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Purpose: The aim of this study is to develop a practicable automatic clinical target volume
(CTV) delineation method for radiotherapy of breast cancer after modified radical
mastectomy.

Methods: Unlike breast conserving surgery, the radiotherapy CTV for modified radical
mastectomy involves several regions, including CTV in the chest wall (CTVcw), supra- and
infra-clavicular region (CTVsc), and internal mammary lymphatic region (CTVim). For
accurate and efficient segmentation of the CTVs in radiotherapy of breast cancer after
modified radical mastectomy, a multi-scale convolutional neural network with an
orientation attention mechanism is proposed to capture the corresponding features in
different perception fields. A channel-specific local Dice loss, alongside several data
augmentation methods, is also designed specifically to stabilize the model training and
improve the generalization performance of the model. The segmentation performance is
quantitatively evaluated by statistical metrics and qualitatively evaluated by clinicians in
terms of consistency and time efficiency.

Results: The proposed method is trained and evaluated on the self-collected dataset,
which contains 110 computed tomography scans from patients with breast cancer who
underwent modified mastectomy. The experimental results show that the proposed
segmentation method achieved superior performance in terms of Dice similarity
coefficient (DSC), Hausdorff distance (HD) and Average symmetric surface distance
(ASSD) compared with baseline approaches.

Conclusion: Both quantitative and qualitative evaluation results demonstrated that the
specifically designed method is practical and effective in automatic contouring of CTVs for
radiotherapy of breast cancer after modified radical mastectomy. Clinicians can
significantly save time on manual delineation while obtaining contouring results with
high consistency by employing this method.
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1 INTRODUCTION

According to a report from the World Health Organization,
breast cancer has overtaken lung cancer as the most prevalent
cancer worldwide [1]. Different stages of tumor progression
require different types of surgical treatment, including breast-
conserving surgery (BCS) and Radical Mastectomy (RM).
Modified radical mastectomy (MRM) is widely used in clinical
practice for the treatment of breast cancer to ensure surgical
efficacy while reducing surgical damage and improving the
patient’s quality of life [2]. Specifically, MRM has become a
cornerstone of breast cancer treatment in China. It involves
excising only the mammary gland and clearing the axillary
lymph nodes, while preserving the pectoralis major and minor
muscles, thereby ensuring postoperative mobility and
appearance.

AlthoughMRM is beneficial to patients, it presents a challenge
to clinicians in contouring the clinical target volume (CTV) for
postoperative radiotherapy because the corresponding CTVs
involve several target areas with relatively complex anatomic
structures compared with their counterparts in BCS and HS.
There are three targets in the CTV delineation for radiotherapy of
breast cancer after MRM: CTV in the chest wall (CTVcw),
supraclavicular region (CTVsc), and internal mammary
lymphatic region (CTVim), among which the position and
volume vary significantly. The significant variation between
patients and the inter-intra-observation variability [3, 4] also
results in highly demanding and time-consuming work for
clinicians. Conversely, research has demonstrated that the
incidental doses to regions, such as the contralateral breast
and thyroid caused by contouring errors can affect patients’
quality of life [5–7]. Therefore, there is an urgent need to
develop an automatic CTV delineation method for
radiotherapy of breast cancer after MRM to reduce the burden
on clinicians while improving work efficiency and accuracy.

Currently, most automatic contouring methods are developed
for radiotherapy after breast-conserving surgery because they
only segment the breast with the mammary gland. For example,
atlas-based methods are successful in breast [8] segmentation
under the condition that the amount of data and the inter-data
variation are small. As the volume of data grows, deep-learning-
based approaches have achieved significant development toward
remedying the cases with large deformation and other
considerable variations and have been adopted by an
increasing number of institutes and clinicians.

To the best of our knowledge, this is the first study whose aim
is to develop a deep learning-based automatic CTV delineation
algorithm for radiotherapy of breast cancer after MRM. In this
study, we propose a specifically designed multi-objective
segmentation method for automatic CTV delineation for
radiotherapy of breast cancer after MRM. An orientation
attention mechanism is proposed to tackle the misrecognition
of a similar structure between the breast and back sides caused by
modified radical surgery. To enable the model to segment the
targets correctly with significantly different volumes, an inception
block-based multi-scale convolution architecture is constructed
to obtain different perception fields and capture the

corresponding features. In addition, the model is trained by
local dice loss to handle the imbalance between segmentation
categories and stabilize the training. Furthermore, three
particular data augmentation strategies, namely, attention
position variance, deformation simulation, and breast implant
simulation, are designed to cope with the problem of data scarcity
and differentiation.

