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We consider a harmonically trapped rotating spin-1 Bose–Einstein condensate with SU(3)
spin–orbit coupling subject to a gradient magnetic field. The effects of SU(3) spin–orbit
coupling, rotation, and gradient magnetic field on the ground-state structure of the system
are investigated in detail. Our results show that the interplay among SU(3) spin–orbit
coupling, rotation, and gradient magnetic field can result in a variety of ground states, such
as a vortex ring and clover-type structure. The numerical results agree well with our
variational analysis results.
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1 INTRODUCTION

Spin–orbit coupling (SOC) plays an important role in a variety of physics branches. The realization
of SOC in neutral atomic gases has attracted major attention both theoretically and experimentally
[1–10]. Previous works have shown that the SOC can induce a variety of topological defects, such as
skyrmions and half-quantum vortices and solitons, which are useful for the design and exploration of
new functional materials [11–18]. Besides the ground-state structure, the dynamic properties of the
system are significantly altered in the presence of SOC due to the close relationship between the spin
and motional degrees of freedom in the topological excitations [19–24].

With the development of low-temperature technology, various types of SOC, such as Rashba,
Dresselhaus, Weyl, and spin–orbit angular momentum, can be realized in experiments [1, 4, 25, 26].
However, most of previous studies of SOC have focused on the type of SU(2), where the internal
states are coupled to their momenta via the SU(2) Pauli matrices. Only few works consider the SU(3)
SOC, where the spin operators are spanned by the Gell-Mann matrices, which is more effective in
describing the internal couplings among three-component condensates, such as a spin-1
Bose–Einstein condensate (BEC). Recently, Han and his co-authors have considered a
homogenous SU(3) SO-coupled Bose gas and obtained the double-quantum spin vortices [27].
On the base of their pioneering research work, Li and Chen have studied the SU(3) SO-coupled BEC
confined in a harmonic plus quartic trap [28]. Very recently, the ground states of a harmonically
trapped spin-1 BEC with SU(3) BEC affected by the external rotation are investigated in [29], where a
clover-type ground-state structure is discovered.

Nowadays, the gradient magnetic field has attracted more andmore attention. More specifically, it
is found that a variety of topological defects, such as a magnetic monopole and quantum knot, and
even the artificial SOC can be realized by controlling the gradient magnetic field [30–34]. Li and his
co-authors have investigated the ground state of three-component BEC in the gradient magnetic field
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and obtained the central Mermin–Ho vortex, magnetic
monopole, and symmetry vortex lattices [35, 36]. They have
also investigated the ground state of SU(2) SO-coupled BEC in
the magnetic field and found that the skyrmion chain can induced
by the isotropic SU(2) SOC [37]. As far as we know, there is little
study on an SU(3) SO-coupled BEC subject to both rotation and
gradient magnetic field, which is we attempt to do. In this work,
we consider an SU(3) SO-coupled rotating BEC subject to a
gradient magnetic field and show that the system has a rich
variety of ground states. Here, we want to note that, in real
experiments, it is difficult to realize a rotating BECwith fixed SOC
[38–40]. To do so, we can rotate the lasers creating SOC for an
isotropic trap or rotate both the lasers creating SOC and an
anisotropic trap, which leads to an effective time-independent
Hamiltonian, Heff � H − ΩLz, describing the system in a rotating
frame of Ref. [41].

The rest of this paper is organized as follows. In Section 2, we
formulate the theoretical model describing an SU(3) SO-coupled
BEC subject to both rotation and gradient magnetic field and
briefly introduce the numerical method. The numerical results
and its corresponding theoretical analysis through the variational
approach are presented in Section 3. Finally, in Section 4, the
main results of the work are summarized.

