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In this paper, the exponential stability of stochastic differential equations driven by
multiplicative fractional Brownian motion (fBm) with Markovian switching is investigated.
The quasi-linear cases with the Hurst parameter H ∈ (1/2, 1) and linear cases withH ∈ (0, 1/
2) andH ∈ (1/2, 1) are all studied in this work. An example is presented as a demonstration.
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1 INTRODUCTION

In the natural world, it is a common phenomena that many practical systems may face random abrupt
changes in their structures and parameters, such as environmental variance, changing of subsystem
interconnections and so on. To deal with these abrupt changes, Markovian switching systems, a
particular class of hybrid systems, are investigated and widely used [1, 2]. Especially in signal processing,
financial engineering, queueing networks, wireless communications and so on (see, e.g. [1, 3]).

In recent years, much attention has been paid to the stability of stochastic hybrid systems. For
example, Mao [4] considers the exponential stability of general nonlinear stochastic hybrid systems.
In [5], the criteria of moment exponential stability are obtained for stochastic hybrid delayed systems
with Lévy noise in mean square. Zhou [6] investigates the pth moment exponential stability of the
same systems. Some sufficient conditions for asymptotic stability in distribution of SDEs with
Markovian switching are reported in [7]. See also [8, 9] for more results about Markovian switching.

On the other hand, it is generally known that if H ∈ (0, 1/2) and H ∈ (1/2, 1), BH
t{ }t≥ 0 has a long

range dependence, which means if we put

r(n) � cov(BH
1 , (BH

n+1 − BH
n )),

then ∑∞
n�1r(n) � ∞. Besides, the process BH

t{ }t≥ 0 is also self-similar for any H ∈ (0, 1). Since the
pioneering work of Hurst [10, 11] and Mandelbrot [12], the fractional Brownian motion has been
suggested as a useful tool in many fields such as mathematical finance [13, 14] and weather
derivatives [15]. Even though fractional Brownian motion is not a semimartingale, more and more
financial models have been extended to fBm (see, e.g. [16, 17]). Therefore, in this paper, the risk assets
are described by hybrid stochastic systems driven by multiplicative fBm. Then it is a natural and
interesting question that under what conditions, this stochastic systems have some exponential
stability. For the sake of clarity, we only consider the one dimensional cases. For more details about
fractional noise, we refer the reader to [18–21].

The main purpose of this paper is to discuss the exponential stability of a risky asset, with price
dynamics:

dXt � f(Xt, t, rt)dt + g(Xt, t, rt)dBH
t ,

X0 � x0 > 0,
{ (1)

where g(Xt, t, rt) � σ(t, rt)Xt, {rt}t≥ 0 is a Markov chain taking values in S � {1, 2, . . . , N}, BH
t{ }t≥ 0 is a

standard fractional Brownianmotion.Moreover,f(x, t, rt): R × R+ × S→R and σ(t, rt): R+ × S→R.
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In this paper, the initial value x0 is assumed to be deterministic,
otherwise more calculations about Wick product are required.

Equation 1 can be regarded as the result of the following N
fractional stochastic differential equations:

dXt � f(Xt, t, i)dt + g(Xt, t, i)dBH
t , 1≤ i≤N,

X0 � x0 > 0,
{

switching from one to another according to the movement of
{rt}t≥ 0.

Throughout this paper, unless otherwise specified, we let C
denote a general constant and p denote a non-negative constant.
Let C2,1(R × R+ × S;R) denote the family of all real value
functions on R × R+ × S which are continuously twice
differentiable with respect to the first variables and once
differentiable with respect to the second variables.

This paper is organized as follows. For the convenience of
the reader, we briefly recall some of the basic results in Section
2. In Section 3, we investigate the solution and an extended
Itô’s Formula for the general hybrid fractional stochastic
differential Equation 1. Section 3 is devoted to the linear
cases. In this section the moment exponential stability and
almost sure exponential stability are discussed respectively. In
Section 4, some useful criteria for the exponential stability
with respect to quasi-linear cases are presented. Finally, a
numerical example and graphical illustration are presented
in Section 6.

2 PRELIMINARIES

2.1 Markov Chain
Let {rt}t≥ 0 be a right-continuous Markov chain taking values in a
finite state space S � {1, 2, . . . , N}. The generator Q � (qij)N×N is
given by

P{rt+△ � j | rt � i} � qij△ + o(△), if i≠ j,
1 + qij△ + o(△), if i � j,

{
where △ > 0.

Here qij is the transition rate from i to j if i ≠ j. According to
[22, 23], a continuous-time Markov chain {rt}t≥ 0 with generator
Q � (qij)N×N can be represented as a stochastic integral with
respect to a Poisson random measure. Then we have

drt � ∫
R

h(rt−, y)](dt × dy),

with initial condition r0 � i0, where ](dt × dy) is a Poisson random
measure with intensity dt × m(dy). Here m(·) is the Lebesgue
measure on R.

Throughout this paper, unless otherwise specified, the Markov
chain {rt}t≥ 0 has the invariant probability measure μ � (μi)i∈S
and is assumed to be independent of BH

t{ }t≥ 0. Almost every
sample path of the Markov chain {rt}t≥ 0 is assumed to be a right-
continuous step function with a finite number of simple jumps in
any finite time interval [0, T]. The generator Q � (qij)N×N is
assumed to be irreducible and conservative, i.e., qid − qii �∑i≠j qij < ∞. For more details about Markovian switching we
further refer the reader to [24–26].

