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Atmospheric scattering caused by suspended particles in the air severely degrades the
scene radiance. This paper proposes a method to remove haze by using a neural network
that combines scene polarization information. The neural network is self-supervised and
online globally optimization can be achieved by using the atmospheric transmission model
and gradient descent. Therefore, the proposed method does not require any haze-free
image as the constraint for neural network training. The proposed approach is far superior
to supervised algorithms in the performance of dehazing and is highly robust to the scene.
It is proved that this method can significantly improve the contrast of the original image, and
the detailed information of the scene can be effectively enhanced.
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1 INTRODUCTION

The existence of haze, due to the tiny water droplets or solid particles suspended in the air, brings
many inconveniences to daily life. The air can no longer be regarded as an isotropic medium which
leads to scattering of the transmitted light. The scene image received by the camera or human eyes
has a severe degradation. As the distance from the target increases or the concentration of suspended
particles increases, the scattering becomes more and more serious. Therefore, the details of the
distant target are more severely lost, and the contrast of the captured image is also reduced more.
Eliminating the influence of haze on the collected image is often required which canmake it easier for
the observer to identify the target.

The current methods for dehazing mainly include the data-driven method [1–3], the method
based on prior knowledge [4–6], and the method based on physical models [7–10]. The first two
types of methods hardly contain physical models, therefore, the problem these methods solved is
essentially ill-posed. Data-driven methods often need to obtain a large number of hazy-clean pairs in
advance for training and use deep learning or image feature extraction methods to achieve haze
removal. The method based on prior knowledge mainly combines some statistical characteristics in
the image contained haze. Appropriate parameters need to be selected and combined with the prior
model to remove haze in the acquired image. Most of these methods can achieve dehazing through
one image, but the limited information contained in the single image cannot provide the unique
characters of the scene. Changes of the scene or objects with special colors in the scene may cause the
failure of dehazing [4, 11, 12]. As another type of approach, methods based on physical models can
solve the shortcomings of the above two types of methods to a certain extent. Physical-model-based
methods often use the depth map or analyze the changes in the polarization state of the scene. These
methods often need to take multiple images, through the depth map of the scene or the polarization
intensity difference, to obtain the transmission map during the scattering process. Both of these
methods can construct a unique model based on the characteristics of the scene itself, so the haze can
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be removed more accurately. But sometimes methods based on
physical models also require empirical knowledge to select
appropriate filtering parameters [13–15].

Many data-driven or prior knowledge-based methods have
emerged in the field of computer vision to achieve haze removal.
Cai et al. realized dehazing through a single frame image by an
end-to-end structure Convolutional Neural Network (CNN) [1].
A total of 100,000 sets of data are used for the model training
during the experiment; such a huge amount of data consumes a
lot of time in the collection and calculation process. Akshay et al.
used the Generative Adversarial Networks (GAN) to achieve
dehazing with a single frame image. The simulation data is
used in the training process, and this strategy causes the
trained model to not be well applied to actual scenarios [16].
He et al. analyzed the color distribution in the haze image and
proposed a Dark Channel Prior (DCP) method for dehazing. But
this method may be invalid when the target color in the scene is
inherently similar or close to the background airtight (such as a
white wall, snowy ground, etc.) [4].

The earliest dehazing process often uses polarization
information to build a physical model. Schechner et al. used the
polarization state difference of the scene due to scattering to achieve
haze removal. However, it is necessary to manually select the
window in the picture to determine the airlight intensity, which
will introduce a lot of errors [7]. In recent years, polarization-based
methods have been continuously developed. Shen et al. proposed a
dehazing method by using the polarization state information to
iteratively find the transmission map [17]. Liu et al. used
polarization to separate the high-frequency and low-frequency
information of the scene to achieve dehazing [13]. Shen et al.
used the fusion of polarization intensity, hue, and saturation to
achieve dehazing [18]. Because scene information such as depth
can be extracted from the polarization difference of the two frames
scene image, these methods can be used in most scenes without a
priori. These methods may need to adjust the angle of the polarizer
to obtain the two images with the largest polarization difference, so
the data collection process is cumbersome.

This paper proposes a Polarization-based Self-supervised
Dehazing Network named PSDNet that combines the
difference of polarization information with deep learning to
eliminate the influence of haze on the image. The feature map
of the neural network is activated through the transmission map
calculated by the scene polarization state. Then the transmission
map with more accurate depth information is estimated and has
richer detail. The transmission map, haze-free image, and airlight
can be calculated by the network and a self-supervised closed loop
is formed to optimize the network. Because the physical model is
used as a constraint, huge amounts of data are no longer needed
to optimize the weight of the network. PSDNet only needs two
frames of orthogonal polarization state images of the scene as
input to remove scene haze based on online training. The global
optimization of the neural network also solves the problem of
inaccurate selection of airlight and makes it dehaze more
accurately. Compared with similar methods, the proposed
method can more effectively improve the visibility of target
details and is highly robust to the scene.

