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Purpose:We investigate the feasibility of data-driven, model-free quantitative MRI (qMRI)
protocol design on in vivo brain and prostate diffusion-relaxation imaging (DRI).

Methods: We select subsets of measurements within lengthy pilot scans, without
identifying tissue parameters for which to optimise for. We use the “select and retrieve
via direct upsampling” (SARDU-Net) algorithm, made of a selector, identifying
measurement subsets, and a predictor, estimating fully-sampled signals from the
subsets. We implement both using artificial neural networks, which are trained jointly
end-to-end. We deploy the algorithm on brain (32 diffusion-/T1-weightings) and prostate
(16 diffusion-/T2-weightings) DRI scans acquired on three healthy volunteers on two
separate 3T Philips systems each. We used SARDU-Net to identify sub-protocols of fixed
size, assessing reproducibility and testing sub-protocols for their potential to inform multi-
contrast analyses via the T1-weighted spherical mean diffusion tensor (T1-SMDT, brain)
and hybrid multi-dimensional MRI (HM-MRI, prostate) models, for which sub-protocol
selection was not optimised explicitly.

Results: In both brain and prostate, SARDU-Net identifies sub-protocols that maximise
information content in a reproducible manner across training instantiations using a small
number of pilot scans. The sub-protocols support T1-SMDT and HM-MRI multi-contrast
modelling for which they were not optimised explicitly, providing signal quality-of-fit in the
top 5% against extensive sub-protocol comparisons.

Conclusions: Identifying economical but informative qMRI protocols from subsets of rich
pilot scans is feasible and potentially useful in acquisition-time-sensitive applications in
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which there is not a qMRI model of choice. SARDU-Net is demonstrated to be a robust
algorithm for data-driven, model-free protocol design.

Keywords: quantitative MRI (qMRI), protocol design, artificial neural network (ANN), diffusion-relaxation, brain,
prostate

INTRODUCTION

Quantitative MRI (qMRI) techniques enable the estimation of
biophysical properties of imaged tissues from multi-contrast
images [1], providing promising system-independent
biomarkers in several clinical contexts. Notable examples
include: relaxation times, useful to assess myelination in the
brain [2] or luminal structures in the prostate [3]; diffusion
characteristics, linked to cytoarchitecture in various anatomical
districts [4–9]; blood flow [10]; mechanical stiffness of organs
such as liver [11]; tissue temperature [12].

qMRI can potentially overcome the key limitations of routine
clinical MRI, e.g., its limited sensitivity and specificity to early and
diffuse alterations that often precede the appearance of focal
lesions [13, 14]. Importantly, recent advances in acquisition have
increased dramatically the number of images that can be acquired
per unit time [15–17], enabling rich multi-modal qMRI sampling
schemes, such as joint diffusion-relaxation imaging (DRI)
[18–20]. Such novel approaches exploit complementary
information from multiple MRI contrasts, and may enable
better estimation of microstructural properties compared to
single-contrast methods [21, 22]. Nonetheless, the increased
acquisition complexity makes the design of clinically viable
protocols challenging. Clinical acquisitions should capture
salient signal features within vast sampling spaces in
acceptable times, thereby trading off between scan duration
and information content.

Previous literature has dealt extensively with qMRI protocol
optimisation, i.e., with the design of informative samplings given
a specified scan time. Examples include the design of optimal
diffusion-weighting protocols [4, 5, 23–26]; number and spacing
of temporal sampling in relaxometry [27, 28]; DRI sampling [18].
These previous studies adopt different optimisation strategies,
such as Cramér-Rao lower bound (CRLB) minimisation based on
Fisher information [29], Monte Carlo (MC) samplings [30],
mutual information computation [31], empirical approaches
[32] or discrete searches [33]. Importantly, these previous
optimisation approaches rely on fixed, a priori representation
of measured signals, such as biophysical models (e.g., multi-
compartment models [4, 7, 9, 34]) or phenomenological
descriptors (e.g., cumulant expansions [35] or continuous
distributions of signal sources [18]). Such representations are
indeed useful to capture salient patterns in response to changes in
the prescribed MRI pulse sequence. Adopting a priori
representations for protocol optimisation implies that users
may need to choose sets of tissue parameter values for which
to perform the experiment-design optimisation [29], which may
not be necessarily known at the time of the acquisition. Moreover,
explicit model-based optimisation typically considers only
thermal noise [36] as a source of signal variability, ignoring

instrument-dependent factors [37] and physiological noise
[38]. Ultimately this may limit the generalisability of
optimised protocols in real clinical settings and in presence of
complex pathophysiological processes.

In this work we investigate the feasibility of alternative data-
driven, model-free qMRI protocol optimisation, in the form of
selection of informative measurements from a small set of richly
sampled in vivo qMRI scans. To this end, we introduce an
algorithm that does not rely on any a priori explicit
parametric biophysical signal model, and refer to it as “Select
and retrieve via direct upsampling” network (SARDU-Net).
SARDU-Net selects a subset of qMRI measurements that best
enables the estimation of comprehensively-sampled qMRI
signals. Here we demonstrate it by concatenating two fully-
connected artificial neural networks (ANNs), which are
trained on real-world in vivo qMRI measurements end-to-end.
Following previous preliminary investigation [39], we present the
implementation of SARDU-Net and demonstrate its capability of
finding economical but informative sub-protocols within lengthy
state-of-the-art qMRI scans, namely joint DRI of the brain [17]
and prostate [40–42], whose deployment in clinical settings is
subject to high time pressure.

MATERIALS AND METHODS

Below we introduce our algorithm and describe experiments
performed on data acquired in healthy volunteers in ethically-
approved sessions after obtaining informed written consent.

SARDU-Net Algorithm
We consider the problem of identifying D informative qMRI
measurements within an input data set of in vivo voxel signals,
each made of vectors of M>D measurements. To this end, we
couple a selector, which extracts a subset of size D (which is
predefined by the end user, and not optimised), and a predictor,
which estimates fully-sampled M-measurement sets from the
subsets (Figure 1). We optimise the two jointly under the
hypothesis that the most informative subset enables the best
reconstruction of fully-sampled signals. We demonstrate our
selector-predictor framework implementing these two as fully-
connected ANNs, inspired by deep autoencoders [43, 44], recent
unsupervised learning tools that hold promise to guide MRI
sampling in vast acquisition spaces [45]. The selector ANN
takes a voxel signal made of M measurements s �
[ s1 . . . sM T] as input, and outputs a set of M
corresponding scores w � [w1 . . . wM

T] , of which M −D
are zero. Afterwards, the Hadamard product

wo· s � [w1 s1 . . . wM sM ]T (1)
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is evaluated to select a subset of D out of M measurements, and
passed to the predictor ANN. The predictor outputs
u � [ u1 . . . uM T] , an estimate of the fully-sampled signal
s derived directly from the subset wo· s .

Both selector and predictor are constructed as multi-layer,
fully-connected feedforward ANNs, where each layer is
obtained as a linear matrix operation followed by element-
wise Rectified Linear Units (ReLU). Additionally, the
activations of the selector output neurons are normalised
to add up to one via softmin normalisation, and then
thresholded so that only the D top-firing neurons are kept.
The remaining M −D neurons are zeroed, so that the output
scores w effectively select Dmeasurements. The activations of
the selector output neurons are positive continuous numbers.
The thresholding stage identifies whichD out ofM neurons to
keep (i.e., the top firing), binarising the activations and
selecting D out of M qMRI measurements. The selector
and predictor are optimised jointly end-to-end to find a
subset of measurements that carries the most information
about the fully-sampled signal. For this, a loss function

L � ����u(wo· s) − s
���� 2
2 (2)

measuring the ℓ
2-norm of the reconstruction error (i.e., mean

squared error (MSE)) is minimised via back-propagation [46]
with ADAM optimisation [47] and dropout regularisation [48].
In practice, the differentiable product wo· s enables the
propagation of error gradients from the predictor to the
selector, and hence their joint optimisation.

