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This paper presents a closed-form series solution of cylindrical SH-wave scattering by the
surrounding loose rock zone of underground tunnel lining in a uniform half-space based on
the wave function expansion method and the mirror image method. The correctness of the
series solution is verified through residual convergence and comparison with the published
results. The influence of the frequency of the incident cylindrical SH-wave, the distance
between the wave source and the lining, the lining buried depth, and the properties of the
surrounding loose rock zone on the dynamic stress concentration of the tunnel lining is
investigated. The results show that the incident wave with high frequency always makes
the dynamic stress concentration of the tunnel lining obvious. With the increase of the
distance between the wave source and the tunnel lining, the stress around the tunnel lining
decreases, but the dynamic stress concentration factor around the tunnel lining does not
decrease significantly but occasionally increases. The ground surface has a great influence
on the stress concentration of the tunnel lining. The amplitude of the stress concentration
factor of tunnel lining is highly related to the shear wave velocity of the surrounding loose
rock zone. When the property of the surrounding rock (shear wave velocity) changesmore,
the amplitude of the stress concentration factor is larger, that is, the stress concentration is
more significant.
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INTRODUCTION

The scattering of elastic waves by an underground cavity (or local topography) is one of the hot
research topics in the fields of earthquake engineering, seismology, and geophysics due to its
particular significance in seismic risk assessment, seismic microzonation, and the design of
important facilities. When the seismic wave encounters a cavity (or local topography) during its
propagation, it will produce a strong scattering effect, which in turn will affect the ground motion
near the cavity (or local topography). The method of solving the problem of wave scattering can be
divided into two kinds of methods: numerical method and analytical method. Numerical methods
mainly include the finite difference method (FDM), finite element method (FEM), and boundary
element method (BEM); the analytical methods mainly refer to wave function expansion methods.
The numerical method can be applied to the cavity (or local topography) of any shape and various
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site conditions and is more suitable for handling actual
engineering problems. The analytical method is still necessary
to solve some special regular cavity (or local topography) and
boundary conditions. Although the analytical method is only
suitable for relatively simple and regular models, it has an
advantage over the numerical method in revealing the essence
of the problem, and it can also verify the accuracy of the
numerical method.

For plane waves, beginning with the pioneering work of
Trifunac [1, 2] on ground motion around a semi-circular
alluvial valley and a semi-circular canyon embedded in a
homogeneous isotropic half-space, several research works have
been carried out on this topic both analytically and numerically.
For the underground tunnel lining, the current closed-form
analytical solutions are Refs. [3, 4]. For canyon topography,
the present analytical solutions are Taur et al. [5], Gao et al.
[6], Zhang et al. [7], Jin et al. [8–10], and Lee et al. [11, 12]. In
addition, various numerical methods mainly include the finite
difference method [13, 14], the improved Bouchon–Campillo
method [15], the boundary integral equation method [16, 17], the
null-field boundary integral equation method [18], the weighted
residual method [19–21], and the boundary element method
[22–29]. These research works have been widely reviewed by
many scholars such as Sanchez-Sesma et al. [30], Liu et al. [31],
Gao et al. [6], and Bhatti and Lu [39, 40].

For cylindrical waves, Liang et al. [32] studied the scattering of
cylindrical SH-waves by underground lining caverns using the
mirror image method. Li [33] investigated the numerical solution
of the cylindrical SH-wave scattering by a circular hole. Zhang [34]
studied the scattering of cylindrical waves by underground circular
sandwiched areas and lining caverns in the half-space by using a
special boundary integral equation method. Xu et al. [35]
investigated the diffraction of Rayleigh waves around a circular
cavity in the poroelastic half-space by using an indirect boundary
integral equationmethod based on Biot’s two-phasemedium theory.

This paper notices that the above-mentioned studies are mostly
aimed at plane SH-waves and do not consider the impact of
cylindrical SH-waves on the surrounding rock zone (i.e., the
generation of loose circles) generated during cavity blasting and
excavation. Therefore, this paper establishes an analytical model
for the scattering of cylindrical SH-waves by loose rock circles
around the underground lining cavern embedded in a 2D
homogenous half-space and uses the wave function expansion
method to obtain the series solution of scattering.