The remainder of this paper is organized as follows. 2
introduces related research on automatic breast CTV
delineation. 3 Materials and methods describe the specifically
designed methods. 4 The experimental results show the
quantitative and qualitative results. 5 Discussion and 6
Conclusion and future work.

2 RELATED WORKS

For the past few decades, traditional methods, particularly Atlas-
based methods, have been the preferred solution for automatic
CTV delineation. Atlas-based approaches perform deformable
image registration to match the target and ground truth. Patients
are segmented based on an atlas library, and the most
anatomically similar will be selected as the target to be
transformed into the same coordinate space as the input data.
Anders et al. [9] and Velker et al. [10] collected 9 and 124 cases to
build a library for breast cancer. The method proposed by Velker
achieved good performance on structured CTVs, such as breast
and chest wall, with Dice similarity coefficient (DSC) values of
0.87 and 0.89 for left- and right-side breast, respectively.

Atlas-based solutions have been widely utilized in cancer sites,
such as the head and neck [11], breast [12], and lungs [13].
However, the performance of these approaches is limited by the
degree of deformation, image registration quality, and additional
corrections. For instance, for highly variable structures, such as
internal mammary nodes, Velker’s method achieved poor
performance with a DSC of 0.3. In this case, several deep-
learning-based approaches have been proposed and have made
significant progress in terms of accuracy and consistency [14].

Deep learning methods have demonstrated excellent
performance in several fields. Convolutional neural networks
(CNNs) have become increasingly irreplaceable in the field of
image processing and analysis, producing results by extracting
and learning the features from well-organized training data. Deep
learning-based semantic segmentation is a suitable solution for
automatic CTV delineation. Min et al. [15] proposed a deep
learning-based breast segmentation algorithm (a 3D fully
convolutional DesnseNet) and compared its performance with
the aforementioned atlas-based segmentation methods. The
comparison results demonstrated that the deep learning
method performed more consistently and robustly on the
majority of structures. In addition to the segmentation
accuracy, clinicians are concerned with the inference speed of
the algorithms because the produced segmentation results still
require manual correction. To this end, Jan et al. [16] proposed
BibNet, a novel neural network built by U-Net [17] with a multi-
resolution level processing structure and residual connections,
alongside a full-image processing strategy to increase the
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inference speed while improving the segmentation quality. Kuo
et al. [18] proposed a deep dilated residual network (DD-ResNet)
for auto-segmentation of the clinical target volume for breast
cancer radiotherapy, which outperformed deep dilated
convolutional neural network (DDCNN) and deep
deconvolutional neural network (DDNN). Compared with
those references, we use optimizer U-Net to help doctors
contouring the region of breast cancer.

3 MATERIALS AND METHODS

3.1 Data Acquisition
The data supporting this study comprised 110 CT scans of
patients who underwent modified mastectomy surgery
collected from Tianjin Medical University Cancer Institute and
Hospital. These patients received adjuvant radiotherapy on the
chest wall, supra- and infra-clavicular, and internal mammary
lymphatic regions after lumpectomy. Therefore, the CTVs
delineated for radiotherapy by an experienced clinician
according to the RTOG criteria were set as the ground truth
for model training [19]. The CTVs on both the left and right sides
were delineated to stabilize model training. Patients with breast
implants were also collected in our dataset and extended using the
breast implant simulation data augmentation method. The two-
dimensional size and thickness of the reconstructed CT images
were 512*512 and 5 mm, respectively. The dataset was randomly
split into a training set and testing set with 82 cases and 28 cases,
respectively. For the sake of splitting our dataset for training and
test purpose, the ratio of training and test set about 3:1, which is
slightly higher than the 4:1 for most commonly used, was
adopted, accommodating the limited overall sample size,
resulting in an adequately sized test set.

3.2 Architecture and Strategies
The architecture of the proposed network is illustrated in
Figure 1. The input images are preprocessed using a specific
orientation attention method before being fed into the network.