2 METHOD AND MODEL DESIGN

2.1 Basics of Polarization-Based Dehazing
When imaging through the atmosphere containing haze, the
particles in the atmosphere will cause scattering of the scene
radiance which leads to degrading the target image. As shown in
Figure 1, the scattered scene radiance and the scattered light from
the illumination are received by the camera. The intensity of
airlight increases as the distance increases, which can be
expressed as

A � A∞(1 − t(x)), (1)

where A∞ is the intensity of atmospheric light at infinity, and t(x)
represents the rate of transmission at position x, describing the
scattering and absorption of radiance in the atmosphere, t(x) is
given by

t(x) � exp −∫x
0

β(x′) dx′⎛⎜⎜⎝ ⎞⎟⎟⎠, (2)

where β(x′) is the extinction coefficient caused by scattering or
absorption. When the extinction coefficient in the atmosphere
does not change with distance, β(x′) � β, Eq. 2 can be written as

t(x) � exp(−βx). (3)

The process of removing the haze from the image is to restore
the radiation intensity and color information of the original
scene, which is usually modeled as

I(x) � L(x)t(x) + A∞(1 − t(x)), (4)

where L(x) is the radiance of the scene at position x when there
are no scattering particles in the atmosphere, and it is also the
“clear image.” L(x) can be expressed as

L(x) � I(x) − A∞(1 − t(x))
t(x) , (5)

where I(x) denotes the degraded version of L(x) by atmospheric
scattering. The effects of scattering on the polarization
characteristics have been extensively studied. Generally, in the
process of imaging through the atmosphere containing scattering
particles, the degree of polarization of the original scene is almost
negligible. The polarization is more related to the scattering
process in the transmission of optical signals and is sensitive
to the scattering distance [7]. Therefore, the transmission map
can be calculated according to the difference in the polarization
state in the captured image. A plane can be defined according to
the light ray from the source to the scatterer and the line of sight
from the camera. The airlight can be divided into two polarization
components that are parallel and perpendicular to this plane,
named A‖ and A⊥ respectively. The degree of polarization of
airlight can be calculated by

p � A⊥ − A‖

A
, (6)

where
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A � A⊥ + A‖, (7)

is the total radiance due to airlight, and A also equal to A∞(1 −
t(x)). The intensity of A‖ and A⊥ is related to the size of the
scattering particles in the scene. In some published dehazing
methods by using polarization, the parallel component is
associated with the minimum measured radiance at a pixel
and the perpendicular component is associated with the
maximum radiance. This limitation requires rotating the
polarizer during data collection to ensure that the two
components have the largest difference, which increases the
time for data collection. PSDNet only needs two images that
have a polarization difference and has no limitation to the degree
of polarization difference, so only two frames of orthogonal
polarization scene images at any angle are needed. To avoid
confusion in the calculation, stipulate thatA⊥ >A‖. The airlight at
any point in the captured picture can be estimated by

Ascene � I⊥ − I‖

p
(8)

where I⊥ and I‖ are the scene images taken when the polarization
direction is the same as A⊥ and A‖. The transmission map t is
calculated by

t � 1 − Ascene

A∞
� 1 − (I⊥ − I‖)

pA∞
� 1 − (I⊥ − I‖)A

(A⊥ − A‖)A∞
(9)

therefore, the airlight intensity at infinity A∞ only needs to be
estimated to recover the radiance of the scene without haze. The
brightest point in the image is often considered ted as A∞.
Although those strategies have good performance in most
scenes, the brightest light intensity cannot accurately express
A∞ when white objects appear in the scene. The accuracy of
manually selecting the A∞ will also affect the final dehazing
result. In addition, the reliability of the transmission map also
determines the quality of the haze removed image, and the
accuracy of the atmospheric degree of polarization also affects
the accuracy of the transmission map. Airlight is generally

considered as partially linearly polarized light. With the
rotation of the polarization axis of the polarizer, the rise and
fall of the light intensity can be observed. The maximum and
minimum light intensity are needed in the degree of polarization
calculation, and if the polarization axis orientation of the
polarizer cannot correspond to the direction of the airlight
polarization, the degree of polarization is calculated
inaccurately, which will cause the calculation error of the
transmission map. Given the limitations of these methods,
PSDNet is designed in which all calculations are in the same
optimization process, so the transmission map and the airlight
can be estimated simultaneously and accurately.