In the next section, the methodology is presented, followed by
the verification through residual convergence and comparison
with the published results of Liang et al [32]. Then, the results in
the frequency domain are presented, and the anti-plane tunnel
responses are discussed. Finally, the main findings and the
conclusions are summarized.

METHODOLOGY

Analytical Model
As shown in Figure 1A, the inner and outer radii of the circular
lined tunnel are a and b (b � 0.9a), respectively. The surrounding

loose rock zone is divided into j layers, and the radius of each layer
is c1, c2, c3, cj . . . from inside to outside. The burial depth of the
circular lined tunnel is D. The half-space, the surrounding loose
rock zone, and the lining are assumed to be linearly elastic,
uniform, and isotropic media. The half-space is marked with
shear wave velocity β, mass density ρ, and shear modulus μ; the
jth surrounding loose rock is marked with shear wave velocity βj,
mass density ρj, and shear modulus μj; the lining is marked with
shear wave velocity β0, mass density ρ0, and shear modulus μ0.
The center of the wave source and the underground cavity is
located at the same depth, and the distance between them is D12.

Governing Equations and Boundary
Conditions
The cylindrical SH-wave with unit amplitude generated by the
wave source at point O1 can be expressed as

Wi1(r1, θ1) � H(1)
0 (kr1)e−iωt, (1)

where k � ω/β is the wavenumber of the SH-wave in the half-
space, ω is the circle frequency of the incident wave, and i � ���−1√
represents the imaginary unit. e−iωt is the time factor, and it will be
omitted in the following mathematical derivation. Considering

FIGURE 1 | Model information.
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the axisymmetric properties of the wave source, the Hankel
function is of order 0.

The reflected wave will be generated when the incident
cylindrical SH-wave propagates to the ground surface, and a
scattered SH-wave will be generated when the incident cylindrical
SH-wave encounters a cavity. Then, the total wave motion field in
the half-space is the superposition of the incident wave, reflected
wave, and scattered wave. Meanwhile, the wave will also diffract
into the lining and surrounding loose rock, and all these waves
must satisfy the following wave equation:

z2w

zr2
+ 1
r

zw

zr
+ 1
r2

z2w

zθ2
� 1

β2
z2w

zt2
. (2)

To satisfy the zero-stress boundary condition of the half-space
surface, the mirror image method [3] is used to solve the problem.
As shown in Figure 1B, assume that there is another cylindrical
wave source and cavity with the same surrounding loose rock
zone in the half-space with the surface as its axis of symmetry.
The mirror incident SH-wave source Wr3(r3, θ3) is

Wr3(r3, θ3) � H(1)
0 (kr3). (3)

The scattered wavefield corresponding to the two cavities can
be expressed as

Ws2(r2, θ2) � ∑+∞
n2�0

H(1)
n2
(kr2)(As2 cos n2θ2 + Bs2 sin n2θ2), (4)

Ws4(r4, θ4) � ∑+∞
n4�0

H(1)
n4
(kr4)(As4 cos n4θ4 + Bs4 sin n4θ4). (5)

In a physical sense, Eq. 5 represents the wave propagating
outward fromO2 andO4 in the whole space and satisfies the wave
equation (3) and Sommerfeld radiation conditions. As2, Bs2, As4,
and Bs4 are the undetermined complex constants, and As2 � As4,
Bs2 � Bs4. The wave motion in the whole space is

W � Wi1(r1, θ1) +Ws2(r2, θ2) +Wr3(r3, θ3) +Ws4(r4, θ4). (6)

The expression of the scattered field generated in the lining in
the polar coordinate system (r2, θ2) can be written as

W01(r2, θ2) � ∑+∞
n2�0

H(1)
n2
(k1r2)(C01 cos n2θ2 +D01 sin n2θ2), (7)

W02(r2, θ2) � ∑+∞
n2�0

Jn2(k1r2)(C02 cos n2θ2 +D02 sin n2θ2). (8)

Here,W01(r2, θ2) is the wave propagating outward fromO2 in the
lining andW02(r2, θ2) is the standing wave in the lining.C01,D01,
C02, and D02 are undetermined complex constants. Jn2(x) is the
Bessel function of the first kind with argument x and order n2.
H(1)

n2
(x) is the Hankel function of the first kind with argument x

and order n2. The wave motion in the lining is

W0 � W01(r2, θ2) +W02(r2, θ2). (9)