2 MODEL AND METHOD

To begin with, we consider a quasi-two-dimensional (Q2D) spin-
1 BEC with SU(3) SOC [27], which is confined in a controllable
magnetic field [36]. Under the mean-field approximation, the
Hamiltonian of such a system can be written as [42–44]

H � ∫ d2r Ψ† −Z
2∇2

2M
+ V(r) −ΩLz + ]so + gFμBB(r) · F[ ]Ψ(

+ c0
2
n2 + c2

2
n1 − n−1( )2 + 2|ψ*

1ψ0 + ψ*
0ψ−1|2[ ]),

(1)

where Ψ � [ψ1(r),ψ0(r),ψ−1(r)]T with r � (x, y) denotes the
spinor order parameters of the spin-1 BEC with normalization∫Ψ+Ψd2r � N.M is the atomic mass, n �∑mnm with nm � |ψm(r)|
2, and m � 0, ±1 is defined as the condensate density. The
Q2D geometry can be realized by imposing a strong
harmonic potential V(z) � Mω2

zz
2/2 along the axial direction

with ωz ≫ ω⊥. In this case, the external trapping potential can be
written as V(r) � 1

2M[ω2
⊥(x2 + y2)], with ω⊥ being the radial

trapping frequencies. For the interaction terms, the coupling
parameters are given by c0 � 4πZ2(a0+2a2)

3M and c2 � 4πZ2(a2−a0)
3M ,

where a0,2 are two-body s-wave scattering lengths for total
spins 0 and 2, respectively. Lz � − iZ(xzy − yzx) is the z-
component of the angular momentum, and Ω is the angular
frequency of the external rotation. The vector of spin-1 matrices
is defined by F � (Fx, Fy, Fz)T, wherein Fx, Fy, and Fz are the 3 ×
3 Pauli spin-1 matrices.

The SU(3) SOC considered in the present work can be written
as ]so � κλ · p, where κ is the strength of SU(3) SOC and
p � (px, py) represents the momentum in the Q2D space.

λ � (λx, λy) is expressed in terms of λx � λ(1) + λ(4) + λ(6) and
λy � λ(2) − λ(5) + λ(7), with λ(i)(i � 1, 2, . . .8) being the Gell-Mann
matrices. In this case, the generators of the SU(3) group can be
written as [45]

λx �
0 1 1
1 0 1
1 1 0

⎛⎜⎝ ⎞⎟⎠, λy �
0 −i i
i 0 −i
−i i 0

⎛⎜⎝ ⎞⎟⎠.

Note that the SU(3) SOC in the Hamiltonian involves all the
pairwise couplings between three states. This is distinct from the
SU(2) case, where the state of ψ1(r) and ψ−1(r) cannot be
coupled directly. In real experiments, the Hamiltonian with
SU(3) SOC can be realized using a similar method of Raman
dressing as in the SU(2) case, where three laser beams with
different polarizations and frequencies, intersecting at an angle
of 2π/3, are used for the Raman coupling [27]. The external
magnetic field is given by B(r) � B1(xêx − yêy) + B2zêz, where
the condition B1 � B is the magnetic field gradient in the 2D
plane, and we focus on the case of axial bias field B2 � 0. The
Lande factor gF � −1

2, and μB is the Bohr magneton. The ground
state and dynamics of the system can be described by the
following dimensionless coupled Gross–Pitaevskii equations:

