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We present a theoretical and experimental investigation of drainage in porous media. The
study is limited to stabilized fluid fronts at moderate injection rates, but it takes into account
capillary, viscous, and gravitational forces. In the theoretical framework presented, the
work applied on the system, the energy dissipation, the final saturation and the width of the
stabilized fluid front can all be calculated if we know the dimensionless fluctuation number,
the wetting properties, the surface tension between the fluids, the fractal dimensions of the
invading structure and its boundary, and the exponent describing the divergence of the
correlation length in percolation. Furthermore, our theoretical description explains how the
Haines jumps’ local activity and dissipation relate to dissipation on larger scales.
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1 INTRODUCTION

Two-phase flow in porous media is crucial in a variety of sectors, ranging from fundamental research
to applications in a wide array of industrial sectors such as fuel cell [1] and solar cell technology [2],
fiber-reinforced composite materials [3], textile fabric characterization [4], prospection and
exploration of oil and gas [5–8] etc. The description of flows inside natural porous media, such
as soils and rocks, is also crucial for the study of groundwater flows [9, 10] and the treatment of soil
contaminants [11–13] but it also matters for everyday tasks such as making a cup of coffee [14]. It is a
multidisciplinary subject that has been investigated for decades by hydrologists, physicists, chemists,
geoscientists, biologists, and engineers due to its practical importance and complexity. The structures
observed are controlled by the forces involved, such as viscous [15–21], capillary [18–25], and
gravitational forces [26–31], as well as wetting properties [32–38] and changes in the local geometry
of the porous medium [39, 40]. The structures vary in shape and complexity [15, 16, 18, 32, 37,
41–47], from compact to ramified and fractal [48, 49]. The fractal nature of porous media is itself
important for a number of applications [50, 51], such as electrolyte diffusion through charged media
[52] a topic of relevance for the development of modern battery technology [53].

In most practical applications of porous medium physics, the typical length scales where our
interest lies is substantially larger than the scale where the relevant physics is taking place. Oil
reservoirs or water aquifers are in the range of kilometers while the typical pore sizes are commonly
in the micrometer scale, about nine orders of magnitude smaller. How do we deduce the
flow behavior at large scales from small-scale physics? The usual way of solving these problems
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is a top-down approach using Darcy’s law [54] on a mesoscopic
level. However this approach does not take into account local
fluctuations, like capillary or viscous fluctuations, which are
averaged out. In this manuscript we take an alternative
bottom-up approach where we emphasize on the pore-level
capillary fluctuations and compare those fluctuations with the
characteristic forces which are set up by the external fields on the
whole system. Examples of such forces are gravitational or viscous
fields. We will also limit our discussion to the stable drainage
regime, which occurs when a nonwetting fluid displaces a wetting
fluid, and when the viscous and/or gravitational forces stabilize
the displacement front between the two fluids. This approach was
introduced in the late 1970s [55, 56] and its theoretical
development benefited greatly from invasion percolation
models [57]. On this subject, other relevant experimental,
numerical, and theoretical articles have since been published
[26, 27, 58–61]. The dimensionless fluctuation number F,
introduced in [30, 61], quantifies the ratio between the viscous
and/or gravitational field and the capillary pressure fluctuations.
The characteristic length scale η which describes the width of the
invasion front, and which depends on F, is of central importance
to calculate the saturation behind the front, which in turn gives a
measure of the sweeping efficiency of a given drainage process, a
quantity of great interest in a number of applications. The local
structures will be fractal on length scales smaller than η with a
crossover to a homogeneous behaviour on length scales larger
than η. Knowing the scaling of the fluid structures up to the length
scale η allows one to have full control of the energy balance of the
problem and calculate large-scale quantities such as the final
saturation behind the front, the dissipation or the entropy
production, and the work required to move the front forward.

The dynamics of slow displacement in porous media has been
observed to occur in an intermittent manner by so called Haines
jumps [59, 62–72]. The invasion percolation model [55–57]
describes well the structure of slow displacement in porous
media [22], but it does not describe the dynamics realistically
because the invasion is limited to one pore at a time. However it is
possible to introduce a realistic interpretation of time in a
modified invasion percolation model [63] by introducing a
constant κ relating the volume change at the interface with a
corresponding change in pressure. References [63, 64] found both
in simulations and experiments that the pressure fluctuations of
the Haines jumps follow a power law distribution with an
exponential cutoff function.