The expression of the scattered wavefield generated in the
loose rock circle in the polar coordinate system (r2, θ2) can be
written as

Wj1(r2, θ2) � ∑+∞
n2�0

H(1)
n2
(kjr2)(Cj1 cos n2θ2 +Dj1 sin n2θ2), (10)

Wj2(r2, θ2) � ∑+∞
n2�0

Jn2(kjr2)(Cj2 cos n2θ2 +Dj2 sin n2θ2). (11)

Here,Wj1(r2, θ2) is the wave propagating outward fromO2 in the
loose rock circle andWj2(r2, θ2) is the standing wave in the loose
rock circle. Cj1, Dj1, Cj2, and Dj2 are undetermined complex
constants. The wave motion in the loose rock circle is

Wj � Wj1(r2, θ2) +Wj2(r2, θ2). (12)

All the wave motions must satisfy the following boundary
conditions.

1) Zero stress on lining inner surface:

τr2z2 � μ0
zW0

zr2
� 0 at r2 � a. (13)

2) Displacement and stress conditions between the lining outer
surface and the surrounding rock:

W0 � W1 at r2 � a, (14)

μ0
zW0

zr2
� μ1

zW1

zr2
at r2 � a. (15)

3) Displacement and stress conditions of the jth and the (j-1)th
interface in the surrounding loose rock:

Wj−1 � Wj at r2 � cj−1, (16)

μj−1
zWj−1
zr2

� μj
zWj

zr2
at r2 � cj−1. (17)

4) Displacement and stress conditions between the outermost
loose rock and the half-space:

Wj � W at r2 � cj, (18)

μj
zWj

zr2
� μ

zW

zr2
at r2 � cj. (19)

Since the wave functions and boundary conditions are
represented in different coordinate systems, the coordinate
transformation is required. With the help of Graf’s addition
theorem [36, 37] of the oblique coordinate system, coordinate
transformation can be carried out between any two coordinates,
and the details will not be described again.

Solution to the Problem
Substituting Eq. 9 into Eq. 13, the following can be obtained:

C01EH0(n2, a) + C02EJ0(n2, a) � 0, (19a)

D01EH0(n2, a) +D02EJ0(n2, a) � 0. (19b)

Here,

EH0(n2, r2) � n2H
(1)
n2
(k0r2) − k0r2H

(1)
n2+1(k0r2), (20a)

EJ0(n2, r2) � n2Jn2(k0r2) − k0r2Jn2+1(k0r2). (20b)
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Substituting Eqs. 9, 12 into Eqs. 14, 15, the following can be
obtained:

C01H
(1)
n2
(k0b) + C02Jn2(k0b) − C11H

(1)
n2
(k1b) − C12Jn2(k1b) � 0,

(21a)

D01H
(1)
n2
(k0b) +D02Jn2(k0b) −D11H

(1)
n2
(k1b) −D12Jn2(k1b) � 0,

(21b)

C01EH0(n2, b) + C02EJ0(n2, b) − μ1
μ0

[C11EH1(n2, b)
+ C12EJ1(n2, b)] � 0,

(22a)

D01EH0(n2, b) +D02EJ0(n2, b) − μ1
μ0

[D11EH1(n2, b)

+D12EJ1(n2, b)] � 0.
(22b)

Here,

EH1(n2, r2) � n2H
(1)
n2
(k1r2) − k1r2H

(1)
n2+1(k1r2), (23a)

EJ1(n2, r2) � n2Jn2(k1r2) − k1r2Jn2+1(k1r2). (23b)

Similarly, applying Eqs. 16, 17 to the jth and (j-1)th loose rock
layers, the following can be obtained:

C(j−1)1H(1)
n2
(kj−1cj−1) + C(j−1)2Jn2(kj−1cj−1) − Cj1H

(1)
n2
(kjcj−1)

− Cj2Jn2(kjcj−1) � 0,

(24a)

D(j−1)1H(1)
n2
(kj−1cj−1) +D(j−1)2Jn2(kj−1cj−1) −Dj1H

(1)
n2
(kjcj−1)

−Dj2Jn2(kjcj−1) � 0,

(24b)