i
zϕ1

zt
� −1

2
∇2 + V(r) + iΩ xzy − yzx( )[

+c0 ϕ1

∣∣∣∣ ∣∣∣∣2 + ϕ0

∣∣∣∣ ∣∣∣∣2 + ϕ−1
∣∣∣∣ ∣∣∣∣2( ) + c2 ϕ1

∣∣∣∣ ∣∣∣∣2 + ϕ0

∣∣∣∣ ∣∣∣∣2 − ϕ−1
∣∣∣∣ ∣∣∣∣2( )]ϕ1

+B(x + iy)ϕ0 + c2ϕ
*
−1ϕ

2
0 − κ izx + zy( )ϕ0 + κ zy − izx( )ϕ−1,

i
zϕ0

zt
� −1

2
∇2 + V(r) + iΩ xzy − yzx( ) + c0 ϕ1

∣∣∣∣ ∣∣∣∣2 + ϕ0

∣∣∣∣ ∣∣∣∣2 + ϕ−1
∣∣∣∣ ∣∣∣∣2( )[

+c2 ϕ1

∣∣∣∣ ∣∣∣∣2 + ϕ−1
∣∣∣∣ ∣∣∣∣2( )]ϕ0 + B(x − iy)ϕ1 + B(x + iy)ϕ−1

+ 2c2ϕ
*
0ϕ1ϕ−1 + κ zy − izx( )ϕ1 − κ zy + izx( )ϕ−1,

i
zϕ−1
zt

� −1
2
∇2 + V(r) + iΩ xzy − yzx( ) + c0 ϕ1

∣∣∣∣ ∣∣∣∣2 + ϕ0

∣∣∣∣ ∣∣∣∣2 + ϕ−1
∣∣∣∣ ∣∣∣∣2( )[

+c2 ϕ−1
∣∣∣∣ ∣∣∣∣2 + ϕ0

∣∣∣∣ ∣∣∣∣2 − ϕ1

∣∣∣∣ ∣∣∣∣2( )]ϕ−1 + B(x − iy)ϕ0 + c2ϕ
*
1ϕ

2
0

− κ izx + zy( )ϕ1 + κ zy − izx( )ϕ0, (2)

where the length and time units are chosen as l⊥ � [Z/Mω⊥]1/2
and ω−1

⊥ and the normalized wave functions ϕj � l⊥ψj/
��
N

√
,

satisfying the condition ∫∑1
j�−1|ϕj|2dxdy � 1. The contact

interaction parameters are scaled by Ω � Ω/ω⊥, κ � κ/(Zω⊥l⊥),
B � BgFμBl⊥/(Zω⊥), and c0,2 � c0,2N/(Zω⊥l

2
⊥). The ground state of

the system can be obtained by using the standard imaginary-time
propagation combined with the finite difference methods
[46–48]. In our numerical simulations, we prepare with
different initial states and then propagate the wave functions
in imaginary time to make sure that we proceed to a sufficiently
large number of time steps, which guarantees that we have
reached a steady state.

3 RESULTS AND DISCUSSIONS

In what follows, we will perform a detailed numerical study of the
effects of system parameters on the ground-state structure. The
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richness of the present system lies in the large number of free
parameters, which include the spin-dependent and spin-
independent contact interactions, SU(3) SOC, rotation, and
gradient field. To highlight the effects of the SOC, rotation,
and gradient field, we focus on the antiferromagnetic

condensate with c2 > 0 and fix the contact coupling
parameters c0 � 100 and c2 � 3.

We first consider the system without SOC and fix the rotation
frequency as Ω � 0.7. The typical density and phase distributions
of such a system are shown in Figure 1 for different gradient

FIGURE 1 | Typical ground-state structures of a rotating BEC as a function of the gradient magnetic field in the absence of SU(3) spin–orbit coupling. (A)–(E)
Density distributions of component 1 for different gradient magnetic fields: (A) B � 0, (B) B � 1, (C) B � 2, (D) B � 3, and (E) B � 4. (F) The corresponding phase
distribution of (C). Other parameters are fixed as c0 � 100, c2 � 3, Ω � 0.7, and κ � 0, and the scale of each figure is [−12.8,12.8] in units of l⊥ � [Z/Mω⊥]1/2.

FIGURE 2 | Typical ground-state structures of an SU(3) spin–orbit-coupled BEC as a function of SU(3) spin–orbit coupling and gradient magnetic field in the
absence of rotation. (A)–(D) Density distributions of component 1 for fixed SU(3) spin–orbit coupling κ � 3 and for different gradient magnetic fields: (A) B � 0, (B) B � 1,
(C)B � 2, and (D)B � 3. (E)Density distribution of the system forB � 3 and κ � 5. (F) The corresponding phase distribution of (D). Other parameters are fixed as c0 � 100,
c2 � 3, and Ω � 0, and the scale of each figure is [-12.8,12.8] in units of l⊥ � [Z/Mω⊥]1/2.
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magnetic fields, where only component 1 is shown as the
other two components show similar behavior. In the absence
of both gradient field (B � 0) and SU(3) SOC (κ � 0), the
system is located at the center of the external harmonic
potential, and no other lumps are formed. In this case,
discrete vortices are formed due to the external rotation,
but no vortex lattice can be formed due to the small contact
interactions, as shown in Figure 1A. In the presence of a
gradient magnetic field, the density distribution of the system
shows a ring structure, and the size of center hole increases
with the strength of the gradient magnetic field, as shown in
Figures 1B,C for B � 1 and B � 2, respectively. In these cases,
a vortex ring is formed along the ring direction (see Figure 1F
for the phase distribution of Figure 1C), and the number of
vortex also increases with the gradient magnetic field.
Furthermore, if we increase the strength of gradient
magnetic to B � 3 (see Figure 1D), most of vortices begin
to move into the central hole, and the vortex ring is gradually
destroyed. Upon increasing the gradient field to B � 4, all the
vortices move to the central hole and form a giant vortex at
the center of the trapping potential. In this case, no visible
vortex remains, as shown in Figure 1E. Comparing Figures
1A–E, it is found that the radius of the ring increases with the
gradient magnetic field.