2.2 Model Design
To remove haze and get clear images, it is essential to obtain the
transmission map and airlight, so PSDNet consists of three
subnetworks, as shown in Figure 7. PSDNet-L, PSDNet-T,
and PSDNet-A are used to calculate the target radiation Lobject,
transmission map, and the scene airlight Ascene respectively. Both
PSDNet-L and PSDNet-T consist of convolution layers and
pooling layers, and the structure of the network does not have
a downsampling process which can reduce the loss of more detail.
The last layer of all sub-networks uses the sigmoid function to
normalize the output. Since the attributes of airlight are not
related to the original scene distribution, PSDNet-A is composed
of an encoder and a decoder, which are down-sampled and up-
sampled respectively to extract global features and estimate the
airlight [19].

The subnetwork PSDNet-T consists of two segments:
PSDNet-T1 and PSDNet-T2. PSDNet-T1 can extract the
features of the scene from the haze image, then the
transmission map estimated by the network is obtained.
Meanwhile, the transmission map by using the conventional
approach also can be calculated, and this calculation process
uses the airlight estimated by PSDNet-A and the original image.
When the scene polarization difference is minor as shown in
Figure 2B, the calculated transmission map can respond to any

FIGURE 1 | Schematic diagram of scattering model and data collection process. The illumination light (such as the sunlight) is scattered by atmospheric particles as
airlight. The intensity of airlight increases as the distance increases and the object radiance is scattered and attenuated along the optical path. Two scenes with
orthogonal polarization states are collected by rotating the front polarizer of the camera.
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part of the scene but is often discontinuous. To be able to carry
out effective dehazing, those transmission maps need to be
properly filtered. The neural network can extract continuous
feature maps as shown in Figure 2A, but details may be lost
due to the lack of label constraints. Therefore, the PSDNet-T2 is
designed to fuse the feature maps and the transmission map
calculated by polarization, and the transmission map involved in
dehazing is obtained finally. In the fusion results as shown in

Figure 2C, the inaccurate rate of transmission is corrected, and
the transmission map has a higher contrast which will enhance
the final dehazing effect.

Finally, the clean image, transmission image, and atmospheric
light estimated by the neural network are synthesized according
to Eq. 4. The Mean Square Error (MSE) is used as a loss function
to calculate the difference between the synthesized haze image
and the real image. The MSE is formulated as:

FIGURE 2 | Comparison of the transmission map. (A) Transmission map estimated by PSDNet-T1. (B) Transmission map calculated by scene polarization state.
(C) Transmission map for the final use dehazing after fusion by PSDNet-T2.

FIGURE 3 | The performance of different methods in the open-source dataset. (A) Original haze image. (B–D) Result of the DCP method, IIDWP method, and the
proposed method respectively.
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MSE � 1
HpW

∑H
i�1

∑W
j�1

[I′(i, j) − I(i, j)]2, (10)

where I ′ is the synthesized haze image and the I is the image
collected in the real scene. H and W are the height and width of
those images, respectively. Different from the supervised
algorithm, the self-supervised constraint strategy makes
PSDNet not need a lot of haze-free images as the Ground
Truth (GT) to constrain the optimization of the neural
network. The results of dehazing depend on the quality of the
transmission map and airlight. The effective use of polarization
information makes it easy to estimate the transmission map more
correctly, and the structure of the network combined with the
physical model allows airlight to be estimated more accurately,
then the original irradiance of the scene can be restored more
effectively.

3 EXPERIMENT

3.1 Experimental Comparison on the
Open-Source Dataset
An iterative image dehazing method with polarization (IIDWP) is
proposed by Linghao Shen et al. [17]. Both the IIDWPmethod and
the method proposed in this paper use the iterative optimization
approach and scene polarization for dehazing. However, the
IIDWP method only performs the iterative operation in the
transmission map calculations process, and the final haze-free
image quality may still be affected by airlight estimation or
parameter selection. The method proposed in this paper is
based on global learning optimization. And there is no need to
set algorithm parameters; the airlight estimation and transmission
map calculation are in the same iterative process, which makes it
easier to optimize to the globally optimal result. Shen et al. provide
an open-source dataset that contains haze images with orthogonal
polarization states [17]. And this open-source dataset is utilized to
compare dehazing performance among different methods firstly. A
classicmethod using a single-frame for dehazing, themethod based
on the Dark Channel Prior (DCP) [4], is also selected as a
comparison. The provided original image resolution is 942*609
pixels, and all images are resized as 960*576 pixels to facilitate
convolution calculation in neural networks. In the comparison
experiment, the dehaze results exposed by the author who provided
the original data are used directly.