2.2 Fractional Brownian Motion and Wick
Product
We recall some of the basic results of fBm briefly, which will be
needed throughout this paper. For more details about fBm we
refer the reader to [16, 17, 27, 28]. If H ∈ (0, 1/2) ∪ (1/2, 1), then
the (standard) fractional Brownian motion with Hurst parameter
H is a continuous centered Gaussian process BH

t{ }t≥ 0 with
E(BH

t ) � 0 and covariance function:

RH(s, t) � E(BH
s B

H
t ) �

1
2
(|s|2H + |t|2H − |s − t|2H), s, t≥ 0.

To simplify the representation, it is always assumed that
BH
0 � 0.
Besides, BH

t{ }t≥ 0 has the following Wiener integral
representation:

BH
t � ∫t

0
KH(t, s)dWs,

where {Wt}t≥ 0 is a Wiener process and KH(t, s) is the kernel
function defined by

KH(t, s) � cHs
1
2−H ∫t

0
(u − s)H−3

2uH−1
2 du,

in which cH � ( H(2H−1)
B(2−2H,H−1

2))
1
2, where B(·, ·) is the Beta function,

and s < t. In this paper, BH
t{ }t≥ 0 generates a filtration {F t, t≥ 0}

with F t � σ{BH
s , t≥ 0}. Denote (Ω,F , P,F t) the complete

probability space, with the filtration described above.
Let I be the set of all finite multi-indices α � (α1, . . ., αn) for

some n ≥ 1 of non-negative integers. Denote |α| � α1 + / + αn,
and α! � α1!/αn!.

Define the Hermite polynomials:

hn(x) � (−1)nex2 d
n

dxn
(e−x2), n≥ 0,

and Hermite functions:

~hn(x) � π−1
4(n!)−1

2hn(x)e−x2
4 , n≥ 0.

Let S(R) denote the Schwartz space of rapidly decreasing
infinitely differentiable R-valued functions. Denote the dual
space of S(R) by S′(R). Define

Hα(ω) � ∏n
i�1

hαi(〈~hi(x),ω〉),

the product of Hermite polynomials. Consider a square integrable
random variable

F � F(ω) ∈ L2(S′(R),F , P).
According to [17, 29], every F(ω) has a unique representation:

F(ω) � ∑
α∈I

cαHα(ω),

besides,

‖F‖2L2(ω) � ∑
α∈I

α!c2α <∞.
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Definition 2.1. (Wick Product) For F, G ∈ L2(S′(R),F , P), set
F(ω) � ∑α∈I cαHα(ω) and G(ω) � ∑β∈IdβHβ(ω). Their Wick
product is defined by

F◇G(ω) � ∑
α,β∈I

aαbβHα+β(ω)

� ∑
c∈I

∑
α+β�c

aαbβ( )Hc(ω).

2.3 Malliavin Derivative
Let LpdLp(Ω,F , P) be the space of all random variablesΩ→R,
such that

‖F‖p � E(|F|p)1/p <∞,

and let

L2
ϕ(R+) �{f|f:R+→R,|f|2ϕd∫∞

0
∫∞

0
f(s)f(t)ϕ(s, t)dsdt<∞},

where ϕ(s, t) � H(2H − 1)|s − t|2H−2.

Definition 2.2. The ϕ-derivative of F ∈ Lp in the direction ofΦg is
defined by

DΦgF(ω) � lim
δ→0

1
δ

F ω + δ ∫·

0
(Φg)(u)du( ) − F(ω){ },

if the limit exists in Lp. Moreover if there exists a process
(Dϕ

s Fs, s≥ 0) such that

DΦgF � ∫∞

0
Dϕ

s Fsgsds a.s.,

for all g ∈ L2ϕ, then F is said to be ϕ-differentiable.
According to [16, 30], let A(0, T) be the family of stochastic

process on [0, T] such that F ∈ A(0, T) if E|F|2ϕ <∞ and F is
ϕ-differentiable, the trace of (Dϕ

s Ft, 0≤ s≤T, 0≤ t≤T) exists and
E∫T

0
(Dϕ

s Fs)2ds<∞, and for each sequence of partitions
πn, n ∈ N such that |πn| → 0, as n → ∞. Moreover

∑n−1
i�0

E ∫t(n)i+1

t(n)i

|Dϕ
s F

π
t(n)i

−Dϕ
s Fs|ds

⎧⎨⎩ ⎫⎬⎭
2

→ 0,

and

E|Fπ − F|2ϕ → 0,

as n → ∞. Here πn: 0 � t(n)0 < t(n)1 < . . . < t(n)n � T, and |πn| �
maxi∈{0,1,...,n−1}{t(n)i+1 − t(n)i }.

Now we define the BH
t -integral considered in [16].

Definition 2.3. Let {Ft}t≥ 0 be a stochastic process such that
F ∈ A(0, T). Define ∫T

0
FsdBH

s by

∫T

0
FsdB

H
s � lim

|π|→0
∑n−1
i�0

Fπ
ti
◇(BH

ti+1 − BH
ti
),

where |π| � maxi∈{0,1,. . .,n−1}{ti+1 − ti}.

Remark 2.1. : According to Theorem 3.6.1 in [16], if Fs ∈ A(0, T),
then the stochastic integral satisfies E∫T

0
FsdBH

s � 0, and

E ∫T

0
FsdB

H
s

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

� E ∫T

0
Dϕ

s Fsds( )2

+ |1[0,T]F|2ϕ[ ]
What’s more, according to Definition 3.4.1 in [16], the stochastic
integral can be extended by

∫
R

FtdB
H
t d∫

R

Ft◇WH(t)dt,

where F: R→ (S)*H is a given function such that Ft◇WH(t) is dt
_− integrable in (S)*H. Here (S)*H is the fractional Hida

distribution space defined by Definition 3.1.11 in [16]. In
particular, the integral on [0, T] can be defined by

∫T

0
FtdB

H
t � ∫

R

FtI[0,T](t)dBH
t .