In the present work we use a new approach to calculate the
dissipation and the energy of the surfaces left behind the front by
considering the elastic energy (surface energy) released by the
Haines Jumps when the front is in a steady state regime. In
between jumps all the external work goes into building up the
elastic (surface) energy of the fluid front. When the invading fluid
front is in a steady state, its average length is constant, and the
work applied to the system (for example by an external pump)
must be equal to the elastic energy released by the invasion front
(green line in Figure 1). As a result, using the distribution
function of the capillary pressure fluctuations and performing
a bottom-up approach to integrate up the elastic energy released
by the bursts, we can check the consistency of our theory as well as

the distribution of dissipative events. We found as expected that
the total elastic energy released by the bursts is equal to the work
W � 〈p〉ΔV, where 〈p〉 is the average pressure across the model
and ΔV is the volume change of the invading fluid corresponding
to the interface motion. This result provides an important
consistency check for the analysis. The dissipation can then be
calculated by subtracting the generated surface energy from the
total applied work. The surface energy is directly computed by the
scaling of the invasion structure, which is given by the invasion
structure’s fractal dimension, also measured in our work. As a
result of the theory and quasi-two-dimensional experiments, we
discovered that the work W, dissipation Φ, and the energy of the
surfaces left behind the front Es are all proportional to the number
of pores S invaded. Up to the characteristic length scale η, the
spatial scaling of S is fractal and for larger length scales the scaling
becomes proportional to the system size instead. We then show

FIGURE 1 | Upper figure: A nonwetting fluid 1 invades another wetting
fluid 2 in a porous model of width w, length L and coordinate system (x,y). A
syringe pump is connected to the lower side and the model is open to air on
the upper side. The model can be tilted with an effective gravitational
constant g � g0 sin(θ) along the x direction of the model, where g0 � 9.82 m/s2.
The average position of the front is h and the width of the front is 2η. Lower
figure: Cross section of the experimental model system (A) shows two
transparent Plexiglass plates, (B) the 3D printed porous model, (C) a PVC film
kept under pressure to close the model and (D) screws that clamp the model.
The model is illuminated from below and pictures are taken from above.
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that we can explicitly calculate W, Es, and Φ if we know the
surface tension of the fluids and the wetting properties from the
experiments. We further discovered an important analytical
result: that the ratios Es/W and Φ/W are both independent of
system size.

2 EXPERIMENTAL TECHNIQUE

The majority of the experimental results presented in this
paper are taken from data published in the past in our group.
The system is composed of a modified Hele-Shaw cell [73],
filled with a monolayer of glass beads with diameters in the
range (1.0mm, 1.2mm). The glass beads are randomly
distributed in the cell gap and the voids in between the
beads form the porous network. This quasi-two-dimensional
geometry allows for the direct visualization of the fluid phases,
by means of regular optical imaging using a digital camera. For
details about the model construction, see for instance Refs.
[19, 74].

In this paper we also present results produced using an
alternative stereolithography 3D printing technique to create
the porous structures. We have employed a Formlabs Form 3
printer to produce models in a transparent plastic material (Clear
Resin FLGPCL04). This technique allows us to control the
geometry of the porous network and in particular to tune its
porosity. In the experiments presented here we have made quasi-
two-dimensional models where cylinders are distributed with a
Random Sequential Adsorption algorithm [75] where we can set
the minimum distance between the cylinders (see Figure 1),
typically chosen as 0.3mm. The cylinders height and diameter
were both chosen to be 1mm. The spatial resolution of these
models is about 0.09mm and the models are constructed to
optimize the visualization of the pores, which are seen from a top-
down view. The 3D printed porous model is placed between two
thick Plexiglass plates which are clamped around the edges using
screws to give robustness to the setup and ensure the quasi-two-
dimensional geometry. A flexible PVC film is placed between the
porous model and the top Plexiglass plate. This film plays an
important role: due to its flexibility, when the screws around the

model are fastened the PVC film gets in contact with the top of all
cylinders, thus ensuring the appropriate sealing of the model. The
film has similar wetting properties as the 3D printing material
used in the construction of the model. Figure 1 shows a typical
snapshot of an experiment and a diagram of the setup. We also
define in the upper part of the figure the model’s width w, length
L, the invading front (green line), its average position h and
width 2η.