Two scenes with severe pattern degradation are selected for
comparison, as shown in Figure 3. In these two selected scenes,
detailed information such as the ends of branches is severely lost
due to the high density of haze. In terms of increasing image
contrast, all three dehazing methods work admirably; however,
the results by using methods based on DCP or IIDWP have
substantial color aberrations in the sky. Thanks to the global
optimization strategy of the PSDNet, the optimal airlight and the
corresponding transmission map can be estimated more
accurately. Therefore, the proposed method not only can
better enhance the scene details but also preserve the color
information of the original image.

3.2 Comparison With Similar Approach on
the Captured Dataset by Ourselves
Although the proposed method is learning-based, it can perform
self-supervision based on the polarization prior and physical
model. So the PSDNet does not require GT as a constraint of
the neural network compared with supervised networks. It is
worth noting that Li et al. designed an end-to-end neural network
named AOD-Net, which also incorporates the atmospheric
transmission model [12]. As a representative of learning-based
supervised algorithms for dehazing, the performance of AODNet
is used as a comparison. In addition, the result of a method based
on DCP is also used to compare the performance of the different
approaches.

The nature of the supervised algorithm determines that
AODNet requires a lot of data to build the association
between haze images and haze-free images. It is difficult to
collect massive hazy-clean pairs in the real scene, but the
depth information of the picture is easier to obtain, so the
dataset required for network training can be generated based
on Eq. 4, 1. Haze image provided by NYU-Depth V2 [20] is
simulated based on the depth images, which is the public dataset
of New York University. Both the simulated haze dataset and the
real outdoor dataset RESIDE-beta collected in Beijing [21] are
used as the training dataset. A total of 50,000 hazy-clean pairs are
used to train AOD-Net, and the other 10,000 pairs are used to
verify the effectiveness of the trained model.

The data used for comparison was taken on a hazy morning,
and the scenes are filmed from a distance of between 1 and 4 km.
The system for pictures collection consists of a rotatable polarizer
(ϕ � 50.8 mm, extinction ratio � 1,000:1) and a color industrial
camera (Basler, acA1920-40gc), and a telephoto industrial camera
lens (f � 100 mm, 8 megapixels) is mounted on the camera. All
original images have a raw resolution of 1920*1,200 pixels, and
the center area with a size of 1920*1,156 pixels is cropped and
rescaled to 960*576 pixels.

The final savedmodel is used to compare the dehazing effect of
the method. The reference training epoch of AODNet is 40. To
further improve the accuracy of the trained model, the final
training epoch is increased to 50 and more than 36 h are used for
training. In contrast, the proposed approach does not need to be
trained in advance with the data mentioned above, only the haze
image is needed as input and perform online learning. Therefore,
the online training epoch of PSDNet is 800 but the consumed
time is less than 5 min. And all the training environment is
PyTorch 1.2.0 with RTX TITAN with I7-9700 CPU under
ubuntu 16.04.

The scene image used to compare the effectiveness of different
methods is captured in severe haze weather. The original scene
image is shown in Figure 4A, and buildings in the distance need
to be carefully discerned to see the outline, and the details are
almost indistinguishable. Figure 4B shows the result of dehazing
by the supervised algorithmAOD-Net. Although this method can
effectively remove haze in the close-up of the scene, specifics
about the distant scene are almost no enhancement. The main
reason is that although huge amounts of data are used to train the
network, these data cannot contain all scenarios in practice.
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Ultimately, the trained models cannot be well applied to the
widely varying real scenarios. Figure 4C shows the result of using
the DCP to recover the original scene. The contour information
in the long-distance can be distinguished after multiple parameter
selection and tuning, but some details still cannot be recovered
effectively. Figure 4D shows the dehazing result by using the
proposed method, and haze removal can be more successful
whether the scene is a close-distance or a long-distance. In the
first scene, the windows on the buildings can be distinguished
after dehazing by the proposed method, but it is completely
sightless in the original image. And the tower crane in the
zoomed-in area achieves visibility in the second scene, which
is sightless too in the original.