3 HYBRID FRACTIONAL SYSTEMS

In this section, firstly, we consider the existence and uniqueness of
solution for Eq. 1. Then, an extended Itô’s Formula is presented.

3.1 Existence and Uniqueness
To ensure the existence and uniqueness, we impose the following
assumptions.

Assumption 3.1. Let f � f(x, t, i): R × R+ × S → R satisfy the
hypothesises:

1) For each fixed i ∈ S, f(x, t, i) is measurable in all the
arguments.

2) For each fixed i ∈ S, there exists a constant C > 0, such
that
|f(x, t, i) − f(y, t, i)|≤C|x − y|, ∀x, y ∈ R, ∀t ∈ R+.

3) For each fixed i ∈ S, there exists a constant C > 0, such that

|f(x, t, i)|≤C(1 + |x|), ∀(x, t) ∈ R × R+.

Assumption 3.2. Let σ � σ(t, i): R+ × S→R satisfy the
hypothesises:

1) For each fixed i ∈ S, σ(t, i) is nonrandom;
2) For each fixed i ∈ S, σ(t, i) ∈ L

1
H(R+).

Lemma 3.1. : Let Assumptions 3.1, 3.2 hold. Then Eq. 1 has a
unique solution.

Proof: The existence and uniqueness can be proved similar to
that for Theorem 2.6 in [31], so we omit it here.

3.2 The Itô Formula
Next, we first review the results in [16, 30] on the Itô formula with
respect to fBm. Then we extend it to SDEs driven by fBm with
Markovian switching.

Lemma 3.2. [16] (The Itô Formula) Let (Fu, 0 ≤ u ≤ T) be a
stochastic process inA(0, T). Assume that there exists an α > 1 −
H and C > 0 such that
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E|Fu − Fv|2 ≤C|u − v|2α,
where |u − v| ≤ δ for some δ > 0 and

lim
0≤u,v≤t,|u−v|→0

E|Dϕ
u(Fu − Fv)|2 � 0.

Let sup0≤s≤T|Gs| < ∞ and ~g � ~g(x, t) ∈ C2,1(R × R+;R) with
bounded derivatives. Moreover, for ηt � ∫t

0
FudBH

u , it is assumed

that E∫T

0
|FsDϕ

s ηs|ds<∞ and (z~gzx (s, ηs)Fs, s ∈ [0, T]) is in

A(0, T). Denote xt � x0 + ∫t

0
Gudu + ∫t

0
FudBH

u , x0 ∈ R for t ∈
[0, T]. Let (z~gzx (xs, s)Fs, s ∈ [0, T]) ∈ A(0, T),E[sup0≤s≤t|Gs|]<∞.
Then for t ∈ [0, T],

~g(xt, t) � ~g(x0, 0) + ∫t

0

z~g

zs
(xs, s)ds + ∫t

0

z~g

zx
(xs, s)Gsds

+∫t

0

z~g

zx
(xs, s)FsdB

H
s + ∫t

0

z2~g

zx2 (xs, s)FsD
ϕ
s xsds.

HereDϕ
s xs is the Malliavin derivative defined inDefinition 2.2.

In particular, for the process
X(i)

t �X(i)
0 +∫t

0
f(X(i)

s , s, i)ds+∫t

0
g(X(i)

s , s, i)dBH
s , with each

fixed i ∈ S, we have that

F(X(i)
t , t, i) � F(X(i)

0 ,0, i) +∫t

0

zF

zs
(X(i)

s , s, i)ds

+∫t

0

zF

zx
(X(i)

s , s, i)f(X(i)
s , s, i)ds+∫t

0

zF

zx
(X(i)

s , s, i)g(X(i)
s , s, i)dBH

s

+∫t

0

z2F

zx2 (X(i)
s , s, i)g(X(i)

s , s, i)Dϕ
s X

(i)
s ds,

(2)

Formally,

dF(X(i)
t , t, i) � Ft(X(i)

t , t, i)dt + Fxx(X(i)
t , t, i)g(X(i)

t , t, i)Dϕ
s X

(i)
s dt

+Fx(X(i)
t , t, i)f(X(i)

t , t, i)dt + Fx(X(i)
t , t, i)g(X(i)

t , t, i)dBH
t ,

Let

L(i)F(X(i)
t , t, i) � Ft(X(i)

t , t, i) + Fx(X(i)
t , t, i)f(X(i)

t , t, i)
+Fxx(X(i)

t , t, i)g(X(i)
t , t, i)Dϕ

s Xs.
(3)

Substituting Eq. 3 into Eq. 2, we get

F(X(i)
t , t, i) � F(X(i)

0 , 0, i) + ∫t

0
L(i)F(X(i)

s , s, i)ds

+∫t

0
Fx(X(i)

s , s, i)g(X(i)
s , s, i)dBH

s .
(4)

In the sequel of this paper, unless otherwise specified, we let
the coefficients of Eq. 1 satisfy the conditions in Lemma 3.2, for
each fixed i ∈ S. Set V(Xt, t, rt) ∈ C2,1(R × R+ × S;R+). Next we
consider the Itô formula which reveals how Vmaps (Xt, t, rt) into
a new process V(Xt, t, rt), where {Xt}t≥ 0 is a stochastic process
with the stochastic differential Eq. 1.