C(j−1)1EHj−1(n2, cj−1) + C(j−1)2EJj−1(n2, cj−1)
− μj
μj−1

[Cj1EHj(n2, cj−1) + Cj2EJj(n2, cj−1)] � 0,
(25a)

D(j−1)1EHj−1(n2, cj−1) +D(j−1)2EJj−1(n2, cj−1)
− μj
μj−1

[Dj1EHj(n2, cj−1) +Dj2EJj(n2, cj−1)] � 0,
(25b)

where

EHj−1(n2, r2) � n2H
(1)
n2
(kj−1r2) − kj−1r2H(1)

n2+1(kj−1r2), (26a)

EJj−1(n2, r2) � n2Jn2(kj−1r2) − kj−1r2Jn2+1(kj−1r2), (26b)

EHj(n2, r2) � n2H
(1)
n2
(kjr2) − kjr2H

(1)
n2+1(kjr2), (26c)

EJj(n2, r2) � n2Jn2(kjr2) − kjr2Jn2+1(kjr2). (26d)

Substituting Eqs. 6, 12 into Eqs. 18, 19, respectively, the
following can be obtained:

Cj1H
(1)
n2
(kjcj) + Cj2Jn2(kjcj) − Ai1Jn2(kcj) − Ap

s4Jn2(kcj)
− Ar3Jn2(kcj) − As2H

(1)
n2
(kcj) � 0,

(27a)

Dj1H
(1)
n2
(kjcj) +Dj2Jn2(kjcj) − Bp

s4Jn2(kcj) − Br3Jn2(kcj)
− Bs2H

(1)
n2
(kcj) � 0,

(27b)

Cj1EHj(n2, cj) + Cj2EJj(n2, cj)
− μ

μj
⎡⎣As2EH(n2, cj) + Ai1EJ(n2, cj)
+Ap

s4EJ(n2, cj) + Ar3EJ(n2, cj) ⎤⎦ � 0, (27c)

Dj1EHj(n2, cj) +Dj2EJj(n2, cj) − μ

μj
[Bp

s4EJ(n2, cj)
+ Br3EJ(n2, cj) + Bs2EH(n2, cj)] � 0.

(27d)

Here,

Ap
s4 � ∑+∞

n4�0
(As4F

+42
1H + Bs4F

+42
2H ) andBp

s4 � ∑+∞
n4�0

(Bs4F
−42
1H − As4F

−42
2H ),
(28)

F±42
1c � εn2

2
[Cn2+n4(d24) · cos(n2 − n4

2
π) ± (−1)n4 · Cn2−n4(d24)

· cos(n2 + n4
2

π)],
(29a)

F±42
2c � εn2

2
[ − Cn2+n4(d24) · sin(n2 − n4

2
π) ± (−1)n4 · Cn2−n4(d24)

· sin(n2 + n4
2

π)],
(29b)

F±32
3c � εn2

2
[ ± Cn2+n3(d23) · cos(n2 + n3)c + (−1)n3 · Cn2−n3(d23)

· cos(n2 − n3)c],
(29c)

F±32
4c � εn2

2
[Cn2+n3(d23) · sin(n2 + n3)c ± (−1)n3 · Cn2−n3(d23)

· sin(n2 − n3)c],
(29d)

εn � { 1
2

n � 0
n> 0 , c � arctan(2D

d12
),

d23 �
������������
(2D)2 + (d12)2

√
.

(30)

In Eq. 29, the subscript C is replaced with H to represent the
first kind of Hankel function, or the subscript C is replaced with J
to represent the first kind of Bessel function.

Eqs. 19, 21, 22, 24, 25, and 27 constitute an infinite algebraic
system of equations. Though setting the truncated number N, all the
unknown coefficients can be obtained by solving Eqs. 19, 21, 22, 24,
25, and 27 together. The analytical series solution of the problem can
be obtained by substituting the coefficients into the corresponding
wavefields, and the corresponding stress fields can also be calculated.