Now, we turn our attention to the combined effects of
SU(3) SOC and gradient magnetic on the ground-state
structure of the system and thus set Ω � 0. Figure 2 shows
the typical density and phase distributions of the system for
the varying SU(3) SOC and gradient magnetic field. Previous
studies on the SU(3) SOC Bose gases have shown that the
triangular lattice structure is energy favorable for both

homogeneous and confined systems [27, 29]. In the
present system, we find a similar triangular lattice
structure in the absence of the gradient magnetic field
(B � 0), as shown in Figure 2A. In the presence of a
gradient magnetic field, it is found that, with the
increasing strength of the gradient magnetic field, the
triangular lattice structure is gradually destroyed. In
addition, the system evolves into three parts in space and
eventually into a clover-type structure, as shown in Figures
2B–D for B � 1, 2, 3, respectively. Here, we want to note that a
similar clover-type structure has been previously discovered
in an SU(3) SO-coupled Bose gas with rotation [29].
However, the clover-type structure found in the present
work is induced by the combined effects of both SU(3)
SOC and a gradient magnetic field, which give us another
way to realize the clover-type structure in a non-rotating
system. It is interesting to observe that the distance among
such three space parts of the clover-type structure is
unchanged if we increase the strength of SU(3) SOC but
fix the strength of the gradient magnetic field, as shown in
Figures 2D,E for B � 3, κ � 3 and B � 3, κ � 5, respectively. If
we look at the phase distribution of the clover-type structure,
as shown in Figure 2F for Figure 2D, it is easy to find that the
local lump is in the plane wave phase, which is consistent with
our previous results on the SU(3) SO-coupled system [27].

Finally, we move to the combined effects of SU(3) SOC,
rotation, and the gradient magnetic field on the ground-state
structure of the system. To highlight the effect of SU(3) SOC, we
further fix Ω � 0.7. Figure 3 shows the typical ground-state
structures of a rotating BEC as a function of the SU(3) SOC and
gradient magnetic field. In the absence of SU(3) SOC, the system

FIGURE 3 | Typical ground-state structures of a rotating BEC as a function of the SU(3) spin–orbit coupling and gradient magnetic field. (A)–(D) Density
distributions of component 1 for a fixed gradient magnetic field B � 2 and for different SU(3) spin–orbit coupling: (A) κ � 0, (B) κ � 0.5, (C) κ � 1, and (D) κ � 2. (E) Density
distribution of the system for κ � 2 andB � 1. (F) The corresponding phase distribution of (D). Other parameters are fixed as c0 � 100, c2 � 3, andΩ � 0.7, and the scale of
each figure is [−12.8,12.8] in units of l⊥ � [Z/Mω⊥]1/2.
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shows a ring structure with a vortex ring (see Figure 3A for B � 2
and κ � 0), which is consistent with that reported in Figure 1C. In
the presence of SU(3) SOC, it is found that the annular structure
is destroyed even for a small SU(3) SOC, as shown in Figure 3B
for κ � 0.5 and B � 2, where two asymmetry lumps with visible
vortices are formed. Further increasing the strength of SU(3)
SOC, this tendency is becoming more and more obvious, and
eventually, the system evolves into a single lump, as shown
in Figures 3C,D, and F (the corresponding phase
distribution of (Figure 3D)) for κ � 1 and κ � 2,
respectively. This is different from the phase diagram in
[38], where the density distributions show some symmetry
and the center of mass of the system is still around the center
of the trap (which also can be seen from their momentum
distributions). For the present case, the symmetry of the
system is further broken and the center of mass of the system
deviates from the center of the trap. Actually, such
difference can be understood by the fact that the SU(3)
SO-coupled system has three discrete minima in the single-
particle energy spectrum, and the number and weight of
such three minima are selected for different strengths of
SOC. Similar to the former case, it is interesting to observe
that the distance between the lump and the center of
trapping potential increases with the gradient magnetic
field (see Figure 3E for B � 1 and κ � 2). Here, we want
to note that we have also calculated other rotation
frequencies, and the results show similar behavior.