For network training, input voxels intensities are
normalised as

ŝ � s − smin

smax − smin
, (3)

where smin � 10−6 and smax is the 99th percentile of the range of
variation of the signal intensity across the whole input set.
Afterwards, voxels are split at random into actual training and
validation sets. Training voxels are grouped and passed through
the network in mini-batches; during one such forward network
pass, the selector’s output neuron activations are averaged over
the mini-batch before computing w, and network parameters
then updated. The whole set of training voxels is the input to the
system for a fixed number of epochs, during which the loss
function is evaluated on both training and validation set. In the
latter case, the selector ANN is temporarily deactivated and the
scores w are fixed to the latest values provided by training. The
concatenation of a selector and a predictor network is trained
end-to-end by backpropagating fully-sampled signal prediction
errors through the predictor and then back through the selector.

Brain MRI
Acquisition
We performed brain DRI scans on three healthy volunteers (2
females, 1 male) using a 3T Philips Ingenia CX system. DRI
featured joint diffusion-/T1-weightings, achieved by varying
diffusion weighting and inversion time TI [17]. A multi-slice
saturation inversion recovery (SIR) [49] DW EPI sequence was
used, with the vendor’s 32-channel head coil for reception. Salient
sequence parameters were: 48 axial-oblique slices, 2.4 mm-thick;
field-of-view: 230 × 230 mm2; in-plane resoluton: 2.4 × 2.4 mm2;
repetition time TR � 2,563 ms; TE � 90 ms; saturation delay TS �
300 ms; SENSE factor: 2; multiband factor: 3; readout bandwidth:
2.51 KHz/pixel. Scans were performed with 32 unique (b,TI)
values among b � (0, 1000, 2000, 3000) s/mm2 × TI � (70, 320,
570, 820, 1070, 1320, 1570, 1820) ms. For each (b,TI) pair, three
images were acquired for b � 0 and 21 isotropic-distributed
gradient directions for non-zero b-values, optimising

FIGURE 1 | Block diagram summarising the architecture of SARDU-Net, made of two fully-connected ANNs that are optimised jointly end-to-end to find optimal
subsets of measurements within lengthy quantitative MRI acquisitions. The first ANN is a selector: it takes as input a signal made of multiple MRI measurements from a
voxel, and outputs a corresponding set of scores, which nullify non-salient measurements effectively extracting a subset of the fully-sampled signal. The second ANN is a
predictor: it aims to retrieve the fully-sampled signal from the subset received from the selector.
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directional distribution across the 3 b-shells according to [50].
This corresponded to 528 EPI images in total, with scan time of
45 min:12 s (MRI parameters in Supplementary Table S1).
Additionally, one b � 0 image with reversed phase encoding
direction was acquired for distortion correction.

Post-processing
Brain scans were denoised with Marchenko-Pastur Principal
Component Analysis (MP-PCA) [51] (kernel: 5 × 5 × 5
voxels) and noise floor mitigated with a custom-written
Matlab (The MathWorks, Inc., Natick, Massachusetts,
United States) implementation of the method of moments
[52]. Afterwards, motion and eddy current distortions were
mitigated via affine co-registration based on NiftyReg (http://
cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg), with each volume
co-registered with reg_aladin to the mean of all 528 EPI images.
Finally, FSL topup [53] and bet [54] were used to mitigate EPI
distortions and segment the brain. The median signal across all
voxels and measurements was used to re-scale image intensities
prior to downstream processing.

Experiments
We studied the ability of SARDU-Net to select informative sub-
protocols within the set of DRI measurements. We followed a
leave-one-out approach and used two out of three subjects to
train a SARDU-Net in turn. The remaining subject was then used
to test whether SARDU-Net selected an informative sub-
protocol. For this demonstration we focussed for simplicity on
(b,TI) sub-protocols, and did not consider gradient direction
dependence, as in related literature [29]. We fed SARDU-Net
with directionally-averaged DW signals [55] at fixed (b,TI), which
are commonly referred to as powder-averaged or spherical mean
signals. Directional averaging provides measurements that are
not confounded by the underlying fibre orientation distribution
[56], and is a common step in several DW MRI techniques
[57–59].

SARDU-Net Training
Sub-protocols of D � 16, 8, 4}{ out of M � 32 measurements
were searched, training a SARDU-Net for 300 epochs with the
following parameters: 80 and 20% of voxels as training/validation
sets; four hidden layers for selector ANN with
32, 28, 20, 28, 32}{ neurons for D � 16, 32, 26, 20, 14, 32}{
for D � 8, 32, 25, 18, 11, 32}{ for D � 4; architecture of the
predictor mirroring that of the selector; 18 different sets of
learning options within mini-batch size � 100, 800, 1500}{
voxels × learning rate � 10−4, 10−3}{ × dropout regularisation
� 0.0, 0.2, 0.4}{ . We used four hidden layers for both selector and
predictor to obtain a total of 8 layers, as in preliminary tests this
minimised the validation loss while also avoiding overfitting over
a long epoch range (Supplementary Figure S3). The number of
neurons was linearly decreased layer-by-layer from M to D for
the selector, while it was increased from D toM for the predictor
(note that M −D non-selected measurements are zeroed in the
selector input/predictor output). Training was performed 8 times
for each learning option configuration, initialising the ANNs
randomly each time to assess reproducibility. The performance of

SARDU-Net sub-protocols in multi-contrast analyses (see below)
was assessed using sub-protocols providing the lowest
validation loss.

Multi-Contrast Analysis
We adapted a previous approach [60], which modelled brain
white matter inversion recovery DW measurements at b-value b,
gradient direction g, inversion time TI as

s(b, TI, g) � s0

∣∣∣∣∣∣∣∣∣∣∣∣∣ ∑
Nf

i�1 vi
⎛⎜⎜⎜⎜⎜⎜⎝1 − 2 e−

TI
T1i
⎞⎟⎟⎟⎟⎟⎟⎠ e−b gTDig

∣∣∣∣∣∣∣∣∣∣∣∣∣. (4)

Above vi, T1i and Di are the volume fraction, longitudinal
relaxation time and cylindrically-symmetric diffusion tensor of
fibre population i � 1, . . . , Nf. Here we adapted Eq. 4 by 1)
including the effect of the saturation pulse (fixed saturation-
inversion delay, TS � 300 ms); 2) considering directionally-
averaged signals; 3) setting Nf � 1 to deploy the model across
the whole parenchyma, obtaining

s(b, TI, TS) �
��
π

√
2

s0

∣∣∣∣∣∣∣∣∣∣∣∣∣ 1 − e−
TI
T1 − ⎛⎜⎜⎜⎜⎜⎜⎝1 − e−

TS
T1
⎞⎟⎟⎟⎟⎟⎟⎠e−

TI
T1

∣∣∣∣∣∣∣∣∣∣∣∣∣ e
−bd⊥

erf( ����������
b(d‖ − d⊥)√ )����������

b(d‖ − d⊥)√ .

(5)

We refer to Eq. 5 as T1-weighted spherical mean diffusion
tensor (T1-SMDT) model (the explanation of all terms in Eq. 5 is
reported in the Appendix A1), with tissue parameters: s0
(apparent proton density), d‖ (fibre parallel diffusivity), d⊥
(fibre perpendicular diffusivity), T1 (relaxation time). d‖ and
d⊥ map properties that are independent of the underlying
fibre orientation distribution, and a per-fibre anisotropy index
(AIf) can be derived [56] as

AIf � d‖
d⊥

. (6)

We fitted the T1-SMDT model to the full set of (b,TI)
measurements using a recent ANN-based fitting approach [61],
as available in the qMRI-Net toolbox [62] (link: http://github.com/
fragrussu/qMRINet; details in Supplementary Table S2). For
comparison, we repeated T1-SMDT fitting for SARDU-Net
sub-protocols as well as for sub-protocols obtained by uniform
and geometric [63, 64] downsampling of the (b,TI) space.