Lemma 3.3. IfV(Xt, t, rt) ∈ C2,1(R × R+ × S;R+), then for any 0
≤ s < t,

EV(Xt, t, rt) � EV(Xs, s, rs) + E∫t

s
AV(Xu, u, ru)du

+E∫t

s
Vx(Xu, u, ru)g(Xu, u, ru)dBH

u

(5)

where AV is defined by

AV(x, t, i) � L(i)V(x, t, i) +∑N
j�1

cijV(x, t, j).

Proof: This result can be obtained similarly to that in [31] and
we therefore omit it. For further details we also refer to [2, 23].

4 LINEAR HYBRID FRACTIONAL SYSTEMS

There are many models for financial markets with fBm (see, e.g.
[16]). The simplest nontrivial type of market is the fBm version of
the classical Black Scholes market, in which linear fractional SDEs
is used. Thus, we would like to give some new criteria for
switching linear fractional SDEs with H ∈ (0, 12) or H ∈ (12, 1).
At first, we present a definition and a useful lemma.

Definition 4.1. Let H ∈ (0, 1). The operator M is defined on
functions f ∈ S(R) by

Mf(x) � − d

dx

CH

(H − 1/2)∫R

(t − s)|t − x|H−3
2f(t)dt (6)

where

CH � 2Γ H − 1
2

( )cos π

2
H − 1

2
( )[ ]{ }−1

[Γ(2H + 1) sin(πH)]
1
2.

Here Γ(·) denotes the classical Gamma function.
According to [16], Eq. 6 can be restated as follows.
For H ∈ (0, 1/2), we have

Mf(x) � CH∫
R

f(x − t) − f(x)
|t|3/2−H dt.

For H � 1/2, we have

Mf(x) � f(x).
For H ∈ (1/2, 1), we have

Mf(x) � CH∫
R

f(t)
|t − x|3/2−H dt.

Lemma 4.1. Let {rt}t≥ 0 be a right-continuous Markov chain
which takes values in a finite state space S � {1, 2, . . . , N}.
Assume that it is irreducible and positive recurrent with
invarient measure μ. If α(·): S→R is a function verifying

αd∑
i∈S

μ(i)α(i)> 0.

Then there exists constants C, c > 0 such that:

ce−αt ≤E e
−∫t

0
α(rs)ds[ ]≤Ce−αt,

for any initial condition r0 and every t ≥ 0.
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Proof: It is a consequence of Perron-Frobenius theorem and
the study of eigenvalues. See Proposition 4.1 in [25], Proposition
4.2 in [25], and Lemma 2.7 in [26], for further details.

In Eq. 1, let us consider the case g(x, t, rt) � σ(t, rt)x � thb(rt)x,
f(x, t, rt) � α(rt)x, where α(i) and b(i) are constants for each i ∈ S.
This means that we are considering the following linear
equation:

dXt � α(rt)Xtdt + σ(t, rt)XtdB
H
t ,

X0 � x0.
{ (7)

Set �b � max{|b(i)|, i ∈ S} and b � min{|b(i)|, i ∈ S}. x0 is the
deterministic initial value. For the sake of clarity, we firstly set h �
1/2 − H.

4.1 pth Moment Exponential Stability

Theorem 4.1. Let {Xt}t≥ 0 be the solution of Eq. 7 with H ∈ (1/2,
1), h � 1/2 − H.

1) If ∑i∈Sμiα(i) − (1−p)b 2

2 < 0, then lim sup
t→∞

1
t log(E|Xt|p)< 0.

2) If ∑i∈Sμiα(i) − (1−p)�b2
2 > 0, then lim

t→∞
E|Xt|p � ∞.

Proof. According to [16], without too many calculations, we
obtain that {Xt}t≥ 0 has the following form:

Xt � x0 exp ∫t

0
σ(rs)dBH

s + ∫t

0
α(rs)ds − 1

2
∫

R

(Ms(σ(t, rs)I[0,t](s)))2ds[ ],
(8)

whereMs is the operatorM acting on the variable s. Let x0 ≠ 0. It
follows from Eq. 8 that

E|Xt|p

� E |x0| exp ∫t

0
σ(t, rs)dBH

s + ∫t

0
α(rs)ds − 1

2
∫

R

(Ms(σ(t, rs)I[0,t](s)))2ds[ ]( )p

(9)

We then see from Eq. 9 that

E|Xt|p � E exp p ∫t

0
α(rs)ds − 1 − p

2
∫

R

(Ms(σ(t, rs)I[0,t](s)))2ds[ ]( )ζ t( ),
(10)

where

ζ t � |x0|p exp∫t

0
pσ(s, rs)dBH

s − p2

2

∫
R

(Ms(σ(t, rs)I[0,t](s)))2ds.

Noting that ζ t is the solution to the equation

dζ t � pσ(t, rt)ζ tdBH
t ,

with initial value ζ0 � |x0|
p. Thus

ζ t � |x0|p + ∫t

0
pσ(t, rs)dBH

s ,

which yields

Eζ t � E |x0|p + ∫t

0
pσ(t, rs)dBH

s[ ] � |x0|p. (11)

Substituting Eq. 11 into Eq. 10 gives

E|Xt|p � E exp p ∫t

0
α(rs)ds − 1 − p

2
∫

R

(Ms(σ(rs)I[0,t](s)))2ds[ ]( )|x0|p.
(12)

Note that

∫
R

(Ms(b shI[0,t](s)))2ds≤∫
R

(Ms(σ(t, rs)I[0,t](s)))2

ds≤∫
R

(Ms(�bshI[0,t](s)))2ds.