To give a clearer understanding of the above results, we
employ the variational method and analytically calculate the
possible ground state. We begin with the single-particle
energy spectrum of the system, which can be obtained by
diagonalizing the kinetic energy and SOC terms. It is found
that there exist three discrete minima residing on the
vertices of an equilateral triangle in the momentum
space. As discussed in [27], a threefold-degenerate plane
wave ground state is selected as the ground state for a
ferromagnetic condensate with SU(3) SOC, while three
discrete minima with unequal (equal) weights are selected
for the antiferromagnetic case. Consequently, the
variational wave function can be written as Ψ � Ψ1 + Ψ2

+ Ψ3, where

Ψ1 � 1�
3

√
1

1

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠e−i2κx,

Ψ2 � 1�
3

√
e−iπ/3

eiπ/3

eiπ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠eiκ(x−

�
3

√
y),

Ψ3 � 1�
3

√
eiπ/3

e−iπ/3

eiπ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠eiκ(x+

�
3

√
y),

(3)

whereΨ1,Ψ2, andΨ3 are the wave functions corresponding to the
three minima of the single-particle spectrum, ( −2κ, 0), (κ,− �

3
√ ),

and (κ, �
3

√ ). Substituting these ansatzes into Equation 1, we can
calculate the energy for each minimum in the momentum space
as follows:

E1 � 1
2

x − 4
3
B( )2

+ 1
2
y2 − 8

9
B2,

E2 � 1
2

x + 2
3
B( )2

+ 1
2

y + 2
���(3)√
3

B( )2

− 8
9
B2,

E3 � 1
2

x + 2
3
B( )2

+ 1
2

y − 2
���(3)√
3

B( )2

− 8
9
B2.

(4)

It is found that the minimum energies are equal to −8
9B

2.
Consequently, there also exist three points in real space, that
is, (43B, 0), (−2

3B,−2
�
3

√
3 B), and (−2

3B,
2
�
3

√
3 B). In this case,

particles can condense at such three real space points, and
the three lumps locate at the x-axis, the second quadrant and
the third quadrant. In addition, we find that these positions
are only related to the gradient magnetic field B and show
independence with SU(3) SOC κ. All the results are consistent
with those reported in Figure 2. When the rotation is
included, we have

E1 � 1
2

x − 4
3
B( )2

+ 1
2
(y − 2κΩy)2 − 2κ2Ω2 − 8

9
B2,

E2 � 1
2

x + �
3

√
κΩ + 2

3
B( )2

+ 1
2

y + κΩ + 2
�
3

√
3

B( )2

−2Ω2κ2 − 8
9
B2 − 4

�
3

√
3

ΩκB,

E3� 1
2

x − �
3

√
κΩ + 2

3
B( )2

+ 1
2

y + κΩ − 2
�
3

√
3

B( )2

− 2Ω2κ2

− 8
9
B2 + 4

�
3

√
3

ΩκB.

(5)

In this case, the second equation has the minimum energy
E2min � −2Ω2κ2 − 8

9B
2 − 4

�
3

√
3 ΩκB. Therefore, all particles

condense at a single real space point
(− �

3
√

κΩ − 2
3B,−κΩ − 2

�
3

√
3 B), and the distance between the

lump and the center of trapping potential increases with the
gradient magnetic field B, which are consistent with those
reported in Figure 3.

4 CONCLUSION

We have investigated the ground-state structure of a harmonically
trapped rotating spin-1 BEC with SU(3) SOC subject to a gradient
magnetic field. In the absence of SU(3) SOC, the system shows an
annular structure, where a vortex ring is formed. In the absence of
rotation, it is found that the clover-type structure discovered in the
previous work can also be induced by the combined effects of
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SU(3) SOC and gradient magnetic field, and their distance shows
sole dependence on the gradient magnetic field.When the rotation
is included, we found that only one lump is formed in the three
quadrants, and the distance between the lump and the center of
trapping potential increases with the gradient magnetic field.
Finally, we have employed the variational method and
analytically calculated the possible ground state, which agrees
well with our numerical simulations.
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