Each convolution block in the network comprises a inception
module, followed by an activation layer and a batch
normalization layer. The red arrows symbolize max pooling,
whereas the green arrows symbolize transpose convolution.
Black arrows indicate the inputs and outputs of the model.
Local dice loss is employed to train the model for multi-
objective segmentation, followed by a sigmoid activation
function to generate the output mask. In this study, we
focused on the specific characteristics of CTVs after MRM and
designed corresponding solutions to accomplish an automatic
contouring task.

The breast on the affected side is excised inMRMwith only the
pectoralis major and minor muscles preserved, resulting in a flat
structure that is similar to the back. In addition, the collected data
contained patients with left breast cancer and right breast cancer,
and even on both sides; therefore, the model should be
encouraged to focus more on the affected side and perform
delicate segmentation. To this end, an orientation attention
mechanism was designed for preprocessing. Specifically, a
direction attention map is calculated based on the formula APi
� 1 − i/H and LRi � 1 − i/W, where i andH/W are the row/column
index and image resolution along the anterior–posterior (AP) and
left-right (LR) directions, respectively. The input of the model is
the product of the AP and LR direction attention map and the
normalized CT image with a range of [−1, 1]. The values on the
breast and affected sides in the attention map were set to near 1,
whereas the opposite side was set to near 0, thereby assigning
higher importance to the breast and affected sides. This can be
observed in Figure 1; the input attention image has a gray
gradient along the vertical and horizontal directions. The
darker side is emphasized, thus implicitly promoting breast
segmentation.

The segmentation targets of the model contained CTV in the
chest wall (CTVcw), supra-clavicular region (CTVsc), and internal
mammary lymphatic region (CTVim), which vary greatly in
volume. CTVcw and CTVsc have thin and long shapes, whereas
CTVim only occupies a small region. This imbalance may confuse
the model and reduce segmentation performance, especially for

FIGURE 1 | Illustration of the specifically designed deep-learning based multi-objective segmentation method for the automatic delineation of CTVs for
Radiotherapy after Modified Radical Mastectomy. Input attention images are obtained by overlapping an anterior-posterior (AP) direction attention map on to input
images.
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small targets. Therefore, to enable the model to extract features
with different perception fields, thereby performing delicate
segmentation of targets with different scales, a network with a
multi-scale convolution structure is constructed. This is done by
utilizing a refined inception block [20] as a basic convolution
element, which can improve the perception field while
maintaining minimal pooling operations. Specifically, the input
to each convolution block is fed into 1*1, 3*3, and 5*5
convolution layers and a max pooling layer to obtain different
perception fields, and the extracted multi-scale features are then
fused to model higher-level semantic information. In addition, to
overcome the problems of incomplete labels, a novel local loss is
introduced for network optimization, where a local mask is
calculated based on the label. If parts of the targets are not
annotated, the local mask will be initialized by zeros, thereby
avoiding optimization of the model with the segmentation error
outside the local regions. Benefiting from the larger variation in
the breast cancer dataset, this local loss performed excellently in
this study. Moreover, the sigmoid activation function is employed
in the output layer to produce the probability of the categories of
each pixel in the case of overlap among labels.

To cope with individual variations, such as various
deformations and cases with breast implants, we designed
several targeted data augmentation methods. Three specific
data augmentation approaches are exploited to improve data
diversity: Attention position variance, deformation simulation,
and breast implant simulation. The CT scan center may vary
significantly for different patients. Furthermore, the attention
map is calculated based on the body center, whichmay be affected
by the coach and other similar materials in the image. Thus, we
adjusted the body cancer with limited variation and generated the
corresponding input image for training. Breast cancer is a
deformable organ, and small deformation is common in breast
cancer radiotherapy. Thus, a random elastic deformation vector
field was applied to the CT images for deformation augmentation.
In particular, a breast implant simulation method was designed
for data augmentation. Patients who have undergone breast
reconstruction have completely different anatomical structures
compared with other patients, which may confuse the model in
the training process. In this case, we simulated breast implants in
the breast region via morphological processing and density
simulations. In the study, We collected CT images from 110

patients with breast cancer for model training and testing. They
received radiotherapy from June 6, 2016 to January 31, 2020, at
Tianjin Medical University Cancer Hospital. The contouring of
target areas have been examined and modified by senior
radiotherapy doctors. In order to reduce the influence of
individual differences, these CT images are processed by the
above data enhancement methods. From Figure 2, it can be seen
that the simulated images have a relatively similar appearance to
the real data. These approaches increase the amount of data,
reduce overfitting, and improve the generalization performance
of the model.