Consequently, by Definition 4.1 and [16], one has

b 2t≤∫
R

(Ms(σ(rs)I[0,t](s)))2ds≤ �b
2
t. (13)

Making use of Eqs 12, 13, we obtain that

E exp p ∫t

0
α(rs)ds − 1 − p

2
�b
2
t[ )( ]|x0|p ≤E|Xt|p

≤E exp p ∫t

0
α(rs)ds − 1 − p

2
b 2t[ )( ]|x0|p.

Therefore, by Lemma 4.1 and Eq. 12, the required assertions
follow. The proof is complete.

Theorem 4.2. Let {Xt}t≥ 0 be the solution of Eq. 7 with H ∈ (0, 1/
2), h � 1/2 − H.

1) If ∑i∈Sμiα(i)< (1−p)b 2

2 , then lim sup
t→∞

1
t log(E|Xt|p)< 0.

2) If ∑i∈Sμiα(i)> (1−p)�b2
2 , then lim

t→∞
E|Xt|p � ∞.

Proof: Similar to Theorem 4.1, we write the solution as
follows.

E|Xt|p � E exp p ∫t

0
α(rs)ds + p − 1

2
∫

R

(Ms(σ(rs)I[0,t](s)))2ds[ ]( )|x0|p.
(14)

Note thatMs is the operator M acting on the variable s, where

Mf(x) � CH∫
R

f(x − t) − f(x)
|t|3/2−H dt.

According to [16], we also have that

b 2t≤∫
R

(Ms(σ(t, rs)I[0,t](s)))2ds≤ �b
2
t. (15)

Consequently, by Lemma 4.1, the result follows. The proof is
complete.

Remark 4.1. In the above Theorems 4.1, 4.2, the parameter h
is supposed to be H − 1/2. Noting that by Eqs 13, 15 and
together with the Definition 4.1, the stability of solution for

Frontiers in Physics | www.frontiersin.org November 2021 | Volume 9 | Article 7834345

Pei and Zhang Stability of Fractional Hybrid SDEs

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Eq. 7 with h < 1/2 −H or h > 1/2 −H can be deduced respectively
without too many difficulties.

Remark 4.2. Take H � 1/2. It’s easy to show that if∑i∈Sμiα(i) � α< (1−p)σ 2

2 , then lim sup
t→∞

1
t log(E|Xt|p)< 0, and if

∑i∈Sμiα(i) � α> (1−p)�σ2
2 , then lim

t→∞
E|Xt|p � ∞, which coincide

with the results of SDEs driven by Brownian motion
in [4, 32].

4.2 Almost Sure Exponential Stability
To proceed, we need to introduce the definition of almost sure
stability and a useful lemma.

Definition 4.2. The equilibrium point x � 0 is said to be almost
surely exponential stable if

lim sup
t→∞

1
t
log|Xt|< 0 a.s.

for any x0 ∈ R.

Lemma 4.2. (Law of the iterated logarithm) For a standard fBm
BH
t{ }t≥ 0, we have that

lim sup
t→∞

BH
t

tH
������
log logt

√ � CH, (16)

where CH > 0 is a suitable constant.
Proof: By [33], we have

lim sup
t→0+

BH
t

tH
��������
log logt−1

√ � cH,

where cH is a suitable constant. Then the thesis follows by the self-
similarity of fBm and a change of variable t → 1/t.

For the sake of clarity, we firstly set h � 0. Namely, let us
consider

dXt � α(rt)Xtdt + b(rt)XtdB
H
t ,

X0 � x0.
{ (17)

Noting that Eq. 17 is exactly the geometry fBm with
Markovian Switching. We proceed to discuss the almost sure
exponential stability about it.

Theorem 4.3. 1) If 0 <H < 1/2, the equilibrium point x � 0 of the
system Eq. 17 is almost surely exponential stable when∑i∈Sμiα(i)< 0, but unstable when ∑i∈Sμiα(i)> 0; 2) If H � 1/2,
the equilibrium point x � 0 of the system Eq. 17 is almost surely
exponential stable when ∑i∈Sμiα(i)< 1

2b
2, but unstable when∑i∈Sμiα(i)> 1

2
�b
2
; 3) If 1/2 < H < 1, the equilibrium point x �

0 of the system Eq. 17 is almost surely exponential stable for all
parameters α(i) and σ(i), i ∈ S.

Proof: Define

λ � lim sup
t→∞

1
t
log|Xt|.

From Eqs 8, 16, we have

λ � lim sup
t→∞

1
t
log|Xt|

� lim sup
t→∞

1
t
log

∣∣∣∣∣∣∣∣x0 exp[∫t

0
σ(rs)dBH

s + ∫t

0
α(rs)ds − 1

2
∫

R

(Ms(σ(rs)I[0,t](s)))2ds]
∣∣∣∣∣∣∣∣

� lim
t→∞

∑
i∈S

μiα(i) −
1
2t
∫

R

(Ms(σ(rs)I[0,t](s)))2ds( ).

By Definition 4.1 and [16], one has

b 2t2H ≤∫
R

(Ms(b(rs)I[0,t](s)))2ds≤ �b
2
t2H. (18)

Making use of Eq. 18, we get

λ � ∑
i∈S

μiα(i), 0<H< 1/2;
−∞, 1/2<H< 1.

{
Especially, when H � 1/2, we have that

∑
i∈S

μiα(i) −
1
2
�b
2 ≤ λ≤ ∑

i∈S

μiα(i) −
1
2
b 2.

Therefore, the required results follows. The proof is
complete.