The porous network is initially fully saturated with a wetting
viscous liquid composed of a mixture of glycerol (80% in weight)
and water (20% in weight). The kinematic viscosity, density and
surface tension (with respect to air) are ] � 4.25 · 10–5 m2/s, ρ �
1.205 g/cm3 and c � 0.064 N/m. The wetting liquid is dyed with a
dark blue colorant (Ligroin), to aid visualization. Air is used as the
nonwetting phase. The contact angle measured inside the wetting
phase is ψ � 70°. During an experiment, the liquid phase is
withdrawn with a syringe pump (Harvard Apparatus) at a
constant flow rate, leaving the model from a width-spanning
channel at the bottom end of the cell. Air enters the model from
the top, through another width-spanning channel that is open to
the atmosphere.

3 SURFACE ENERGY, DISSIPATION AND
BURST DYNAMICS

Consider a single pore identified by the index i in which a
nonwetting fluid displaces a wetting fluid as illustrated in
Figure 2. The front moves from a position with a radius of
curvature r0 to one with a radius of curvature r � r0—dr. This
results in a volume change dvi of the nonwetting fluid, and a
corresponding volume change—dvi of the wetting fluid in that
pore. Assume that we measure the distances in the normal
(radial) direction from each of the points on the front defined
with radius r0 to the front defined by the radius of curvature r �

FIGURE 2 | The figure illustrates a nonwetting fluid invading a wetting
fluid at a single pore-throat at different radius of curvature r0 and r � r0 − dr. The
distance moved between the two front positions is dxi and ψ is the
wetting angle.

FIGURE 3 | The figure illustrates the dependence of the pressure across
the model p(t) and the time t. The front is in equilibrium between point 1 and
point 2 and reaches the threshold value of one of the pores along the front at
point 2. A burst will appear between point 2 and 3 and the front is there
out of equilibrium.
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r0—dr. The longest of these distances we denote as dxi. The
distance dxi to lowest order in dr is given by

dxi � dxi

dr

∣∣∣∣∣∣∣r0dr � αidr, (1)

where

αi(ψ, p0) � dxi

dr

∣∣∣∣∣∣∣r0 (2)

depends on the wetting angle ψ (See Figure 2) and the capillary
pressure p0 given by the Young-Laplace equation p � c(1/r + 1/r1)
[10] for r � r0. Here r is the in-plane, and r1 the out of plane radius
of curvature assumed to be constant in the quasi-two-
dimensional experiments.

We can then calculate the corresponding increase in capillary
pressure

dp � cdr

r20
. (3)

Then by using Eqs 1, 3 we get

dp � c

r2oαi
dxi. (4)

The volume change dvi of the invading fluid in the pore can be
written as

dvi � Ai(ψ, p0)dxi, (5)

where Ai(ψ, p0) is the surface area in pore i which is function of
the wetting angle and the capillary pressure p0. We then get

dp � c

r2oAiαi
dvi, (6)

such that

dvi � κidp, (7)

where the capacitive volume

κi(ψ, p0) � r20Ai(ψ, p0)αi(ψ, p0)
c

, (8)

gives the fluid volumetric change per unit capillary pressure in
pore i [63].