The above comparison is almost intuitive; in terms of
objective criteria, the result of image edge extraction can
reflect the contrast level of the image. The edge extraction
results of a high contrast image are more complete, and the
target in the image is easier to distinguish. In the event of an
image with low contrast, the opposite outcome is produced.
Therefore, the dehazing results of different methods are
subjected to edge detection to compare the image
cleanliness from a more objective point of view. The Prewitt
operator is a discrete differential operator which is often used
in edge detection algorithms. At each point in the image, the
result by using the Prewitt operator is either the corresponding
gradient vector or the norm of the vector. The Prewitt operator
is used to extract the edges of the dehazing results. Because the
gradient approximation has a certain smoothing effect on the
noise, edges cannot be extracted in low-contrast images, which
is more conducive to contrast. The haze concentration in the
far-field is much greater, and it is less visible in the original
image without dehazing, so the detail and completeness of the
edges extracted can reflect the quality of the dehazing result.

As shown in Figure 5, the original haze image and the
dehazing result by AOD-Net can barely extract the edge
contours of the distant buildings. Although the dehazing result
by the DCP method can be detected to a certain extent, some
distant building outlines are incomplete. The most complete edge
of the distant contours can be extracted in the PSDNet dehazing
results. The superior dehazing ability of PSDNet compared with
other methods is shown, and the results of the comparison are
also consistent with the visualization effect.

Since the proposed method does not require clean images as GT
constrains neural networks, there are no haze-clean pairs used to
assess haze removal quality. Therefore, the image quality
assessment method that requires reference data cannot be used.
But in order to analyze the ability of different methods to remove
haze more objectively, contrast, saturation, and ENIQA [22] are
selected as evaluation indexes to analyze the results of haze removal
corresponding to different methods. Haze significantly reduces the
contrast and saturation of the captured image, so for dehazing
results, the higher the two indicators, the better the resolution of
the target details. ENIQA is a high-performance general-purpose
no-reference (NR) image quality assessment (IQA) method based
on image entropy. The image features are extracted from two
domains. In the spatial domain, the mutual information between
the color channels and the two-dimensional entropy is calculated.
In the frequency domain, the two-dimensional entropy and the
mutual information of the filtered sub-band images are computed
as the feature set of the input color image. Then the support vector
machine is used to classify and give the indicator, and the final
output score is between 0 and 1; the lower the score, the higher the
image quality. In addition, different methods have great different
dehazing abilities of different distance scene images, so the image is
divided into two parts that is distant scene and the nearby scene in
the objective indicators calculation process.

FIGURE 4 | The performance of different methods in real haze images collected by ourselves. (A)Original scene image. (B–D)Result of the AOD-Net, DCPmethod,
and the proposed method respectively.
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The average haze removal indicator for the part of the picture
that contains a distant scene is shown in Table 1, and the
indicator for the part that contains a nearby scene is shown in
Table 2. From the point of view of picture contrast and saturation
index, the proposed method can be more effectively dehazing in
the distant scene, and AODNet can be more effectively dehazing
in the nearby scene; the conclusion is also consistent with
subjective evaluation. This is mainly because AODNet
conducts point-to-point optimization through haze-clean pairs
in the training process, and the dehazing ability is limited to the
scenes in the training set. And this approach cannot adapt to
images with large differences in haze distribution compares to the
training dataset. The proposed method utilizes the property of
polarization changing of light during transmission in an
atmosphere containing haze; therefore, a distant scene where

the light travels further can be used to estimate the transmission
map more accurately, and the clearer details can be recovered.
Besides, as the distance increases the effect of haze on image
quality becomes more severe, the enhancement of detail in the
image containing distant scenes is more useful. In addition, when
ENIQA is used as evaluate indicator, the proposed method can
improve the image quality in both scenes.

3.3 Robust and Efficiency of PSDNet
To demonstrate the robust of PSDNet, experiments, in which
trained models of different scenes are used to remove the haze on
one against another, are designed. Two types of scenes are
selected in the training process, as shown in Figure 6; scene 1
has similar distribution with scene 3, and scene 2 has major
differences with scene 3. Compared with scene 3, scene 1 is
collected on the same day and has the same haze distribution.
In both scenes with trees in the near and buildings in the far
distance, it should be noted that they are collected at different
angles and the target distribution is not the same. Scene 2 is the
hazy polarization data disclosed by Shen et al. [17]. The two
scenes of weather, target distribution, and illumination are
different, moreover, scene 2 is composed of plants and without
buildings at a distance.