Remark 4.3. Making use of Eq. 18, one can discuss the almost
sure exponential stability for Eq. 7 with h ≠ 0. The proofs are
similar to Theorem 4.3 and are omitted.

5 QUASI-LINEAR HYBRID FRACTIONAL
SYSTEMS

We now apply the extended Itô Formula in Section 3 to discuss
the stability for quasi-linear fractional SDEs with Markovian
switching.

Theorem 5.1. : Let Assumptions 3.1, 3.2 hold. If there exists a
function V ∈ C2,1(R × R+ × S;R+) and positive constants a1, a2,
b and p ≥ 1, such that

a1|Xt|p ≤ |V(Xt, t, i)|≤ a2|Xt|p, (19)

L(i)V(Xt, t, i)≤ − b|Xt|p, (20)

for all Xt ∈ R, t ≥ t0, i ∈ S.
Then the solution of Eq. 1 is pth moment exponential stable.

More precisely,

lim sup
t→∞

1
t
log(E|Xt|p)< 0.

Proof: According to Lemma 3.1, Eq. 1 has a unique solution.
Denote it {Xt}t≥ 0. Set

U(Xt, t, i) � eλtV(Xt, t, i),
where λ ∈ (η, b

a2
), η > 0. Making use ofDefinition 2.3 and Lemma

3.2, one hasAU � eλt(λV +AV) and (Uxg, s ∈ [0, T]) ∈ A(0, T).
Applying the conditions Eq. 19, 20, together with the

generalized ItôEq. 5 and Remark 2.1, we obtain that for
any t ∈ [0, T]
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a1e
ηtE|Xt|p ≤EU(Xt, t, i) � EV(X0, 0, r0) + E∫t

0
AUds

+ E∫t

0
UxgB

_

H

s

� EV(X0, 0, r0) + E∫t

0
L(rs )Uds

� EV(X0, 0, r0) + E∫t

0
eλs(λV +AV)ds≤EV(X0, 0, r0)

+ E∫t

0
eλs(λa2 − b)|Xt|pds.

Thus we obtain that

a1e
ηtE|Xt|p ≤EV(X0, 0, r0) + E∫t

0
eλs(λa2 − b)|Xt|pds. (21)

Dividing both sides of Eq. 21 by a1e
ηt, noting that λa2 − b < 0,

we get

E|Xt|p ≤
e−ηt

a1
EV(X0, 0, r0) + e−ηt

a1
E∫t

0
eλs(λa2 − b)|Xt|pds

≤
e−ηt

a1
EV(X0, 0, r0).

Consequently,

sup
t∈[0,T]

a1e
ηtE|Xt|p ≤EV(X0, 0, r0).

Letting T → ∞ gives

sup
t≥0

E|Xt|p ≤ e−ηt

a1
EV(X0, 0, r0),

and the required assertion follows. The proof is complete.
In the sequel of this section, we give another useful criterion

and prove it briefly.

Theorem 5.2. Assume that Eq. 1 has a unique solution and there
exist a function V ∈ C2,1(R × R+ × S;R+) and positive constants
b1, b2, p ≥ 1 and βi ∈ R such that for all x ∈ R, t ≥ t0, i ∈ S,

b1|x|p ≤ |V(x, t, i)|≤ b2|x|p,
L(i)V(x, t, i)≤ βiV(x, t, i),

and

∑
i∈S

μiβi < 0

Then Eq. 1 is pth moment exponential stable.
Proof: Set �βi � 1

θ βi, where θ ∈ (0, 1). Let δ � −∑i∈Sμi
�βi � −μ�β.

Let 1 denote the vector which all elements are 1. Then,

μ(�β + δ1) � μ�β + δ � −δ + δ � 0. (22)

By [1], Eq. 22 implies the Poisson equation:

Qc � �β + δ1. (23)

Note that Eq. 23 has the solution c � (c1, . . . , cN)T. Hence,

−δ � �βi −∑N
j�1

qijcj, i ∈ S. (24)

For each i ∈ S, set U(x, t, i) � (1 − θci)V(x, t, i), where θ ∈ (0, 1)
is already defined and sufficiently small satisfying 1 − θci > 0.

Then, for any t ∈ [0, T] we get

AU(x, t, i) � (1 − θci)L(i)V(x, t, i) +∑
i≠j

qij(U(x, t, j) − U(x, t, i))

� (1 − θci)L(i)V(x, t, i) − θV(x, t, i)∑
i≠j

qij(cj − ci)

≤ (1 − θci)θV(x, t, i) �βi −∑
i≠j

qij
cj − ci

(1 − θci)
⎡⎢⎢⎣ ⎤⎥⎥⎦.

(25)

According to [1, 31], one has

∑
i≠j
qij

cj − ci
(1 − θci) � ∑

i≠j
qijcj +∑

i≠j
qij
θcicj − ci
1 − θci

� ∑N
j�1

qijcj +∑
i≠j

qij
ci(cj − ci)
1 − θci

θ � ∑N
j�1

qijcj + o(θ).
(26)

Making use of Eqs 25, 26, we obtain that

AU(x, t, i)≤ (1 − θci)θV(x, t, i) �βi −∑N
j�1

qijcj + o(θ)⎡⎢⎢⎣ ⎤⎥⎥⎦. (27)

Substituting Eq. 24 into Eq. 27, we get

AU(x, t, i)≤ (1 − θci)θV(x, t, i)[o(θ) − δ] � κU(x, t, i),
where κ < 0.Making use ofTheorem5.1, the desired criterion follows.

On the other hand, we can prove it in another way. Set η > 0
and λ ∈ (η, − κ). Define

�U(Xt, t, i) � eλt

1 − θci
U(Xt, t, i).