Dynamic Stress Concentration Factor
(DSCF) of the Inner and Outer Surfaces of
the Lining
The hoop dynamic stress concentration factor (DSCF) of the
inner and outer surfaces of the lining can be obtained from the
normalization of the radial stress generated by the incident wave
at the same point in the whole space, namely,

DSCF � τθ2z2/τ
(i)
r1z1

and τ(i)r1z1
� −μkH(1)

1 (kr1). (31)
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Taking the outer surface of the lining as an example, the
calculation formula of the DSCF is given as follows. The DSCF of
the lining inner surface is similar and will not be repeated. As
shown in Figure 1C, the wavefield and stress of any point can be
expressed as

W1 � W11(r2, θ2) +W12(r2, θ2)

� ∑+∞
n2�0

{ [C11H
(1)
n2
(k1r2) + C12Jn2(k1r2)] cos n2θ2

+[D11H
(1)
n2
(k1r2) +D12Jn2(k1r2)] sin n2θ2 }, (32)

σθ2z2 �
μ1
b

zW1

zθ2

� μ1
b

∑+∞
n2�0

n2×{ [D11H
(1)
n2
(k1r2) +D12Jn2(k1r2)] cos n2θ2

−[C11H
(1)
n2
(k1r2) + C12Jn2(k1r2)] sin n2θ2 },

(33)

where r1 � b2 + d212 − 2b × d12 × cos θ2. Then, the DSCF of the
outer surface of the lining can be obtained as

DSCF � τθ2z2/τ
(i)
r1z1

� −μ1
μ

1

kbH(1)
1 (kr1)

∑+∞
n2�0

n2×{ [D11H
(1)
n2
(k1r2) +D12Jn2(k1r2)] cos n2θ2

−[C11H
(1)
n2
(k1r2) + C12Jn2(k1r2)] sin n2θ2 }.

(34)

SOLUTION VERIFICATION

The dimensionless frequency η, which is expressed in terms of the
tunnel radius a and the wave velocity β, is defined as [38]

η � 2a
λ

� ωa

πβ
, (35)

FIGURE 2 | Model verification.
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where 2a is the tunnel diameter and λ is the wavelength of the
shear waves in the half-space.

Precision Variation With the Truncated
Number N
Figure 2A shows the convergence of lining stress residual at the
outer surface under four different dimensionless frequencies η �
0.25, 0.5, 1.0, and 2.0, when d12/b � 5 and tunnel buried depth D/
a � 2. For different incident wave frequencies, with the increase of
truncation terms N, the error gradually approaches zero, which
proves that the series solution in this paper can obtain a result that
meets the accuracy.

Comparison With the Published Results
Taking the surrounding loose rock of four layers as an example,
Figure 2B shows the comparison between our results and the
published results [32] (tunnel lining without loose rock zone)
when d/a � 2.5, 5, 10, and 20, β0/β � 1, ρ0/ρ � 1, β1 � β2 � β3
� β4, and ρ1 � ρ2 � ρ3 � ρ4. The figure demonstrates that our results
agree well with the published results, indicating the correctness of our
solution.

RESULTS AND ANALYSIS

Figure 3 and Figure 4 demonstrate the results of the
circumferential DSCF of the lining outer surface under

FIGURE 3 | DSCF of the lining outer surface for the lining burial depth D/a � 2. Different lines (solid, dash, dot, and dash-dot lines), respectively, correspond to the
wave source–lining distances d/a � 2.5, 5, 10, and 20. Rows 1–4 correspond to the dimensionless frequencies of the incident cylindrical SH-wave η � 0.25, 0.5, 1.0, and
2.0. Columns 1–3 correspond to the three cases.
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different lining burial depths D/a � 2 and 5. The calculation
parameters are as follows. For the lining, the shear wave velocity is
β0 � 2000 m/s, Poisson’s ratio is ν0 � 0.2, and mass density ρ0 �
2,500 kg/m3; for the half-space, the shear wave velocity is β �
3,000m/s, Poisson’s ratio is ] � 0.25, and mass density ρ �
2,750 kg/m3. The surrounding loose rock zone is assumed to be
divided into four layers, and the properties of the loose rock zone
are discussed in three cases as follows:

Case 1: β1 � 1800m/s, β2 � 2100m/s, β3 � 2400m/s, β4 �
2700m/s.
Case 2: β1 � 2200m/s, β2 � 2400m/s, β3 � 2600m/s, β4 �
2800m/s.
Case 3: β1 � 3000m/s, β2 � 3000m/s, β3 � 3000m/s, β4 �
3000m/s.