Finally, we performed an extensive numerical evaluation in
Matlab to assess SARDU-Net sub-protocols for their ability to
inform downstream multi-contrast analyses for which they were
not explicitly optimised. We compared SARDU-Net and
uniform/geometric sub-protocols against 300 random unique
sub-protocols of the same size in a dictionary-based model
fitting experiment. We generated ∼400,000 synthetic signals
for each SARDU-Net, naïve uniform and random sub-
protocols of the same size by varying tissue parameters (s0, d‖,
d⊥, T1) of Eq. 4 within a uniform grid. Afterwards, we obtained
the combination of tissue parameters providing the lowest signal
MSE, and used it to synthesise fully-sampled signals in each voxel.
These were compared to the actual fully-sampled measured
signals, obtaining voxel-wise MSEs which were averaged
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within one brain slice passing through the corpus callosum and
containing all tissue types. Moreover, the mean value of the
difference between each parameter map obtained from a sub-
protocol and that obtained from the fully-sampled signal was also
calculated. The closest quantile of the random protocol
distribution to which the observed MSEs and parametric map
differences (in absolute value) corresponded were also recorded
for all of SARDU-Net, uniform and geometric sub-samplings.

Prostate MRI
Acquisition
We acquired in vivo DRI scans on three healthy males as part of
an ongoing study [65] using a 3T Philips Achieva system. DRI
featured different diffusion-/T2-weightings, achieved by varying
b-value and echo time TE. A multi-slice diffusion-weighted
(DW) echo planar imaging (EPI) sequence was used, with
the vendor’s 32-channel cardiac coil for reception. Salient
parameters were: 14 axial slices, 5 mm-thick; field-of-view of
220 × 220 mm2; in-plane resolution of 1.75 × 1.75 mm2;
repetition time TR � 2,800 ms; SENSE factor: 1.6; half-scan
factor: 0.62; 2 averages; 1 coronal REST slab for spatial
saturation; readout bandwidth: 2.39 KHz/pixel. Scans were
performed with 16 unique (b,TE) values among b � (0, 500,
1000, 1500) s/mm2 × TE � (55, 87, 121, 150) ms. For each
(b,TE), three images were acquired, using three orthogonal
diffusion gradients when b was not zero, for a total of 48
DRI images (total scan time of 6 min:15 s; MRI parameters in
Supplementary Table S3).

Post-processing
Prostate scans were denoised slice-by-slice with MP-PCA [51]
(kernel: 7 × 7 voxels), and noise floor mitigated with the method
of moments [52]. Motion and eddy current distortions were
mitigated slice-by-slice by co-registering each 2D image to a
reference with affine registration. NiftyReg reg_aladin was used,
and the reference was obtained as the average of all volumes.
Finally, the three images at any fixed (b,TE) obtaining 16 unique
(b,TE) volumes, which were normalised by dividing by the
median signal across all volumes and voxels within the
prostate (same normalisation factor for all volumes). For this,
a prostate mask was manually segmented on the mean EPI image
calculated after co-registration in FSLView [66].

Experiments
Measurement subsets selected by SARDU-Net were tested for their
potential of informing downstream tissue parameter estimation, as
for example via HM-MRI [40, 41]. As in to brain DRI experiments,
we followed a leave-one-out approach and used two out of three
subjects to train a SARDU-Net in turn. The remaining subject was
then used to test the SARDU-Net sub-protocol.

SARDU-Net Training
For each leave-one-out fold, measurements from prostate voxels
of the two training subjects were extracted and assigned at
random to training (80% of voxels) and validation (20% of
voxels) sets. Sub-protocols of D � 12, 9}{ out of M � 16
measurements were searched by training a SARDU-Net for

300 epochs. Four hidden layers were used for selector/
predictor ANNs (selector: 16, 15, 14, 13, 16}{ neurons for D �
12 and 16, 14, 13, 11, 16}{ for D � 9; predictor architecture
mirroring selector), and 18 different sets of learning options
(mini-batch size � 100, 800, 1500}{ voxels × learning rate �
10−4, 10−3}{ × dropout regularisation � 0.0, 0.2, 0.4}{ ). As for
brain MRI, we used four hidden layers for selector/predictor to
obtain a total of 8 layers, with the number of hidden neurons
being linearly decreased layer-by-layer. Moreover, for each
configuration of learning options, training was repeated
8 times using different random network initialisation seeds to
assess reproducibility. For assessing the performance of SARDU-
Net sub-protocols in multi-contrast analyses (see below), we used
sub-protocols provided by the trained net with lowest
validation loss.

Multi-Contrast Analysis
SARDU-Net measurement subsets were evaluated for their
potential to inform multi-contrast signal analyses. For this
evaluation, we adopted one among several potential methods
in the literature, i.e., the HM-MRI [41] model, a multi-
exponential approach describing the total prostate signal as
the sum of luminal, epithelial and stromal components:

s(b,TE)
� s0 vl e

−b dl − TE
T2l +(1 − vl) ve e

−b de − TE
T2e + (1 − ve) e−b ds − TE

T2s( )( ).
(7)

In Eq. 7, s(b,TE) is the prostate signal at a fixed b-value and
echo time TE. The 9 tissue parameters are: s0 (apparent proton
density); vl (luminal water voxel volume fraction); ve (epithelial
fraction of non-luminal tissue); dl, de, ds and T2l, T2e, T2s (ADC
and T2 of luminal/epithelial/stromal water).

Firstly, HM-MRI metrics were computed on the fully-
sampled scans and on SARDU-Net and on naïve sub-
protocols (D � 12, 9}{ ) for comparison, with sub-protocols
obtained by uniform and geometric [63, 64] downsampling
of the (b,TE) measurement space. We used the same ANN-
based fitting procedure used for brain DRI [62] and estimated
voxel-wise vl, ve and s0, while fixing compartment-wise ADC
and T2 values to literature values [41] (details in
Supplementary Table S4).

Subsequently, we assessed the potential of SARDU-Net sub-
protocols to enable downstream analyses for which they were not
explicitly optimised for. We performed a similar dictionary-based
fitting experiment in Matlab as done for brain DRI (Experiments,
Multi-contrast analysis). In this case, we restricted our analysis to
the central slice of each prostate and synthesised a database of
∼125,000 reference signals for each (M

D
) � M!

(M−D)! D! subset of
D � 12, 9}{ out of M � 16 measurements (1,820 for D � 12;
11,440 for D � 9) by varying tissue parameters uniformly on a
grid of previously reported values [41]. The combination of
parameters providing the lowest sub-protocol MSE was used
to synthesise fully-sampled signals and then compute the average
mean squared error (MSE) for the fully-sampled protocols within
the region-of-interest. As for the brain data, the mean value of the
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FIGURE 2 |SARDU-Net measurement selection on DRI of the brain. The figure illustrates results from leave-one-out fold 1 (subject 1 left out during training, which is
performed on subjects 2 and 3) for selection of D � 16 (yellow boxes), and D � 8 (blue boxes) and D � 4 (orange boxes) out ofM � 32 (b,TI) measurements. The images
show spherical mean signals form one brain slice of subject 1. Inversion times (TI, delay between inversion pulse and slice excitation) are arranged along different
columns, while diffusion-weightings (b) along different rows. The saturation delay TS (i.e., delay between saturation pulse and inversion pulse) is fixed for all (b,TI)
measurements to TS � 300 ms.

FIGURE 3 | Reproducibility of SARDU-Net measurement selection for in vivo brain DRI over different leave-one-out training folds and random initialisations. The
normalised 2D histogram in each panel shows the probability of each (b,TI) measurement being selected over eight different repetitions of the SARDU-Net training. Each
repetition featured a unique random initialisation of the SARDU-Net parameters, with all other training options (i.e., mini-batch size, dropout regularisation, learning rate)
fixed to the configuration providing the lowest validation loss. Panels (A–C) (top row): selection of D � 16 out ofM � 32 measurements (A, left: subject 1 out during
training and used for testing; B, middle: subject 2 left out; C, right: subject 3 left out). Panels (D–F) (middle row): selection ofD � 8measurements (D, left: subject 1 out; E,
middle: subject 2 out; F, right: subject 3 out). Panels (G–I) (bottom row): selection of D � 4 measurements (G, left: subject 1 out; H, middle: subject 2 out; I, right: subject
3 out).
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TABLE 1 | Results of the SARDU-Net, uniform and geometric sub-protocol comparison against a null distribution from randomly selected sub-protocols (brain data, T1-SMDT model).