3.3 Evaluation Metrics
To evaluate this method, the DSC was employed as the
quantitative metric, which is defined as the overlap between
the segmented mask and the manually labeled mask, witch
labled by experienced radiologists. The DSC formula is shown
in Eq. 1, where A denotes the ground truth, and B denotes the
predicted results. Therefore, a higher DSC indicates a more
precise segmentation performance.

DSC � 2|A ∩ B|
|A|∪|B| (1)

In some cases, more attention should be paid to segmentation
boundaries. Therefore, the Hausdorff distance (HD) and average
symmetric surface distance (ASSD) were calculated to evaluate
the segmentation performance on boundaries. HD measures the
surface distance between two point sets X and Y, as defined by Eq.
2. ASSD is the average of all the distances from points on the
boundary of the predicted results to the boundary of the ground
truth, which is calculated by Eq. 3.

HD � max maxx∈Xminy∈Yd x, y( ), maxy∈Yminx∈Xd x, y( ){ } (2)

ASSD � ∑x∈Xminy∈Yd x, y( ) + ∑y∈Yminx∈Xd y, x( )
len X( ) + len Y( ) (3)

where len(X) and len(Y) represent the total number of pixels in
the boundary X and boundary Y respectively.

Although the above metrics could provide a scientific
assessment of the proposed segmentation method, they are not
reliable enough to evaluate the significance of clinical practice

FIGURE 2 | The examples of the proposed data augmentation strategies. The red arrow indicates the position of implanted breast implant.
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[21]. To this end, we conducted a user study to obtain a practical
assessment by three experienced radiologists.

3.4 Statistical Analysis
A paired t-test was conducted to verify the statistical difference
between the quantitative evaluation results of the proposed
method and other approaches. The test was also performed on
the clinicians’ scores. A p value of less than 0.05 can be regarded
as a significant difference between the proposed method and
baseline approaches.

4 RESULTS

4.1 Segmentation Performance
Table 1 presents the quantitative evaluation results of the
proposed method and the baseline (U-Net) in terms of DSC,

HD, and ASSD. It is observed that the proposed method
achieved a mean DSC of 0.92 with standard deviation of
0.04 for CTVcw, a mean DSC of 0.74 with standard
deviation of 0.09 for CTVim, and a mean DSC of 0.76 with
standard deviation of 0.10 for CTVsc. The average DSC over all
categories of the proposed method is 0.81, which
outperformed the baseline significantly. The p value of
0.0001 also demonstrated the significant difference between
the two methods. Figures 3A,B show the proposed method has
larger inter-subject variations in the left CTVs.

The HD and ASSD evaluations illustrated that the proposed
method produced smaller surface discrepancies compared with
U-Net in all the CTVs. Figures 3B,C,E,F revealed that the
proposed method tends to generate segmentation results with
quite small inter-subject diversity compared with U-Net, thereby
demonstrating the inference quality and the robustness of the
proposed method.

TABLE 1 |Quantitative evaluation of the proposed method and U-Net on CTVcw, CTVim, and CTVsc in terms of DSC, HD and ASSD. The p value smaller than 0.05 indicates
that there are significant differences between the two approaches.

DSC HD ASSD

Structures U-net Proposed U-net Proposed U-net Proposed

CTVcw 0.79 ± 0.12 0.92 ± 0.04 13.97 ± 13.33 5.36 ± 3.98 4.7 ± 6.07 1.98 ± 3.15
CTVim 0.66 ± 0.12 0.74 ± 0.09 6.24 ± 5.86 3.86 ± 2.60 1.39 ± 1.38 0.80 ± 0.60
CTVsc 0.60 ± 0.18 0.76 ± 0.10 14.76 ± 11.35 5.67 ± 5.47 3.36 ± 5.36 1.10 ± 0.64
Mean 0.69 ± 0.14 0.81 ± 0.08 11.66 ± 11.18 4.96 ± 3.95 3.15 ± 4.53 1.29 ± 1.41

p value 0.0001 0.0019 0.0015

FIGURE 3 |Box-plots of DSC, HD and ASSD in left CTVs and right CTVs on the test set using the gold standard as reference. Blue means our method result. Green
means U-Net's result. By comparison, we can see that the effect of blue is much better than that of green. Details are given below.
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Specifically, our method can produce significantly better result
with small inter-subject diversity compared with U-Net on
CTVcw and CTVsc, because the multi-scale convolution module
enables the model to extract sufficient features to segment targets
with complex structure, such as CTVcw and CTVsc. As for targets
with small volume like CTVim, the proposed method can also
produce precise results by utilizing receptive fields with
different scale.