Case 1 represents a large degree of surrounding rock loosening
around the lining, Case 2 represents a moderate degree of
surrounding rock loosening, and Case 3 corresponds to no
surrounding rock loosening.

The DSCF of the lining outer surface at different incident
frequencies (η � 0.25, 0.5, 1.0, and 2.0) is shown in Figure 3
and Figure 4. It can be found that the amplitude of the
DSCF changes gently along the circumference of the lining
when the incident wave has a relatively lower frequency (η �
0.25). With the increase of the frequency of the incident wave,
the amplitudes of the DSCF change dramatically along the
lining circumference. This indicates that, with the increase of
incident wave frequency, the refraction and scattering of
incident waves in the lining and surrounding loose rock
zone are intensified, which leads to the intensification of

FIGURE 4 | The same as Figure 3 but for the lining burial depth D/a � 5.
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dynamic stress concentration on the outer surface of the
lining.

By comparing and analyzing the DSCF amplitude under
different wave source–lining distances (d/a � 2.5, 5, 10, and
20), it can be found that the distance (d/a) between the wave
source and the lining has a significant influence on the DSCF.
Particularly, an interesting phenomenon can be observed, that is,
with the increase of the distance between the wave source and the
cavity, the DSCF gradually increases, which is obviously different
from that of the plane SH-wave. The reasons for this significant
difference can be explained as follows. In the case of cylindrical
SH-wave incidence, the denominator (stress amplitude generated
by the incident cylindrical SH-wave in the free-field) in the
normalization formula (Eq. 34) of the DSCF is attenuated.
However, for the incident plane SH-wave, the denominator
(stress amplitude caused by the plane SH-wave in the free-
field) is constant.

The lining buried depth (D/a) also has a significant effect on
the DSCF. It can be seen from Figure 3 and Figure 4 that when
the lining buried depth is larger (D/a), the DSCF of the lining
outer surface decreases to a certain extent, and the distribution of
the DSCF changes dramatically. This shows that the ground
surface has an important influence on the DSCF. At the same
time, it can be seen that when the lining buried depth of the lining
is large, the influence of a low-frequency wave is larger and that of
a high-frequency wave is relatively small due to the large distance
between the lining and the ground surface, which is particularly
noteworthy.

The three surrounding rock case analyses include the case of
no loosening of surrounding rock (Case 3). Currently, the
dynamic stress concentration factor (DSCF) is relatively small,
that is, the stress concentration degree is smaller than the result of
the surrounding loosening rock case. In the other two cases, the
surrounding rock stiffness changes linearly, and the DSCF
changes greatly, indicating that the dynamic stress
concentration is more obvious.

CONCLUSION

In this paper, the closed-form series solution of cylindrical SH-
wave scattering by surrounding rock in a uniform half-space is
obtained by using the wave function expansion method.
Considering that blasting will inevitably loosen the
surrounding rock around the tunnel lining in practical
engineering, we analyze the influence of the frequency of the
incident cylindrical SH-wave, the distance between the wave
source and the lining, the lining buried depth, and the
properties of the surrounding loose rock zone on the dynamic

stress concentration of the tunnel lining, based on this series
solution. The conclusions and findings are as follows:

1) Generally speaking, the incident wave with high frequency always
makes the dynamic stress concentration of the tunnel lining
obvious. The variation of the dynamic stress concentration
factor (DSCF) curve of the lining outer surface is complex and
violent, and the distribution is not uniform.

2) With the increase of the distance between the wave source and
the tunnel, the stress around the tunnel lining decreases, but
the dynamic stress concentration factor around the tunnel
lining does not decrease significantly but occasionally
increases. This is because in the calculation formula of the
normalized dynamic stress concentration factor, the
denominator decreases faster than the hoop stress of the
lining.

3) In general, the amplitude of hoop stress in the tunnel lining
decreases with the increase of lining buried depth. This is
enough to show that the ground surface has a great influence
on the stress concentration of the tunnel lining.

4) When other conditions are the same, the stress
concentration of the surrounding loose rock zone is more
obvious than that without loose rock zone. When the
property of the surrounding rock (namely, shear wave
velocity) changes more, the amplitude of the stress
concentration factor is larger, that is, the stress
concentration is more significant.
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