Signal MSE [a.u.] d|| difference [μm2 ms–1] d⊥ difference [μm2 ms–1] T1 difference [ms] s0 difference [a.u.]

D/M Sub-
sampling

Subj. 1 Subj. 2 Subj. 3 Subj. 1 Subj. 2 Subj. 3 Subj. 1 Subj. 2 Subj. 3 Subj. 1 Subj. 2 Subj. 3 Subj. 1 Subj. 2 Subj. 3

16/32 SARDU-
Net

0.162
(q=0.003)*

0.104
(q=0.09)

0.195
(q=0.001)*

– 0.048
(q�0.63)

– 0.018
(q=0.12)

0.026
(q�0.23)

0.026
(q�0.91)

0.028
(q�0.82)

0.017
(q�0.72)

13.2
(q�0.33)

9.2
(q�0.20)

21.1
(q�0.25)

0.384
(q�0.33)

0.238
(q�0.25)

0.540
(q�0.20)

Uniform 0.170
(q�0.24)

0.105
(q�0.23)

0.204
(q�0.19)

0.005
(q=0.06)

0.019
(q�0.13)

– 0.023
(q=0.21)

– 0.008,
(q�0.47)

– 0.012
(q�0.56)

– 0.010
(q�0.48)

6.0
(q=0.17)

– 7.6
(q=0.17)

–3.7
(q=0.03)*

0.221
(q=0.19)

– 0.157
(q=0.19)

– 0.453
(q�0.14)

Geometric 0.177
(q�0.43)

0.107
(q�0.36)

0.224
(q�0.58)

0.028
(q�0.44)

0.019
(q�0.13)

0.051
(q�0.39)

0.002
(q=0.12)

– 0.003
(q=0.17)

0.007
(q=0.39)

– 19.1
(q�0.46)

18.0
(q�0.39)

– 7.9
(q�0.08)

0.410
(q�0.36)

0.229
(q�0.24)

0.082
(q=0.02)*

95% range [0.165;
0.482]

[0.103;
0.565]

[0.199;
0.584]

[–0.121:
0.086]

[–0.207;
0.146]

[–0.258;
0.178]

[–0.040;
0.020]

[–0.093;
0.022]

[–0.061;
0.024]

[–177.4;
63.1]

[–214.7;
88.4]

[–274.0;
71.9]

[–7.088;
1.439]

[–9.902;
1.212]

[-9.54;
1.29]

8/32 SARDU-
Net

0.182
(q=0.05)*

0.116
(q=0.12)

0.214
(q=0.04)*

– 0.033
(q�0.26)

0.127
(q�0.53)

0.021
(q=0.09)

0.045
(q�0.82)

0.002
(q=0.04)*

0.032
(q=0.57)

37.8
(q�0.40)

20.8
(q=0.23)

53.0
(q�0.36)

0.970
(q�0.37)

0.083
(q=0.04)*

0.992
(q�0.28)

Uniform 0.545
(q�0.84)

0.288
(q�0.61)

0.558
(q�0.78)

0.018
(q=0.13)

0.027
(q=0.10)

– 0.039
(q�0.16)

– 0.027
(q=0.61)

– 0.038
(q�0.55)

– 0.037
(q�0.60)

455.8
(q�0.99)

547.9
(q�0.99)

351.9
(q�0.99)

18.01
(q�0.99)

18.27
(q�0.99)

12.20
(q�0.97)

Geometric 0.235
(q�0.28)

0.189
(q�0.52)

0.294
(q�0.32)

– 0.471
(q�0.98)

–0.486
(q�0.97)

– 0.500
(q�0.97)

0.064
(q�0.91)

0.014
(q�0.27)

0.054
(q�0.74)

8.2
(q=0.14)

43.5
(q�0.40)

26.0
(q=0.17)

0.463
(q=0.18)

0.929
(q�0.41)

0.985
(q=0.28)

95% range [0.177;
1.483]

[0.107;
2.140]

[0.215;
1.984]

[–0.350;
0.344]

[–0.425;
0.384]

[–0.498;
0.391]

[–0.084;
0.053]

[–0.147;
0.042]

[–0.111;
0.053]

[–281.7;
109.0]

[–265.5;
146.5]

[–339.5;
92.2]

[–11.76;
2.825]

[–12.32;
2.913]

[–12.26;
2.107]

4/32 SARDU-
Net

0.202
(q=0.002)*

0.122
(q=0.01)*

0.235
(q=0.001)*

0.016
(q=0.05)*

–0.210
(q�0.35)

0.093
(q�0.16)

0.035
(q�0.41)

0.045
(q�0.28)

0.046
(q�0.38)

53.6
(q=0.24)

81.8
(q=0.29)

99.5
(q=0.30)

1.56
(q=0.20)

1.46
(q=0.15)

2.46
(q�0.24)

Uniform 0.659
(q�0.55)

0.630
(q�0.52)

0.649
(q�0.50)

– 0.181
(q�0.39)

– 0.211
(q�0.35)

– 0.218
(q�0.36)

–0.002
(q=0.03)*

– 0.017
(q=0.12)

– 0.015
(q=0.13)

196.7
(q�0.62)

260.7
(q�0.78)

107.8
(q�0.32)

4.27
(q�0.44)

3.04
(q�0.24)

0.07
(q=0.006)*

Geometric 1.250
(q�0.66)

1.231
(q�0.66)

1.353
(q�0.66)

– 0.020
(q�0.07)

– 0.033
(q=0.06)

0.039
(q=0.06)

–0.031
(q�0.37)

– 0.122
(q�0.69)

– 0.068
(q�0.58)

– 59.7
(q�0.27)

–159.7
(q�0.53)

–213.0
(q�0.56)

– 2.18
(q�0.28)

–9.92
(q�0.67)

7.67
(q�0.58)

95% range [0.257;
2.544]

[0.138;
2.547]

[0.309;
0.294]

[–1.00;
0.543]

[–1.08;
0.550]

[–1.11;
0.596]

[–0.158;
0.174]

[–0.218;
0.153]

[–0.190;
0.180]

[–531.4;
277.9]

[–501.8;
294.5]

[–643.3;
250.4]

[–15.58;
8.85]

[–14.48;
7.02]

[–14.48;
5.24]

For each sub-protocol and sub-sampling factor, the table reports subject-wise signal MSE and mean differences of parametric maps with respect to maps obtained from fully sampled signals via dictionary fitting. The table also reports the
95% inclusion ranges of the random sub-protocol distribution, and the closest quantile from the random sub-protocol distribution to which MSEs and parametric map differences (in absolute value) correspond. The lowest MSE/parametric
map differences among SARDU-Net, uniform and geometric sub-sampling is shown in bold font. Asterisks flag cases where the quantile q is q≤0.05.
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difference between each parameter maps obtained from a sub-
protocol and from the full protocol was recorded. Finally, the
distributions of MSE and parameter map differences from the
whole set of (M

D
) sub-protocols were used to assess to which

quantile each of SARDU-Net, uniform and geometric figures
corresponded to.

For all analyses, computation was run on a 24-core 2.8 GHz
AMDOpteron(tm) 6,348 Processor CPU, running CentOS Linux
7 (Core).

RESULTS

Brain MRI
Figure 2 shows SARDU-Net selection of D � 16, 8, 4}{ out of
M � 32 (b,TI) measurements on brain DRI from training fold 1
(complete list of measurement selection available in
Supplementary Table S5; examples of sub-protocol selection
during training available in Supplementary Figure S1). SARDU-
Net sub-protocols sample the full range of b and TI values.
However, they sample less densely measurements characterised
by the lowest signal-to-noise ratio (SNR) levels, as for example
strong diffusion-weightings for TI close to the SIR null point.

Figure 3 shows SARDU-Net reproducibility on brain DRI.
Results from different sub-sampling factors are shown in different
rows, while results from different leave-one-out training folds are
shown in different columns. SARDU-Net measurement selection
is consistent across different algorithm initialisations and different
training folds. A number of measurements are selected consistently
in all cases [e.g., (b,TI) � (0 s mm−2; 1800 ms)], while other
measurements [e.g., (b,TI) � (1,000 s mm−2; 70 ms)] are avoided
consistently.