Figures 4, 5 compare the segmentation results of U-Net, the
proposed method with the manual segmentation on the cancer
affected side and the contralateral side. The CTV in the chest wall
(CTVcw) has an anatomically different structure on the affected
side and the contralateral side because the mammary gland is
removed. The results produced by U-Net suffer from a moderate
degree of under-segmentation and holes in targets, which is not
acceptable clinically. It can be seen that our proposed method
achieved closer results to the gold standard in terms of shape,
location, and volume than those of the counterpart of U-Net.

4.2 Ablation Study
In this section, we explored the importance and effectiveness of
the orientation attention mechanism and breast implant
simulation.

4.2.1 Importance of Orientation Attention
The input orientation attention strategy is expected to encourage
the model to distinguish the breast region from the back region in
the transverse CT slices and perform segmentation. To verify the
effectiveness of this strategy, we conducted an ablation
experiment by removing the input orientation attention
mechanism and compared the segmentation performance.
Figure 6 shows the segmentation results for a test case
generated by models with and without input orientation
attention preprocessing. The model trained without the
orientation attention mechanism incorrectly performs
segmentation on the back region, whereas the targets are
correctly segmented by the model trained with the orientation
attention strategy.

4.2.2 Importance of Breast Implants Simulation
`Only six patients with breast implants were included in the
training data, which was extremely imbalanced for training.
The different anatomical structures between patients with and
without breast implants can confuse the model during the
training process. Thus, we expect that the proposed breast
implant simulation can handle this problem by increasing the
amount of data with breast implants. We investigated the

FIGURE 4 | Examples of segmentation results of U-Net and the proposed method against gold standard for the affected side. Different colors represent different
segmentation targets. The first row is the result of U-Net,the second row is the result of our method, the third row is the groundtruth of the images. And the different colors
represent dfferent segmentation targets. Blue meas the supra-clavicular region, yellow means internal mammary lymphatic region (CTV im), another means CTV in the
chest wall (CTV cw).
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importance of breast implant simulation by training the model
with only the original data. Figure 7 presents the segmentation
results for the case of breast implants. It was found that the
trained model without specific data augmentation was
confused by processing cases with breast implants, resulting
in poor segmentation results. The proposed method is well
suited to cases with breast implants, whereas U-Net performs
poorly.

4.3 Timing Performance
The time required to train the proposed model on two GTX
1080 GPUs was approximately 24 h. By utilizing the automatic
segmentation method, the time required to delineate a breast
CTV of a patient is drastically reduced from approximately
40 min (manual delineating) to several seconds. Even if some
special cases need doctors correct the delineating result
maunally, the completion of a breast CTV contouring can be

FIGURE 5 | Examples of segmentation results of U-Net and the proposed method against gold standard on the contralateral side. The first image is the result of
U-Net, the seconf is the ground truth while the third is our proposed method.

FIGURE 6 | The illustration of the usefulness of the proposed method in recognizing the breast side correctly. The U-Net model incorrectly segments dorsally
structurally similar regions as target CTVs, while the proposed method successfully identifies the breast side and segments the target CTVs.
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controlled within 10 min with the manual correction time,
demonstrating the feasibility and effectiveness of the
proposed approach.

5 DISCUSSION

In this study, we proposed a specifically-designed deep learning-
based framework for automatic contouring of 10 targets in CT
scans for modified mastectomy RT. The experiment results
indicate that our method performed well, exhibiting excellent
agreement with the CTVs that were manually delineated by
clinicians. In detail, both quantitative and qualitative
evaluations demonstrated the feasibility of the proposed
methods in contouring CTVs for modified mastectomy RT.
The orientation attention provides reliable supervision for the
model to recognize the breast and affect sides in CT images.
Different from simply applying a deep learning-based
segmentation network for automatic CTVs contouring, we
conducted statistic analysis of the CTVs in modified
mastectomy surgery-based radiotherapy and designed the
network according to the statistical characteristics. The multi-
scale convolutional structure constructed by refined inception
module increases both the width of the network and the
adaptability of the network to scales, thereby producing
delicate segmentation results of targets with different volume.
Besides, the local loss drives the optimization for all of the targets
even in the cases with labels missing.