As shown in Figure 6E, when the model trained with scene 1 is
used as the pre-loaded model, the dehazing result of scene 3 by
direct inference in the detail improvement surpasses the result by
using the method based on DCP. During this dehazing process,
only the pre-loaded model is used, and PSDNet without any
online training. Performance in the final comparison also reflects
that the PSDNet combined with the physical model has good
robustness to the different scenes. When the model trained with
scene 2 is used to remove the haze of scene 2, the result is shown in
Figure 6F; only 25 iterations of online learning are required to get

FIGURE 5 | The result of edge detection by using the Prewitt operator after dehazing. (A) Original scene image. (B–E) The edge extraction result of the original
image, the AOD-Net dehazing result, the DCP dehazing result, and the dehazing result of our method respectively.

TABLE 1 | Indicator for the part of the image that contains a distant scene.

Original AODNet DCP Ours IIDWP

Contrast 0.047 0.070 0.133 0.158 0.135
Saturation 0.074 0.083 0.093 0.106 0.089
ENIQA 0.392 0.381 0.391 0.274 0.280

Bold values indicate the best values.

TABLE 2 | Indicator for the part of the image that contains a nearby scene.

Original AODNet DCP Ours IIDWP

Contrast 0.116 0.278 0.235 0.128 0.240
Saturation 0.076 0.224 0.179 0.138 0.163
ENIQA 0.392 0.190 0.285 0.137 0.239

Bold values indicate the best values.
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FIGURE 6 | Cross-scene dehazing capability comparison. (A) Pre-training scene 1. (B) Pre-training scene 2. (C) Scene 3 to be dehazed. (D) Dehazing results by
using the DCP-based method. (E) Scene 3 dehazing results by using the scene 1 training model for direct inference. (F) haze removal results using the training model of
scene 2 as a pre-training model and 25 gradients are back-propagation for updates. The distant scenes with severe image degradation are locally zoomed in and edge
extraction is performed to compare the dehazing ability of different methods.

FIGURE 7 | Schematic diagram of PSDNet.
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superior dehazing outcomes than those obtained using the DCP
method. In addition, when the pre-trained model is loaded, only
the computational process of the Dehazing Process in Figure 7 is
required, so the running efficiency of the network can be greatly
improved.

As mentioned above, supervised algorithms need a big quantity
of data for training; aside from the collection of haze-free pairs that
take a lot of time, the model training procedure takes a significant
amount of computer resources and time. AODNet, for example,
takes more than 36 h to train 50 epochs, but PSDNet takes less than
5 min to train 800 epochs in the same computational environment,
and less than 10 s is needed to complete 25 epoch of training when
the pre-trainedmodel is loaded. PSDNet is unquestionably quicker
than supervised algorithms.

As shown in Table 3, the time required by different algorithms
for haze removal is compared. There is a preparation time since
AODNet and PSDNet need to load the model to the GPU, but the
model only has to be loaded once, and then the network can
remove the haze of numerous pictures. In terms of time
comparison, the single frame dehazing time of PSDNet only
takes 0.34 s. The dehazing speed of PSDNet, which is significantly
faster than AODNet and DCP-based methods, makes it possible
to achieve quasi-real-time dehazing.

4 DISCUSSION

According to the experimental results, we have the following
discussions.

1) PSDNet combined with the physical model can efficiently
utilize the scene polarization information for accurate
estimation of the transmission map and form a self-
supervised closed loop. Therefore, haze-free images are not
required as GT for constraint during all training processes,
which reduces the dependence on data. Compared with the
dehazing results of traditional methods using polarization and
the dehazing results of supervised networks, PSDNet has
better performance in enhancing scene details and color
retention, and can almost achieve the enhancement from
unseen to visible target in some scenes.

2) PSDNet is robust for different scenarios. Because the
physical models included in the neural network are built
based on actual haze scenes, PSDNet is effective at most
scenes. And the network structure incorporated physical
priors can help the models trained with different scenes to
migrate or online learning. The training times can be

reduced to 1/32 of the original by loading the pre-
trained model (from 800 epochs to 25 epochs, result as
shown in Figure 6F). For similar scenes, the pre-trained
model can be directly used to remove haze without
retraining (result as shown in Figure 6E).

3) Because PSDNet does not require a large amount of data for
training, this advantage not only drastically reduces the data
acquisition time but also saves the time for model training.
Compared to the supervised algorithm AODNet, which takes
36 h to train 50 epochs, PSDNet takes less than 5 min for 800
iterations, and the training time can be compressed to less
than 10 s when loading the pre-trained model. When
performing model inference for dehazing, PSDNet is three
times faster than traditional methods based on DCP, and also
faster than similar supervised class algorithms.