Table 1 reports subject-wise signal MSE and mean brain T1-
SMDT map differences with respect to maps obtained from fully
sampled signals. The table also reports 95% ranges from the
random sub-protocol distribution, and the quantile of such a
distribution to which SARDU-Net, uniform and geometric sub-
sampling figures correspond to. For all sub-sampling factors,
SARDU-Net sub-protocols ensure a better signal reconstruction
(i.e., lower MSE) based on the T1-SMDT model as compared to
uniform and geometric sub-sampling. For 2 subjects out of 3,
SARDU-Net-based MSE is also within the lowest 5% of the
random protocol distribution, being higher in just two cases (9
and 12% for subject 2, D � 16 and D � 8). Among SARDU-Net,
uniform and geometric sub-sampling, SARDU-Net sub-protocols
enable the computation of maps that are the closest to those
obtained from fully sampled signals for T1 and s0 for strong sub-
sampling factors (M � 4). For less strong sub-sampling factors
and for parametric maps d‖ and d⊥, there is not a sub-sampling
strategy that consistently enables the reconstruction of
parametric maps that are the closest to full sampling. Finally,
in most cases SARDU-Net, uniform and geometric sub-
samplings lead to the computation of parametric maps whose
difference with respect to reference metrics lies in the
interquartile range of the random sub-protocol distribution.

Figure 4 shows T1-SMDT reference parametric maps from
the full protocol as well as those derived from sub-protocols. On

visual inspection, parametric maps derived from SARDU-Net,
uniform and geometric sub-protocols are comparable to the
reference when half of the measurements are kept in the sub-
protocol (D � 16 out of M � 32 measurements). However, for
stronger downsampling (D � 8 and D � 4), SARDU-Net and
geometric sub-protocols preserve key between-tissue contrasts in
all parametric maps, unlike uniform sub-protocols.

Prostate MRI
Figure 5 shows SARDU-Net selection ofD � 12 andD � 9 out of
M � 16 prostate measurements. The figure refers to training fold
1, with the complete list of measurement selection for all folds in
Supplementary Table S6. Additionally, an example of the
evolution of sub-protocol selection during training is included
as Supplementary Figure S2. Figure 6 demonstrates that
SARDU-Net sub-protocols sample the full range of diffusion
and relaxation weightings. While measurements with the lowest
SNR levels (i.e., maximum b and longest TE) are generally not
kept in SARDU-Net sub-protocols, in some cases measurements
that are selected by SARDU-Net feature lower SNR than
measurements that are not selected (e.g., for D � 9, (b,TE) �
(1,500 s mm−2, 87 ms) is kept, while (b,TE) � (500 s mm−2,
87 ms) is not).

Figure 6 shows the reproducibility of SARDU-Net sub-
protocol selection across 8 different random initialisations in
each training fold. Each panel reports as a 2D histogram the
normalised count of each (b,TE) measurement being selected
over the 8 different random seeds (top row: D � 12; bottom row:
D � 9; different folds along different columns). The illustrations
demonstrate that SARDU-Net sub-protocol selection is
consistent across leave-one-out folds and random
initialisations. For instance, the same 8 measurements out of
12 were consistently selected in all 8 random training repetitions
forD � 12 in fold 2 and 3, while in no cases SARDU-Net selected
the measurement corresponding to sequence parameters (b,TE) �
(1,500 s mm−2,150 ms).

Table 2 reports subject-wise signal MSE and mean prostate
HM-MRI map differences with respect to maps obtained from
fully sampled. The table also reports 95% ranges from the all sub-
protocol distribution, and the quantile of such a distribution to
which SARDU-Net, uniform and geometric sub-sampling figures
correspond to. For all sub-sampling factors, SARDU-Net sub-
protocols ensure a better signal reconstruction (i.e., lower MSE)
based on the HM-MRI model as compared to uniform and
geometric sub-sampling. In all cases, SARDU-Net sub-
protocols lead to an MSE that is within the lowest 6% of the
distribution from all (M

D
) sub-protocols. SARDU-Net sub-

protocols also enable the computation of parametric maps that
in most cases show smaller differences (in absolute value) to
metrics derived from fully-sampled signals as compared to
uniform and geometric sub-sampling. The differences are in
most cases within the lowest quartile of the distribution from
all possible (M

D
) sub-protocols.

Figure 7 illustrates examples of HM-MRI indices obtained on
the full protocols as well as on SARDU-Net, uniform and
geometric sub-protocols. Regional variation of vl and ve maps
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is in line with known anatomy of the healthy prostate, as for
example increased luminal water fraction in the peripheral zone.
On visual inspection, metrics obtained from both SARDU-Net,
uniform and geometric sub-protocols show within-prostate
contrasts that are qualitatively similar to those obtained from
the full protocols. HM-MRI metrics from SARDU-Net sub-
protocols appear closer to the fully-sampled reference than
other sub-protocols.

DISCUSSION

Key Findings
This paper investigates the feasibility of data-driven, model-free
qMRI experiment design based on the analysis of lengthy pilot in
vivo scans. Such scans were analysed with an ANN-based
method, SARDU-Net, which identifies informative sub-
protocols to facilitate the deployment of the latest qMRI
techniques in contexts where scan time is limited. Our main
finding is that identifying informative sub-protocols within
in vivo pilot scans without relying on explicit parametric,

biophysical signal models is feasible, and that SARDU-Net
provides a general, robust and reproducible procedure to
identify such sub-protocols, showing utility across a range of
anatomical districts (e.g., brain, prostate) and contrasts
(diffusion, T2, T1).

Sub-protocol Selection
We studied DRI scans of the brain and prostate acquired at 3T on
two separate groups of healthy volunteers. Brain scans consisted
of 32 unique (b,TI) measurements via SIR DW imaging, while
prostate scans featured 16 unique (b,TE) measurements. Data
were analysed with SARDU-Net to identify informative sub-
protocols within the fully-sampled measurement set, made of
16, 8 and 4 out of 32 for brain and 12 and 9 measurements out of
16 for prostate. The reproducibility of the measurement selection
procedure across leave-one-out folds and random initialisations
was also assessed.

Our results demonstrate that data-driven, model-free
protocol selection methods such as SARDU-Net identify
informative sub-protocols within densely sampled
measurement sets, and that such sub-protocols do not

FIGURE 4 | Examples of brain T1-SMDT parametric maps. Different rows show T1-SMDT metrics, while different columns refer to different protocols. From left to
right: full protocol; SARDU-Net, uniform and geometric subprotocols for D � 16, D � 8 and D � 4 measurements. Uniform sub-protocols are: (b,TI) � (0, 1000, 2000,
300) s mm−2 × (70, 570, 1070, 1570) ms for D � 16; (b,TI) � (0, 1000, 2000, 300) s mm−2 × (70, 1070) ms for D � 8; (b,TI) � [(0, 70), (2000, 70), (1000, 1070), (3000,
1070)] (s mm−2, ms) forD � 4. Geometric sub-protocols are: (b,TI) � (0, 1000, 2000, 300) s mm−2 × (70, 320, 820, 1820) ms forD � 16; (b,TI) � (0, 2000) s mm−2 ×
(70, 320, 820, 1820) ms for D � 8; (b,TI) � [(1000, 70), (0, 320), (2000, 820), (3000, 1820)] (s mm−2, ms) for D � 4.
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necessarily feature uniform downsampling of the acquisition
space. The selected measurements span the whole range of signal
weightings for both brain and prostate. Nonetheless,
measurements with the lowest SNR levels (i.e., maximum b
and TI close to neural tissue SIR null point; maximum b and
longest TE for prostate DRI) are consistently avoided. This
suggests that noise is an important factor to consider for
qMRI sampling design. While model-based optimisation
typically relies on some a priori hypotheses on the level and
statistics of thermal noise, our fully-data driven approach
enables the design of qMRI samplings from real-world SNRs
and noise distributions. Moreover, in this pilot investigation we
did not focus on the angular dependence of the diffusion signal,
and therefore treated all (b,TI) (for brain) and (b,TE) (for
prostate) contrasts equally. Nevertheless, in real-life scenarios
some contrasts may be much cheaper to acquire than others (e.g.,
a b � 0 image is much faster to acquire than a full b-shell at non-
zero b), and could therefore be included in the final qMRI sub-
protocol in any case, even if not selected by the algorithm. Also,
the measurement selection algorithm could be adapted to
account for the difference in acquisition time needed for
b-shells of different size and/or b � 0 images, e.g., by
weighting scores attached to each b-shell by their cost in
terms of acquisition [67].

