-3, 2m-2i + j-3, 2 m-j+1)

uij,j+1; 2i + 2 ≤ j ≤ 4i (2m-2i + j-3, 2m-2i + j-3, 2m-4i + j-2)

uij,j+1; 4i + 1 ≤ j ≤ 6i − 2 (2 m+2i-4, 2 m+2i-3, 2m-4i + j-2)

uij,j+1; 6i − 1 ≤ j ≤ 8i − 3 (2 m+8i-j-5, 2 m+8i-j-3, 2 m+2i-3)

uij,j+1; 8i − 2 ≤ j ≤ 10i − 5 (2 m+8i-j-5, 2 m+8i-j-3, 2 m + 10i-j-4)

Case 3K |

Edges Codes rE(e)

um1,2 (0, 1, 2 m)

um2,3 (1, 0, 2m-1)

umj,j+1; 3 ≤ j ≤ 2m + 1 (j-1, j-3, 2 m-j+1)

umj,j+1; j � 2m + 2 (2m, j-3, 0)

umj,j+1; 2m + 3 ≤ j ≤ 4m (j-3, j-3, j-2m-2)

umj,j+1; 4m + 1 ≤ j ≤ 6m − 2 (4m-4, 4m-3, j-2m-2)

umj,j+1; 6m − 1 ≤ j ≤ 8m − 3 (10 m-j-5, 10 m-j-3, 4m-3)

umj,j+1; 8m − 2 ≤ j ≤ 10m − 5 (10 m-j-5, 10 m-j-3, 12 m-j-4)

FIGURE 7 | CNC5 [3].
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The edge metric codes for the edges of ith (6 ≤ i ≤ m − 1) cycle
are as shown in Case 3J.

The edge metric codes for the edges of i �mth cycle are as shown
in Case 3K.

From these edge codes, we find that these are distinct from one
and another in at least one coordinate, implying RE to be an edge
resolving set with cardinality three for CNC5[m]. Hence,
edimCNC5[m] ≤ 3.

By using Theorem 1 and Theorem 2, we obtain the following
result

Theorem 3. edim (CNC5[m]) � 3, for every m ≥ 2.
Next, if the edge resolving set is independent for CNC5[m],

then we have the following important result.

Theorem 4. For every m ≥ 2, the independent edge resolving
number is three for CNC5[m].

Proof. For proof, refer to Theorem 3.

Example 3.1. If m � 3 and RE � {u3,1, u3,3, u3,8}, the edge metric
codes for CNC5 [3] (Figure 7), are shown in Case 3L:

Remark 3.1. For 1-PCNC CNC5[m], we find that edim(CNC5

[m]) � dim(CNC5[m]) � 3 (using proposition 1 and Theorem 3).
The comparison between metric dimension (MD) and edge
metric dimension (EMD) of CNC5[m] is clearly shown in
Figure 8 and the value of these two dimensions are
independent of the number of hexagon layers m and vertices
in CNC5[m].

4 CONCLUSION

Edge metric generators for a given connected chemical graph
contain crucial information required for the identification of each
bond (edge) present in the graph, uniquely. In this article, for an
important class of carbon nanocone, viz., one-pentagonal carbon
nanocone CNC5[m], we prove that edim (CNC5[m]) � 3 and it
does not depend upon the value of m. We show that the
minimum edge resolving set for 1-PCNC is also independent.
The contributions of this research may be beneficial to those
working in the fields of micro-devices built with CNC5[m], nano-
devices, nano-biotechnology, nano-engineering, and pharmacy.
Following the metric dimension and edge metric dimension of
CNC5[m], the natural problem that arises from the text is:

What should be theminimal cardinality ofmixedmetric resolving
set (edge, as well as vertex, resolving set [35]) for CNC5[m]?
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Case 3L |

Edges Codes rE(e) Edges Codes rE(e) Edges Codes rE(e) Edges Codes rE(e)

u11,2 (3,4,5) u26,7 (5,5,2) u2,39,14
(7,8,5) u311,12 (8,8,3)

u12,3 (4,4,4) u27,8 (6,6,3) u2,311,16
(7,8,7) u312,13 (9,9,4)

u13,4 (5,5,4) u28,9 (7,7,4) u2,312,19
(6,8,8) u313,14 (8,9,5)

u14,5 (4,6,5) u29,10 (6,7,5) u2,314,21
(4,6,8) u314,15 (8,9,6)

u15,1 (3,5,6) u210,11 (6,7,6) u2,315,24
(2,4,8) u315,16 (8,9,7)

u1,21,1
(2,4,6) u211,12 (6,8,7) u31,2 (0,1,6) u316,17 (8,9,8)

u1,22,4
(3,3,4) u212,13 (5,7,7) u32,3 (1,0,5) u317,18 (8,10,9)

u1,23,7
(5,5,3) u213,14 (4,6,7) u33,4 (2,0,4) u318,19 (7,9,9)

u1,24,10
(5,6,5) u214,15 (3,5,8) u34,5 (3,1,3) u319,20 (6,8,9)

u1,25,13
(4,6,6) u215,1 (2,4,7) u35,6 (4,2,2) u320,21 (5,7,9)

u21,2 (1,3,6) u2,32,1
(0,2,6) u36,7 (5,3,1) u321,22 (4,6,9)

u22,3 (1,2,5) u2,33,4
(2,1,4) u37,8 (6,4,0) u322,23 (3,5,10)

u23,4 (2,2,4) u2,35,6
(4,3,2) u38,9 (6,5,0) u323,24 (2,4,9)

u24,5 (3,3,3) u2,36,9
(5,5,1) u39,10 (6,6,1) u324,25 (1,3,8)

u25,6 (4,4,2) u2,38,11
(7,7,3) u310,11 (7,7,2) u325,1 (0,2,7)

FIGURE 8 | Comparision between MD and EMD of CNC5 [m].
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