5 CONCLUSION

This paper proposes a method that combines the polarization
difference of the scene with the neural network to achieve
dehazing. Since the polarization prior can effectively guide and
activate the extracted feature maps of neural networks, the
proposed network does not need haze-free pairs as GT to
constrain the training process. Only two frames of scene
images with orthogonal polarization at any angle are
required as input, then the self-supervision and global
online optimization learning approach are used for haze
removal. The airlight can be better estimated by the self-
supervised closed-loop optimization process. Therefore, the
proposed method has good results in preserving the color of
the original image and enhancing the details compared to
similar algorithms based on polarization or supervised
learning-based. In actual dense haze scenes, almost invisible
details of distant targets can be identified by using the
proposed approach for dehazing. The training time and
dehazing efficiency of the network have obvious advantages
in the comparison of similar methods, and it is expected to
achieve real-time haze removal. The proposal of this method
promotes the development of the combination of deep
learning and physical models in the field of anti-scattering.
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Ours I7-9700 and RTX titan 13.53 0.34

Bold value indicate the best values.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 7892329

Shi et al. Polarization-Based Dehazing

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


AUTHOR CONTRIBUTIONS

YS performed the numerical calculation and wrote the manuscript.
EG and JH performed the data analysis and provided constructive
discussions. EG, LB, and JH are the main supervisors, and they
provided supervision and feedback and reviewed the research.

FUNDING

This research is supported by the National Natural Science
Foundation of China (62031018, 61971227, 62101255); Jiangsu
Provincial Key Research and Development Program
(BE2018126).

REFERENCES

1. Cai B, Xu X, Jia K, Qing C, Tao D. Dehazenet: An End-To-End System for
Single Image Haze Removal. IEEE Trans Image Process (2016) 25:5187–98.
doi:10.1109/tip.2016.2598681

2. Zhang X, DongH, Pan J, Zhu C, Tai Y,Wang C, et al. Learning to Restore Hazy
Video: A New Real-World Dataset and a New Method. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2021
Jun 19–25 (2021). p. 9239–48. doi:10.1109/cvpr46437.2021.00912

3. Dong H, Pan J, Xiang L, Hu Z, Zhang X, Wang F, et al. Multi-scale Boosted
Dehazing Network with Dense Feature Fusion. In: Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition; 2020 Jun
19–25 (2020). p. 2157–67. doi:10.1109/cvpr42600.2020.00223

4. He K, Sun J, Tang X. Single Image Haze Removal Using Dark Channel Prior.
IEEE Trans Pattern Anal Mach Intell (2010) 33:2341–53. doi:10.1109/
TPAMI.2010.168

5. Bahat Y, Irani M. Blind Dehazing Using Internal Patch Recurrence. In: 2016
IEEE International Conference on Computational Photography (ICCP); 2016
May 13–15; Evanston, IL. IEEE (2016). p. 1–9. doi:10.1109/
iccphot.2016.7492870

6. Berman D, Treibitz T, Avidan S. Non-local Image Dehazing. In: Proceedings of
the IEEE Conference on Computer Vision And Pattern Recognition; 2016 Jun
26–Jul 1; Las Vegas, NV (2016). p. 1674–82. doi:10.1109/cvpr.2016.185

7. Schechner YY, Narasimhan SG, Nayar SK. Polarization-based Vision through
Haze. Appl Opt (2003) 42:511–25. doi:10.1364/ao.42.000511

8. Liang J, Ren L, Ju H, ZhangW, Qu E. Polarimetric DehazingMethod for Dense
Haze Removal Based on Distribution Analysis of Angle of Polarization. Opt
Express (2015) 23:26146–57. doi:10.1364/oe.23.026146

9. Qu Y, Zou Z. Non-sky Polarization-Based Dehazing Algorithm for Non-
specular Objects Using Polarization Difference and Global Scene Feature. Opt
Express (2017) 25:25004–22. doi:10.1364/oe.25.025004

10. Pang Y, Nie J, Xie J, Han J, Li X. Bidnet: Binocular Image Dehazing without
Explicit Disparity Estimation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition; 2020 Jun 19–25 (2020). p. 5931–40.
doi:10.1109/cvpr42600.2020.00597

11. Yang X, Xu Z, Luo J. Towards Perceptual Image Dehazing by Physics-Based
Disentanglement and Adversarial Training. In: Proceedings of the AAAI
Conference on Artificial Intelligence; 2018 Feb 2–7; New Orleans, LA, 32
(2018).