We also characterised the reproducibility of SARDU-Net.
Results from both brain and prostate demonstrate that the
stability of our sub-protocol selection procedure can enable
practical protocol design from a limited number of pilot scans.
However, our results also highlight that some variation in sub-
protocol selection across training folds ad random algorithm
initialisations. The former is likely to originate from intrinsic
between-subject variability, and could be minimised by ensuring
that the pilot training cohort is large enough to capture biological
variability. The latter suggests the presence of different local
minima in the algorithm loss function, a known issue in
optimisation problems. Such latter variability appears to be
small, since a number of key information-carrying
measurements are selected consistently. However, in future we
aim to reduce the sensitivity of the training procedure to the
initial conditions.

Multi-Contrast Analysis
We tested sub-protocols selected by SARDU-Net for their ability
to inform downstream model-based multi-contrast analyses, for
which they were not optimised explicitly. To this end, we adapted
a previous brain white matter modelling method to our SIR DWI
data (i.e., here referred to as T1-SMDT), and utilised a simple
multi-exponential model capturing the joint (b,TE) dependence

FIGURE 5 | SARDU-Net measurement selection on DRI of the prostate. The figure illustrates results from leave-one-out training fold 1 (subject 1 left out during
training, which is performed on subjects 2 and 3) for selection of D � 12 (yellow boxes) and D � 9 (blue boxes) out ofM � 16 (b,TE) measurements. Echo times (TE) are
arranged along different columns, while diffusion-weightings (b) along different rows.
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of the MRI signal in the prostate (i.e., the HM-MRI model). Both
models were fitted to the full set of measurements and on sub-
protocols provided by SARDU-Net, as well as on uniform and
geometric sub-sampling of the measurement space. On visual
inspection, parametric maps obtained from SARDU-Net sub-
protocols are closer to reference maps from full protocols,
especially in the brain and when downsampling is stronger,
suggesting that SARDU-Net sub-protocols preserve key
features of measured signals.

Importantly, parametric maps from both HM-MRI and T1-
SMDT models exhibit differences when derived from different
DRI protocols. This highlights the intrinsic challenge of inverting
highly non-linear models to resolve diffusion/relaxation
properties from noisy measurements [8, 68]. Importantly, we
point out that the HM-MRI and T1-SMDT models were simple
and convenient choices for our demonstration. Different
approaches within a wider landscape of alternative models
could have been equally adopted, each with its own
advantages and disadvantages. In particular, VERDICT [7]
and Relaxed-VERDICT [69] would account for diffusion time
in prostate DRI, neglected in this study, while multi-
compartment models [8, 58, 70, 71] could be adapted for
brain DRI. We reserve such alternative approaches for future
investigation.

Finally, we compared SARDU-Net sub-protocols for their
ability to capture salient characteristics of input MRI signals
against an extensive list of alternative sub-protocols. We used
the T1-SMDT and HM-MRI models to reconstruct fully-
sampled signals from 1) all possible sub-protocols of fixed

size for prostate DRI (12 and 9 measurements out of 16) and
from 2) 300 random sub-protocols for brain DRI (16, 8 and 4
measurements out of 32), as well as from SARDU-Net, uniform
and geometric downsampling. Our analyses show that SARDU-
Net sub-protocols capture salient features of fully-sampled DRI
signals, since in almost all cases they are within the top-
performing (best 5%) sub-protocols in terms of
reconstruction MSE, hence approximating the best small-
sample/task-specific protocols without being trained
specifically to do so. Also, Figures 4, 7 as well as Tables 1, 2
show that parametric maps from SARDU-Net sub-protocols are
good approximations of reference metrics from fully-sampled
signal. Nevertheless, they are not the closest to the reference
maps, despite being the signal MSE (i.e., a measure of the quality
of fit) the lowest, as for example for d|| in brain MRI. This
finding may be explained by considering that: 1) parameters
such as d|| may be generally very difficult to estimate because of
low sensitivity of the signal [68]; 2) different combinations of
microstructural parameters may lead to similar MRI signal
predictions and hence MSE; 3) the random protocols that
score best on a specific parametric maps may be the best for
this specific task and data set, whereas SARDU-net is designed
in such a way as to be generically most informative. We point
out that 2) can lead to ill-posed model inversion in quantitative
MRI, i.e., to degenerate model fitting landscapes [68] such that a
good quality of fit in signal space may not be a guarantee of
accurate parameter estimation [72]. Regarding the accuracy in
brain MRI parameter maps estimation (e.g., point 1) above for
d||), we point out that SARDU-Net sub-protocol maps are less

FIGURE 6 | Reproducibility of SARDU-Net measurement selection for in vivo prostate DRI over different leave-one-out training folds and random initialisations. The
normalised 2D histogram in each panel shows the probability of each (b,TE) measurement being selected over eight different repetitions of the SARDU-Net training. Each
repetition featured a unique random initialisation of the SARDU-Net parameters, with all other training options (i.e., mini-batch size, dropout regularisation, learning rate)
fixed to the configuration providing the lowest validation loss. Panels (A–C) (top row): selection of D � 12 out of M � 16 measurements (A, left: subject 1 left out
during training and used for testing; B, middle: subject 2 out; C, right: subject 3 out). Panels (D–F) (bottom row): selection ofD � 9measurements (D, left: subject 1 out; E,
middle: subject 2 out; F, right: subject 3 out).
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TABLE 2 | Results of the SARDU-Net, uniform and geometric sub-protocol comparison against a null distribution obtained from all possible sub-protocols (prostate data, HM-MRI model). The bold font indicates the lowest
MSE/lowest parametric map difference among values obtained for SARDU-Net, uniform and geometric sub-samplings.

D/M Sub-
sampling

Signal MSE [a.u.] νl difference ν difference s0 difference [a.u.]

Subj. 1 Subj. 2 Subj. 3 Subj. 1 Subj. 2 Subj. 3 Subj. 1 Subj. 2 Subj. 3 Subj. 1 Subj. 2 Subj. 3

12/16 SARDU-Net 0.80
(q= 0.01)*

0.43
(q = 0.01)*

0.047
(q = 0.02)*

–0.0006
(q � 0.001)*

– 0.001
(q = 0.02)*

– 0.006
(q � 0.23)

0.01
(q = 0.04)*

0.001
(q = 0.006)*

– 0.028
(q = 0.32)

0.02
(q = 0.21)

0.006
(q = 0.07)

– 0.001
(q = 0.07)

Uniform 1.13
(q � 0.88)

0.51
(q � 0.69)

0.051
(q � 0.31)

0.01
(q � 0.001)*

– 0.04
(q � 0.41)

– 0.012
(q � 0.40)

0.23 (q � 0.77) – 0.21
(q � 0.65)

– 0.052
(q � 0.49)

– 0.08
(q � 0.70)

0.079
(q � 0.64)

0.015
(q � 0.51)

Geometric 0.90
(q � 0.16)

0.44
(q � 0.14)

0.050
(q � 0.25)

0.0005
(q = 0.001)*

– 0.002
(q � 0.03)*

0.003
(q = 0.12)

0.06 (q � 0.06) 0.08
(q � 0.29)

0.062
(q � 0.55)

0.08
(q � 0.67)

0.076
(q � 0.63)

0.034
(q � 0.76)

95% range [0.88;
2.03]

[0.44;
0.76]

[0.048;
0.080]

[0.001;
0.39]

[– 0.07; 0.16] [– 0.05; 0.06] [– 0.22; 0.60] [– 0.26; 0.37] [– 0.127;
0.220]

[– 0.12; 0.24] [– 0.30; 0.13] [– 0.067;
0.049]

9/16 SARDU-Net 0.88
(q = 0.01)*

0.46
(q = 0.06)

0.052
(q = 0.06)

–0.00004
(q = 0.001)*

0.088
(q � 0.69)