Compute

b1e
ηtE|Xt|p ≤E �U(Xt, t, i) � EU(X0, 0, i0) + E∫t

0
A �Uds + E∫t

0

�UxgdB
H
s

� EU(X0, 0, i0) + E∫t

0
eλs(λU +AU)ds≤EU(X0, 0, i0) + E∫t

0
eλs(λ + κ)Uds

� EV(x0, 0, i0) + E∫t

0
eλs(λ + κ)Vds

≤EV(x0, 0, i0) + E∫t

0
eλs(λ + κ)b2|Xt|pds.

Thus we obtain that

b1e
ηtE|Xt|p ≤V(x0, 0, i0) + E∫t

0
eλsb2(λ + κ)|Xt|pds, (28)

Dividing both sides of Eq. 28 by b1e
ηt, noting that b2(λ + κ) < 0,

we get

E|Xt|p ≤
e−ηt

b1
EV(X0, 0, r0) + e−ηt

b1
E∫t

0
eλsb2(λ + κ)|Xt|pds

≤
e−ηt

b1
EV(X0, 0, r0).

Therefore, we obtain the required assertion

lim sup
t→∞

1
t
log(E|Xt|p)< 0.

The proof is complete.
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6 EXAMPLE

In this section we give a numerical example to illustrate our
results.

Example 1. Let {rt}t≥ 0 be a right-continuousMarkov chain taking
values in S � {1, 2} with invariant probability measure μ1 � μ2 �
1
2.

Consider a risky asset, with the price dynamics:

dXt � f(Xt, t, rr)dt + σ(t, rt)XtdB
H
t ,

X0 � 1,
{ (29)

on t ≥ 0. Here we take H � 0.7 and

f(x, t, i) � −4x, σ(t, i) � 1
t + 1

, if i � 1,

f(x, t, i) � [2 − sin(x)]x, σ(t, i) � e−t, if i � 2.

⎧⎪⎪⎨⎪⎪⎩
Note that for all i ∈ S, dXt � f(Xt, t, i)dt + σ(t, i)XtdBH

t
satisfy the hypothesises (i)-(v). Then, by Lemma 3.1, it is easy
to show that Eq. 29 has a unique solution {Xt}t≥ 0 as well. Set V(x,
t, i) � x2, for i � 1, 2.

Noting that for some t0 > 0 sufficiently large and all t > t0, we
have

L(1)V(x, t, 1) � Vx(x, t, 1)f(Xt, t, 1) + Vxx(x, t, 1) 1
t + 1

xDϕ
s x

≤ − 8x2 + 2
1

t + 1
x xHt2H−1[ ]

� −8x2 + o(1)x2dβ1x
2,

and

L(2)V(x, t, 2) � Vx(x, t, 2)f(Xt, t, 2) + Vxx(x, t, 2)e−txDϕ
s x

� 2x2[2 − sin(x)] + o(1)x2

≤ 6x2 + o(1)x2dβ2x
2.

Compute

∑
i∈S

μiβi �
1
2
(−8 + 6) + o(1)< 0.

By Theorem 5.2, it’s clear that the solution of Eq. 29 is second
moment exponential stable. Figures 1, 2 show a single path of the
solution and the solution’s norm square, respectively.
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FIGURE 1 | A single path of solution. FIGURE 2 | Norm square trajectory.

Frontiers in Physics | www.frontiersin.org November 2021 | Volume 9 | Article 7834348

Pei and Zhang Stability of Fractional Hybrid SDEs

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


REFERENCES

1. Yin GG, and Zhu C. Hybrid switching diffusions: Properties and applications,
Stoch. Model. Appl. Probab. New York: Springer (2010).

2. Mao XR, and Yuan CG. Stochastic differential equations with Markovian
switching. South Kensington: Imperial College Process (2006).

3. Hamilton JD. A new approach to the economic analysis of nonstationary time
series and the business cycle. Econometrica (1989) 57:357–84. doi:10.2307/
1912559

4. Mao X. Stability of stochastic differential equations with Markovian switching.
Stochastic Process their Appl (1999) 79:45–67. doi:10.1016/s0304-4149(98)
00070-2

5. Yuan C, and Mao X. Stability of stochastic delay hybrid systems with jumps.
Eur J Control (2010) 16:595–608. doi:10.3166/ejc.16.595-608

6. Zhou W, Yang J, Yang X, Dai A, Liu H, and Fang JA. pth Moment exponential
stability of stochastic delayed hybrid systems with Lévy noise. Appl Math
Model (2015) 39:5650–8. doi:10.1016/j.apm.2015.01.025

7. Yuan C, and Mao X. Asymptotic stability in distribution of stochastic
differential equations with Markovian switching. Stochastic Process their
Appl (2003) 103:277–91. doi:10.1016/s0304-4149(02)00230-2

8. Li X, and Mao X. A note on almost sure asymptotic stability of neutral
stochastic delay differential equations with Markovian switching. Automatica
(2012) 48:2329–34. doi:10.1016/j.automatica.2012.06.045

9. Wu H, and Sun J. p-Moment stability of stochastic differential equations with
impulsive jump and Markovian switching. Automatica (2006) 42:1753–9.
doi:10.1016/j.automatica.2006.05.009

10. Hurst HE. Long-term storage capacity in reservoirs. Trans Amer Soc Civil Eng
(1951) 116:400–10. doi:10.1061/taceat.0006518

11. Hurst HE.Methods of using long-term storage in reservoirs. Proc Inst Civil Eng
(1956) 5:519–43. doi:10.1680/iicep.1956.11503