12. Li B, Peng X, Wang Z, Xu J, Feng D. Aod-net: All-In-One Dehazing Network.
In: Proceedings of the IEEE International Conference on Computer Vision;
2017 Oct 22–29; Venice (2017). p. 4770–8. doi:10.1109/iccv.2017.511

13. Liu F, Cao L, Shao X, Han P, Bin X. Polarimetric Dehazing Utilizing Spatial
Frequency Segregation of Images. Appl Opt (2015) 54:8116–22. doi:10.1364/
ao.54.008116

14. Fang S, Xia X, Huo X, Chen C. Image Dehazing Using Polarization Effects of
Objects and Airlight. Opt Express (2014) 22:19523–37. doi:10.1364/oe.22.019523

15. Van der Laan JD, Scrymgeour DA, Kemme SA, Dereniak EL. Detection Range
Enhancement Using Circularly Polarized Light in Scattering Environments for
Infrared Wavelengths. Appl Opt (2015) 54:2266–74. doi:10.1364/ao.54.002266

16. Dudhane A, Singh Aulakh H, Murala S. Ri-gan: An End-To-End Network for
Single Image Haze Removal. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops; 2019 Jun 16–20; Long
Beach, CA (2019). doi:10.1109/cvprw.2019.00253

17. Shen L, Zhao Y, Peng Q, Chan JCW, Kong SG. An Iterative Image Dehazing
Method with Polarization. IEEE Trans Multimedia (2018) 21:1093–107.
doi:10.1109/TMM.2018.2871955

18. Shen L, Reda M, Zhao Y. Image-matching Enhancement Using a Polarized
Intensity-Hue-Saturation Fusion Method. Appl Opt (2021) 60:3699–715.
doi:10.1364/ao.419726

19. Ren W, Liu S, Zhang H, Pan J, Cao X, Yang MH. Single Image Dehazing via
Multi-Scale Convolutional Neural Networks. In: European Conference on
Computer Vision; 2016 Jun 26–Jul 1; Las Vegas, NV. Springer (2016). p.
154–69. doi:10.1007/978-3-319-46475-6_10

20. Nathan Silberman PK, Hoiem D, Fergus R. Indoor Segmentation and Support
Inference from Rgbd Images. In: European Conference on Computer Vision;
2012 Oct 7–13; Firenze (2012). doi:10.1007/978-3-642-33715-4_54

21. Li B, Ren W, Fu D, Tao D, Feng D, Zeng W, et al..Benchmarking Single Image
Dehazing and beyond. IEEE Trans Image Process (2018) 28:492–505.
doi:10.1109/TIP.2018.2867951

22. Chen L, Zhao J, Lin M, Yang G, He C. No-reference Perceptual Quality
Assessment of Stereoscopic Images Based on Binocular Visual Characteristics.
Signal Processing: Image Commun (2019) 76:1–10. doi:10.1016/
j.image.2019.03.011

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Shi, Guo, Bai and Han. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 78923210

Shi et al. Polarization-Based Dehazing

https://doi.org/10.1109/tip.2016.2598681
https://doi.org/10.1109/cvpr46437.2021.00912
https://doi.org/10.1109/cvpr42600.2020.00223
https://doi.org/10.1109/TPAMI.2010.168
https://doi.org/10.1109/TPAMI.2010.168
https://doi.org/10.1109/iccphot.2016.7492870
https://doi.org/10.1109/iccphot.2016.7492870
https://doi.org/10.1109/cvpr.2016.185
https://doi.org/10.1364/ao.42.000511
https://doi.org/10.1364/oe.23.026146
https://doi.org/10.1364/oe.25.025004
https://doi.org/10.1109/cvpr42600.2020.00597
https://doi.org/10.1109/iccv.2017.511
https://doi.org/10.1364/ao.54.008116
https://doi.org/10.1364/ao.54.008116
https://doi.org/10.1364/oe.22.019523
https://doi.org/10.1364/ao.54.002266
https://doi.org/10.1109/cvprw.2019.00253
https://doi.org/10.1109/TMM.2018.2871955
https://doi.org/10.1364/ao.419726
https://doi.org/10.1007/978-3-319-46475-6_10
https://doi.org/10.1007/978-3-642-33715-4_54
https://doi.org/10.1109/TIP.2018.2867951
https://doi.org/10.1016/j.image.2019.03.011
https://doi.org/10.1016/j.image.2019.03.011
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Polarization-Based Haze Removal Using Self-Supervised Network
	1 Introduction
	2 Method and Model Design
	2.1 Basics of Polarization-Based Dehazing
	2.2 Model Design

	3 Experiment
	3.1 Experimental Comparison on the Open-Source Dataset
	3.2 Comparison With Similar Approach on the Captured Dataset by Ourselves
	3.3 Robust and Efficiency of PSDNet

	4 Discussion
	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