Considering the scarcity of data volume and the variability
among data, we designed three data enhancement methods for
data expansion to improve the generalization performance of the
model while avoiding overfitting. Data augmentation is
particularly essential for medical-related researches, since it
takes long and a lot to collect medical data. Apart from the
attention position and general deformation simulation, we
particularly designed the breast implants simulation method to
increase the number of cases with breast implants. The breast
anatomical structure of patients with breast implants is
completely different from the patients without. So a small
amount of data with breast implants can affect the model
training, resulting in the model not converge. Through the
breast implants simulation, the problem of category imbalance
is alleviated and the model is able to generate more accurate
segmentation results for patients with breast implants.

Although deep learning solutions performs well in producing
contouring results for RT (RT is a file that stores the coordinates
of the region of interest), the nature of deep learning makes it sort
of disputable [22] because it learns how to segment only based on
the ground truth delineated by one clinician. Radiotherapy
requires clinical input and creativity in terms of science and
art [19]. The delineation results of the same case can vary between
clinicians, and it is sometimes difficult to determine which one is
optimal. Therefore, the ground truth used for training the deep
learning model also should have diversity. The reinforcement
learning provides a potential way to enable the DL model to learn
how to optimally segment targets.

FIGURE 7 | The comparison between the segmentation results of U-Net and the proposed method and ground truth on the case with breast implants.
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Manual delineation of OARs and CTVs for RT is a laborious
task for clinicians, which requires not only experience but also
physical exertion. Repetitive work for long periods can lead to
reduced productivity and even errors on the part of clinicians [2].
In this case, automatic segmentation algorithms serve as a useful
tool for reducing the workload of clinicians and producing highly
consistent results. A previous study illustrated that atlas-based
automatic segmentation (ABAS) for loco-regional RT of breast
cancer reduced the time needed for manual delineation by 93%
(before correction) and 32% (after correction) [23]. Our method
reduced the time required for contouring from 40 min (manual)
to 10 min (automatic) on average. With the assistance of deep
learning-based auto-segmentation, radiation oncologists can
work more efficiently.

To evaluate the segmentation results more carefully and
efficiently, and to explore the detailed gap between the deep
learning-based automatic contouring algorithm and manual
contouring, we used both HD and ASSD to evaluate the
performance of the contouring results on the edges and
surfaces. In this case, we further proved the level of
advancement of the proposed method on 3D level rather than
the 2D level only. Table 1 and Figure 3 illustrate that the
proposed method can produce segmentation results with
better agreement with the manually delineated structures in
terms of region and surface.

This study has several limitations. First, we conducted this
research in a single center with limited sample size and diversity,
which will impose a challenge on the generalization power of the
proposed model. The well-performing model may produce
unacceptable segmentation results when applied to other centers
owing to the variance between the data. Therefore, we plan to
validate the proposed method using data from other institutions.
Second, the accuracy and pattern of the segmentation results
depend heavily on the manual annotations used for training,
which can be both advantageous and disadvantageous. As
aforementioned, the model can be trained using a homogeneous
gold standard created by a single clinician. However, there is no
100% gold standard in clinical settings, as inter-intra-observer
variations always exist. Thus, further studies should be
conducted to evaluate the generalization of the gold standard
created by multiple clinicians. Additionally, it may be more
favorable if the OARs are segmented simultaneously. By
extracting corresponding features and segment-related organs
and tissues, the model can obtain a better perception of the
target region. Specifically, the OARs that are most helpful for
segmenting target CTVs in the breast region still need to be
considered. For instance, the importance of coronary vessels has
been increasingly acknowledged.

6 CONCLUSION

Auto-contouring of the CTVs can relieve clinicians from
tedious contouring work while improve the consistency and
reliability of radiotherapy. In this study, a specifically designed
deep learning-based segmentation method was developed to
delineate CTVs for modified mastectomy radiotherapy.
Qualitative and quantitative evaluations demonstrated the
outstanding performance of the proposed method. The
method can also handle cases with breast implants and large
shape variability. The user study also suggests that the proposed
method is practical and beneficial to clinical work by
significantly saving time and improving the consistency of
decisions.
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