12. Mandelbrot BB. The Fractal Geometry of Nature. San Francisco, CA: Freeman
(1983).

13. Mandelbrot BB. Fractals and Scaling in Finance: Discontinuity, Concentration,
Risk. Berlin: Springer-Verlag (1997).

14. Hu Y, and Øksendal B. Fractional white noise calculus and applications to
finance. Infin Dimens Anal Quan Probab. Relat. Top. (2003) 06:1–32.
doi:10.1142/s0219025703001110

15. Brody DC, Syroka J, and Zervos M. Dynamical pricing of weather derivatives.
Quantitative Finance (2002) 2:189–98. doi:10.1088/1469-7688/2/3/302

16. Biagini F, Hu YZ, Øksendal B, and Zhang TS. Stochastic calculus for fractional
Brownian motion and applications. London: Springer-Verlag (2008).

17. Mishura YS. Stochastic calculus for Fractional Brownian Motion and related
process. Berlin: Springer-Verlag (2008).

18. Li M. Modified multifractional Gaussian noise and its application. Phys Scr
(2021) 96:125002. doi:10.1088/1402-4896/ac1cf6

19. Li M. Generalized fractional Gaussian noise and its application to traffic
modeling. Physica A (2021) 579:1236137. doi:10.1016/j.physa.2021.126138

20. Li M. Multi-fractional generalized Cauchy process and its application to
teletraffic. Physica A: Stat Mech its Appl (2020) 550:123982. doi:10.1016/
j.physa.2019.123982

21. Li M. Fractal time series a tutorial review.Math Probl Eng (2010) 2010:157264.
doi:10.1155/2010/157264

22. Ghosh MK, Arapostathis A, and Marcus SI. Ergodic control of switching
diffusions. SIAM J Control Optim (1997) 35:1952–88. doi:10.1137/
s0363012996299302

23. Skorohod AV. Asymptotic Methods in the Theory of Stochastic Differential
Equations. US: American Mathematical Society (1989).

24. Anderson WJ. Continuous-time Markov chain. New York: Springer (1991).
25. Bardet JB, Gurin H, and Malrieu F. Long time behavior of diffusions with

Markov switching. ALEA Lat Am J Probab Math Stat (2010) 7:151–70.
26. Cloez B, and Hairer M. Exponential ergodicity for Markov processes with

random switching. Bernoulli (2015) 21:505–36. doi:10.3150/13-bej577
27. Alos E, Mazet O, and Nualart D. Stochastic calculus with respect to Gaussian

processes. Ann Probab (1999) 29:766–801.
28. Nualart D, and Răşcanu A. Differential equations driven by fractional

Brownian motion. Collect Math (2000) 53:55–81.
29. Holdeb H, Øksendal B, Ubøe J, and Zhang T. Stochastic partial differential

equations. Boston: Birkhäuser (1996).
30. Duncan TE, Hu Y, and Pasik-Duncan B. Stochastic Calculus for Fractional

Brownian Motion I. Theory. SIAM J Control Optim (2000) 38:582–612.
doi:10.1137/s036301299834171x

31. Yan L, Pei WY, Pei W, and Zhang Z. Exponential stability of SDEs driven by
fBm with Markovian switching. Discrete Cont Dyn-a (2019) 39:6467–83.
doi:10.3934/dcds.2019280

32. Mao XR. Stochastic differential equations and applications. New York:
Horwood (1997).

33. Arcones MA. On the law of the iterated logarithm for gaussian processes.
J Theor Probab (1995) 8:877–903. doi:10.1007/bf02410116

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Pei and Zhang. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org November 2021 | Volume 9 | Article 7834349

Pei and Zhang Stability of Fractional Hybrid SDEs

https://doi.org/10.2307/1912559
https://doi.org/10.2307/1912559
https://doi.org/10.1016/s0304-4149(98)00070-2
https://doi.org/10.1016/s0304-4149(98)00070-2
https://doi.org/10.3166/ejc.16.595-608
https://doi.org/10.1016/j.apm.2015.01.025
https://doi.org/10.1016/s0304-4149(02)00230-2
https://doi.org/10.1016/j.automatica.2012.06.045
https://doi.org/10.1016/j.automatica.2006.05.009
https://doi.org/10.1061/taceat.0006518
https://doi.org/10.1680/iicep.1956.11503
https://doi.org/10.1142/s0219025703001110
https://doi.org/10.1088/1469-7688/2/3/302
https://doi.org/10.1088/1402-4896/ac1cf6
https://doi.org/10.1016/j.physa.2021.126138
https://doi.org/10.1016/j.physa.2019.123982
https://doi.org/10.1016/j.physa.2019.123982
https://doi.org/10.1155/2010/157264
https://doi.org/10.1137/s0363012996299302
https://doi.org/10.1137/s0363012996299302
https://doi.org/10.3150/13-bej577
https://doi.org/10.1137/s036301299834171x
https://doi.org/10.3934/dcds.2019280
https://doi.org/10.1007/bf02410116
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Stability of Hybrid SDEs Driven by fBm
	1 Introduction
	2 Preliminaries
	2.1 Markov Chain
	2.2 Fractional Brownian Motion and Wick Product
	2.3 Malliavin Derivative

	3 Hybrid Fractional Systems
	3.1 Existence and Uniqueness
	3.2 The Itô Formula

	4 Linear Hybrid Fractional Systems
	4.1 pth Moment Exponential Stability
	4.2 Almost Sure Exponential Stability

	5 Quasi-Linear Hybrid Fractional Systems
	6 Example
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