0.025
(q = 0.41)

0.006
(q = 0.01)*

0.23
(q � 0.51)

0.031
(q = 0.17)

– 0.01
(q = 0.06)

0.04
(q = 0.17)

– 0.002
(q = 0.03)*

Uniform 1.05
(q � 0.51)

0.58
(q � 0.56)

0.058
(q � 0.25)

–0.0006
(q � 0.001)*

– 0.059
(q � 0.34)

– 0.026
(q � 0.42)

0.214
(q � 0.49)

– 0.25
(q � 0.54)

– 0.087
(q � 0.42)

– 0.03
(q � 0.20)

0.12
(q � 0.55)

0.033
(q � 0.56)

Geometric 0.97
(q � 0.35)

0.47
(q � 0.09)

0.053
(q � 0.09)

0.02
(q � 0.64)

0.048
(q = 0.28)

0.020
(q � 0.35)

– 0.181
(q � 0.42)

0.09
(q = 0.21)

0.044 (q
� 0.23)

– 0.02 (q
� 0.11)

0.05
(q � 0.18)

0.022
(q � 0.39)

95% range [0.89;
2.56]

[0.45;
1.27]

[0.050;
0.168]

[0.001;
0.44]

[– 0.073;
0.345]

[– 0.060;
0.167]

[– 0.251;
0.615]

[– 0.31; 0.37] [– 0.157;
0.314]

[– 0.24; 0.60] [– 0.40; 0.28] [– 0.076;
0.117]

For each sub-protocol and sub-sampling factor, the table reports subject-wise signal MSE and mean differences of parametric maps with respect to maps obtained from fully sampled signals via dictionary fitting. The table also reports the
95% inclusion ranges of all sub-protocol distribution, and the closest quantile from the all sub-protocol distribution to which MSEs and parametric map differences (in absolute value) correspond. The lowest MSE/parametric map differences
among SARDU-Net, uniform and geometric sub-sampling is shown in bold font. Asterisks flag cases where the quantile q is q≤ 0.05.

Frontiers
in

P
hysics

|w
w
w
.frontiersin.org

N
ovem

ber
2021

|V
olum

e
9
|A

rticle
752208

12

G
russu

et
al.

D
ata-D

riven,
M
odel-Free

M
R
IP

rotocolD
esign

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


close to references for brain MRI than they are for prostate MRI.
We speculate that this issue is seen more clearly in our brain
data, rather than prostate data, since the model used in brain
MRI has more tissue parameters than for prostate (T1-SMDT
for brain, with four free parameters: d||, d⊥, T1, s0; HM-MRI for
prostate, with three free parameters: vl, ve, s0. Note that in HM-
MRI compartment-wise diffusivities and T2 relaxation times,
notoriously difficult to fit [68], are fixed and not fitted.
Regarding signal prediction, SARDU-Net MSEs are
consistently lower than those provided by uniform/geometric
uniform sub-protocols in both brain and prostate data, with the
difference in performance becoming stronger as subsampling
becomes more aggressive. This suggests that uniform sampling
of DRI measurement spaces is a reasonable choice when a high
number of measurements can be taken. However, non-trivial
sampling is likely to capture salient signal characteristics better
when only a few measurements can be taken. When the sub-
sampling factor is not too strong (i.e., for moderate sub-
sampling), simpler sub-sampling strategies (i.e., geometric/
uniform sub-sampling) may work reasonably well. Therefore,
data-driven sub-protocol selection approaches such as SARDU-
Net may be most useful when very short acquisitions are to be
searched within lengthy pilot protocols.

Finally, we remark once more that no information about
parametric maps is used for SARDU-Net training: this is a
deliberate design choice, as we aim to explore the potential of
model-free protocol design. SARDU-Net sub-protocols are
assessed during training for their ability to enable prediction
of fully-sampled signals. Here we find that SARDU-Net sub-
protocols do enable excellent fully-sampled signal predictions,
even when an independent predictor (i.e., the T1-SMDT/HM-
MRI models for brain/prostate) is used instead of the trained
SARDU-Net predictor network. This demonstrates that SARDU-
Net is an effective algorithm to identify measurements that carry
information about the overall signal characteristics. Interestingly,
SARDU-Net parametric maps are not necessarily the closest to
references from fully-sampled signals. This is seen, for example,
when comparing uniform and SARDU-Net sub-sampling for
D/M � 16/32, a task for which brain T1-SMDT parametric

maps from SARDU-Net sub-protocols exhibit certain qualitative
differences compared to references from fully-sampled signals.
However, we also point out that in the same sub-sampling task
the signal MSE from SARDU-Net sub-protocols is lower than for
uniform sub-sampling, demonstrating that SARDU-Net training
was successful in identifying a sub-protocol that supports optimal
estimation of the full signal. We speculate that the measurements
selected by SARDU-Net for the brain D/M � 16/32 task may be
prone to degeneracies of the fitting landscape [68, 72]. This could
explain why the better quality-of-fit in terms of MRI signal for the
SARDU-Net subprotocol does not translate to a higher accuracy
in terms of parameter maps, as compared to uniform sub-
sampling. Importantly, we highlight that for a specific choice
of model, it is likely that a sub-protocol enabling the most
accurate parameter map estimation could be found by
optimising the Fisher matrix of the model itself [29]. SARDU-
Net aims for a protocol that is generally the richest in
information, independently of the choice of model. Our
experiments verify this by showing that SARDU-Net sub-
protocols enable optimal estimation of the full signal, and also
perform well in estimating parameter maps for previously unseen
models.

Methodological Considerations
Data-driven qMRI protocol design methods such as SARDU-Net
would require the acquisition of a small number of rich, pilot
qMRI scans when a new clinical study is being set up, from which
informative sub-protocols could be identified given a scan time
budget. Pilot scans are typically performed any way for quality
control when developing newMRI procedures. Importantly, such
pilot scans could be included in subsequent group-level analyses,
since the final protocol would be a subset of it.

In this first explorative analysis, we tested data-driven protocol
design on a small number of healthy volunteers, under the
hypothesis that this suffices to capture the essence of DRI
qMRI signals in brain and prostate, at least to demonstrate the
potential of SARDU-net. Nonetheless, we acknowledge that
including greater diversity of training data is important to
enable the selection of qMRI protocols that capture key signal

FIGURE 7 | Examples of prostate HM-MRI parametric maps. Different rows show HM-MRI metrics, while different columns refer to different protocols. From left to
right: full protocol; SARDU-Net, uniform and geometric subprotocols for D � 12 and D � 9 measurements. Uniform sub-protocols were: (b,TE) � (0, 500, 1000, 1500)
s mm−2 × (55, 121, 150) ms (D � 12); (b,TE) � (0, 1000, 1500) s mm−2 × (55, 121, 150) ms (D � 9). Geometric sub-protocols were: (b,TE) � (0, 500, 1500) s mm−2 × (55,
87, 121, 150) ms (D � 12); (b,TE) � (0, 500, 1500) s mm−2 × (55, 87, 150) ms (D � 9).
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features, in particular including patient data to provide
samples from pathological tissues we expect to observe in
practice. Also, richer training data sets may lead more
generalisable solutions, for instance by enabling a better
characterisation of inter-subject variability. The choice of
the training set remains a critical issue in general for
machine learning-based approaches of this type; poor
choices can lead to bias in many applications including
qMRI, as demonstrated in [73, 74]. Such effects can affect
data-driven protocol optimisation in a very similar way and
future work will need to address this critical point to ensure
responsible and reliable application of the method. We reserve
the investigation of measurement selection in larger cohorts
including both patients and controls to future applicative
studies. These may exploit data augmentation techniques to
increase the number of examples of under-represented
pathological signals, as well as from any other tissue whose
accurate characterisation may be of interest (e.g., grey matter
compared to white matter).