Let Ui(x) be the elastic energy (surface energy) of the interface
in pore i, and dxi a small displacement of the interface between
the two fluids due to an external pump driving the system at a low
flow rate such that viscous forces can be neglected. Assume that
the system is in mechanical equilibrium. The work performed by
the pump will then increase the elastic energy due to this
displacement. The elastic energy associated to pore i having
interface located at the position xi would then be

Ui(xi) � Ui(0) + ∫xi

0
pAidxi, (9)

where p is the capillary pressure across the interface, and Ui(0) is
the elastic energy when xi � 0. Using Eqs 7, 9, and 5 we get

Ui(xi) � Ui(0) + κi ∫p

p0

ppdpp � Ui(0) + κi
2
p2. (10)

We have assumed p0 � 0 without loss of generality since κip2
0/2

also can be included in Ui(0). If instead of considering a single
pore we consider the work done on a front having n pores, the
total elastic energyUtwill be the sum of the contributions from all
pores belonging to the invasion front (green line in Figure 1). We
then get

Ut � Ut(0) + n
κ

2
p2, (11)

where

κ � ∑n
i�1

κi⎛⎝ ⎞⎠/n, (12)

where κi is the capacitive volume of pore i so that κ is the average
capacitive volume over the n interface pores. The capillary
pressure p2 at the time t2 and the capillary pressure p1 at the
time t1 are related by

p2 − p1 � q(t2 − t1)
nκ

, (13)

where q is the imposed volumetric flow rate. Since we have
assumed the system to be in mechanical equilibrium, the interface
will slowly increase its capillary pressure without any bursts
(Haines jumps) [62]. The capillary pressure will then build up
from p1 at t1 to p2 at t2 due to the work W performed by the
external pump, see Figure 3. This work will then increase the total
elastic energy (surface energy) of the interface from Ut (t1) to
Ut (t2)

Ut(t2) − Ut(t1) � W � nκ∫p2

p1

ppdp* �
nκ

2
(p2

2 − p2
1).

(14)

After some time the interface will however reach a situation
where the capillary pressure in one of the pore-throats is at the
threshold value pt. The interface at that pore will then become
unstable, and the invading fluid will move into one or more
neighboring pores. At this time, the capillary pressure at the
interface of the growing burst will be lower than the capillary
pressure at the other parts of the interface. This produces a local
velocity field that extends from the growing burst to the other
parts of the interface. The interface will then back-contract,
beginning with the pores closest to the pore where the burst
begins and spreading out through the interface until it reaches
equilibrium. Then the capillary pressure is again the same at all
pores along the interface. Let us assume that the burst starts at
time t2 at a capillary pressure p2 � pt and that, after the burst, the
system reaches another equilibrium state at capillary pressure p3.
During the burst the elastic energy of the part of the fluid interface
which is back-contracting will be reduced. This energy reduction
is equal to
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Ut(p2) − Ut(p3) � κn(t2)
2

(p2
2 − p2

3) �
κn(t2)(p2 − p3)(p2 + p3)/2,

(15)

and will go to creation of the surface energy of the new burst in
addition to viscous dissipation due to the flow that takes place
during the burst. Here Δp � p2 − p3 is the pressure drop in the
burst and (p2 + p3)/2 is the average pressure during the burst.

The surface energy of one single burst in our quasi-two-
dimensional experiments has two contributions, one from the
area of the burst 2c2a

2s and one from the interface contour ac1bse.
Here a is the average in-plane pore size, b is the height of the

cylinders (or the diameter of the beads in the case of the
previously published experiments based on a monolayer of
glass beads, see Section 2), s is the number of pores in the
burst considered, and ase is the length of the invasion contour of
the burst (including trapped clusters). The factor 2 in the term
2c2a

2s is due to the creation of two new solid-air interfaces after
the burst, one at the bottom and one at the top. The need for two
different surface energies values, c1 and c2, is explained below.

In Figure 4A) we show the tracking of the invasion front
(green line), and the in-plane invasion contour left behind the
front (red line). The fractal dimensions D of the invading fluid
phase (air), De of the invasion contours, and Df of the invasion
front are shown in Figure 4B), where a box counting technique
was employed in the measurement [49]. We have obtained the
values D � 1.87 ± 0.10, De � 1.84 ± 0.10 and Df � 1.45 ± 0.10. The
dotted and dashed lines on the left correspond to the exponents -2
and -1 respectively. These are expected as the fractal nature of the
invasion structure has a lower bound at the pore-size a. For boxes
of size δ < a, we recover the intrinsic 2 dimensional nature for the
invading structure mass (dotted line) and the 1 dimensional
nature of the perimeters of the front and internal contours
(dashed lines).