Importantly, we point out that the latest acquisition
technologies [15] make it achievable to sample two to four
sequence parameters (e.g., echo time, inversion time and
diffusion encoding) densely in under 1 h [17], as required in
data-driven protocol optimisation approaches as SARDU-Net.
However, data-driven optimisation would become impractical if
larger acquisition spaces were of interest, as pilot protocols
exceeding the hour would be needed. Related to this point, we
acknowledge that our prostate DRI was well under the hour limit
(nominal scan time of 6 min), and therefore may not be as
representative of rich qMRI samplings as our brain DRI
acquisition instead. This was due to the fact that the scan was
performed as part of an ongoing MRI study [65]. In future, we
will explore richer (b,TE) samplings and include diffusion time
dependence [7, 69], which is not considered in this
demonstration, to better assess the potential of SARDU-Net
for prostate imaging.

We remark that our model-free approach is an alternative to
previous model-based optimisation strategies [29], which remain
valid options when a specific model is the main interest of a study.
Here we report on a first exploratory analysis of the feasibility of
an alternative framework, i.e., data-driven model-free qMRI
protocol design. Model-based approaches make strong
assumptions about the mathematical form of the signal and its
relation to the underlying tissue, but do not require the
acquisition of training data; data-driven approaches, on the
other hand, do not make hypothesis on the explicit MRI
signal parametrisation as a function of microstructural
properties, but rely on the hypothesis that the available
training data is representative. Such an alternative approach,
with its own advantages and disadvantages, may be appealing
when multiple downstream analyses are of interest or when the
qMRI model is not known to a high degree of confidence at the
time of the acquisition, a common situation in qMRI.
Nevertheless, we acknowledge that future work is required to
confirm the findings of this study before data-driven, model-free
protocol design can be deployed in larger groups of healthy
volunteers or patients.

Importantly, data-driven protocol design based on dense
pilot scans, such as SARDU-Net, inevitably leads to
discretising the acquisition parameter space, owing to the
discrete sampling of the input scans, which is further sub-
sampled in the sub-protocol search (Figures 3, 6). Such an
approach requires the input qMRI protocol to be dense enough
to capture the essence of the signal, i.e., that the resolution in
sequence parameter space suffices to characterise its salient
features (note that the output qMRI sub-protocol is
necessarily a subset of the input measurement set). Moreover,
we point out that the discretised acquisition space still
supports, continuous, band-limited representations (e.g.,
expansions in spherical harmonic bases for the diffusion
signal), which may offer complementary solutions for
protocol optimisation to the ANN-based approach used here.
This may prove especially useful when considering the
angular dependence of the diffusion signal, which is not
considered here, where all (b,TI) (for brain) and (b,TE) (for
prostate) contrasts are treated equally as a first proof-of-
concept. In future, we plan to compare our approach to
alternative and equally valid frameworks based on continuous
representations [75–77] or on the joint the application of
dictionary learning and compressed sensing on simulated
data [78].

Furthermore, in this work we compared sub-protocols
selected by SARDU-Net to uniform and geometric
downsamplings of DRI measurement spaces and, more
generally, to a large number of randomly selected sub-
protocols. We acknowledge that alternative uniform or
geometric sub-samplings of the discrete input (b,TI) and
(b,TE) measurement space could have been identified. We
avoided trivial sub-protocols that would have provided unfair
advantages to SARDU-Net (for instance, all b-values were
included in uniform brain DRI sub-protocols even when
D � 4), and included computational experiments where
SARDU-Net sub-protocols are compared to an exhaustive
list of alternatives (300 sub-protocols for brain DRI; all sub-
protocols for prostate DRI). In both cases SARDU-Net sub-
protocols enable downstream analyses for which they were
not explicitly optimised for, suggesting model-free methods
such as SARDU-Net can capture the salient features of
input MRI signals. Interestingly, testing the quality of
signal/metric predictions for a number of randomly-
selected sub-protocols may be per se an effective way of
finding informative sub-samplings when exhaustive
searchers are not tractable. However, these random
protocol searches as implemented here are fundamentally
distinct from SARDU-Net, since they relied on biophysical
models of the MRI signal (i.e., T1-SMDT for brain; HM-MRI
for prostate). Therefore, they do not represent an alternative
model-free solution to SARDU-Net, but constitute a model-
based optimisation strategy. Notably, SARDU-Net provided
close to optimal solutions even for tasks for which it was not
directly optimised for.

We showed the utility of coupling and optimising jointly a
selector and a predictor. We demonstrated this by
implementing both with fully-connected ANNs, given their
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excellent function approximation properties [79, 80]. This
simple structure suffices to demonstrate the potential and
flexibility of data-driven qMRI protocol design, making the
algorithm easy to train with limited computational resources
when extensive sub-protocols searches become unfeasible
(i.e., a situation quickly reached for M ∼ 30). Nonetheless,
we acknowledge that different design choices could be equally
valid, as for example genetic searches [33] for the selection
stage. Also, at present we use the selector output neuron
activations to decide on which measurements to include in
the sub-protocols, effectively performing hard thresholding.
We plan to explore more sophisticated selection strategies
that could make use of the continuous information carried out
by the selector output activations. We also plan to replace the
simple grid search used here to design SARDU-Net learning
options, and to explore alternative architectures beyond the
four layers with linearly decreasing/increasing hidden neuron
number used here (Supplementary Figure S3). Future work
will extend sub-protocol selection to search for a trade-off
between signal reconstruction quality (i.e., signal MSE) and
scan time (i.e., sub-protocol size D), or to implement hybrid
approaches that include information on the quality of
parametric maps.

In this study, we used SARDU-Net as a tool to identify
informative sub-protocols within lengthy pilot scan.
Nonetheless, it should be noted that SARDU-Net effectively
learns a mapping from a short qMRI protocol to a richer one.
Therefore, one could potentially employ a trained SARDU-Net to
enhance/enrich a qMRI protocol. Here we did not explore this
application, since alternative architectures and/or learning
strategies, specifically designed for this task [81], are likely to
outperform SARDU-Net.

We also point out that SARDU-Net neither measures the SNR
level of the input data, nor parametrises the sub-protocol
selection as a function of SNR. SARDU-Net is a fully data-
driven approach, and the sub-protocols that it identifies may
therefore vary depending on the SNR of the input scans, for any
fixed input sampling scheme. It follows that such output sub-
protocols should be used for prospective acquisitions whose SNR
is comparable to that of the data used for SARDU-Net training.
Moreover, SARDU-Net does not model explicitly the dependence
of the signal on the actual sequence parameter values, as it outputs
a simple numbered list of selected measurements (e.g.,
measurement #0, #4, #9, etc). Departures from the nominal
sequence parameter values may lead to the selection of
different measurement sub-sets should such departures be
strong enough to introduce new features in the fully-sampled
signal.

Conclusions
The model-free, data-driven identification of economical but
informative qMRI protocols for clinical application under high
time pressure from a small number of rich pilot acquisitions with
long acquisition times is feasible. For this purpose, approaches
such as SARDU-Net offer practical solutions to identify sub-
protocols that capture the salient characteristics of densely-
sampled training MRI signals.
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APPENDIX

This appendix describes how the different multiplicative factors

part of Eq. 5 were obtained. The factor | 1 − e−
TI
T1 − (1 −

e−
TS
T1 )e− TI

T1 | describes T1-weighting obtained by means of a
saturation and an inversion pulse in the saturation inversion

recovery sequence [49]. The factor e−bd⊥ erf(
������
b(d‖− d⊥)

√
)������

b(d‖− d⊥)
√ was

obtained by spherical averaging of the signal from a diffusion
tensor. Spherical averaging describes the integration of an
orientation-dependent signal over the unit sphere, which in
real-world is performed by averaging diffusion-weighted
measurements corresponding to different gradient directions at
fixed b-value [56]. For a cylindrically symmetric diffusion tensor

D � (d‖ − d⊥) nnT + d⊥Iwith axial/radial diffusivity d‖/d⊥ and

principal direction n, the spherical mean of its signal s �
s0 e−b gTDg (where b is the b-value and g is the gradient
direction) is

�s � ∫
‖g‖�1

s0 e
−b gTD g d2g � ∫

‖g‖�1
s0 e

−b gT((d‖− d⊥) n nT + d⊥I ) gd2g

�
��
π

√
2

s0 e
−bd⊥

erf( ���������
b(d‖ − d⊥)√ )���������

b(d‖ − d⊥)√
(A1)

for any given n [56].
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