When a fluid film is left behind the invasion front the surface
tension c1 � c2 � c which is the surface tension between the two
fluids. However when no film is left behind the invasion front, c2
� cns − cws, where cns is the interface tension between the
nonwetting fluid and the solid and cws is the interface tension
between the wetting fluid and the solid. Using the Young equation
(10) we can also write the previous relation as c2 � c cos(ψ),
where ψ is the static contact angle at the liquid-solid-air triple
line. In the situation in which no wetting fluid film is left behind
the invasion, the in-plane interface contour (red lines in Figure 4)

FIGURE 4 | (A) Tracking of the invasion front (green) and of the in-plane
invasion contours left behind the invasion front (red). Notice that some isolated
beads are included in the tracking. (B) Measurement of mass fractal
dimension D, the fractal dimension De of the invasion contours and the
fractal dimension Df of the main invasion front (green line). The dotted and
dashed lines have slopes of −2 and −1 respectively.

FIGURE 5 | Tracking of the internal interfacial contours between the
nonwetting and wetting phases (orange) and the nonwetting and solid phases
(green).
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will be partly formed by nonwetting-wetting segments and partly
formed by nonwetting-solid phase segments. This division is
exemplified in Figure 5, where we have split the contours
shown in red in Figure 4 into orange and green segments,
where orange denotes the interface between the nonwetting
and wetting phases and green the interface between
nonwetting and solid phases. Let us define the ratio ϵ � Ans/
At, where Ans is the interface’s surface area between the
nonwetting phase and the solid phase, and At is the total
surface area of the interface. In Figure 5, ϵ corresponds to the
ratio between the total length of green lines to the total length of
both green and orange lines added. We then get an effective
surface tension c1 � (1 − ϵ)c + ϵ(cns − cws) for the total internal
interfacial contours. Using again the Young equation (10) we can
rewrite this expression as c1 � (1 − ϵ)c + ϵc cos(ψ).

We will in the following consider a situation where we have a
long channel containing the porous medium with the invading
fluid entering from one of the short sides of this channel and with
the outlet on the other side. We will further assume that we follow
the displacement front. The front will have a width of the order of
the width w of the channel. Apart from an initial transient we can
then consider the front to be in a steady state regime with a
constant average length n (measured in number of pores). Since the
elastic energy of the growing interface on averagemust be constant,
the work W applied by the pump must equal the elastic energy
released by the bursts which is equal to the dissipation ϕ plus the
surface energy needed to create the new interface Es, such that

W � Φ + Es. (16)

It is important to note thatW,Φ, and Es are average quantities
that do not account for fluctuations, and that ϕ and Es are
averaged over a large number of bursts.

From [63] we know that the distribution function of the burst
sizes G(s) is directly linked to the distribution of the capillary
pressure drops F(Δp) during the bursts since

s � nκΔp/�v, (17)

where �v is the average single pore volume averaged over the
invading structure, and

F(Δp) � G(s) ds

dΔp. (18)

We found [59, 63, 64, 71], both in simulations and
experiments that the burst size distribution G(s) is given by
the scaling relation

G(s) � s−τH
s

sp
( ), (19)

where the cutoff size of the bursts sp is [63].

sp � nκΔpp/�v � nκ

�vN(pc)( ) ]D
1+]D

. (20)

where N (pc) is the value of the normalized capillary pressure
threshold distribution taken at the critical percolation threshold
pressure pc, and ] � 4/3 is the exponent describing the divergence
of the correlation length in percolation [76]. Since the capillary
pressure threshold distribution N (pt) is normalized, the width of
the distribution σ ≈ 1/N (pc). Therefore the cutoff size of the
bursts will increase with σ according to Eq. 20 as sp ∝ σ0.78.
Martys et al. [77] derived the analytical form

τ � 1 + Df − 1/]
D

, (21)

where D and Df are, respectively, the fractal dimensions of the
growing cluster and its front (seen as the green line Figure 1).
Using the literature values D � 1.82 [22, 57] and Df � 4/3 [23, 27,
58], we obtain τ � 1.32, consistent with our experimental data
shown in Figure 6.

We therefore get from Eqs 17, 18, 19, and 20

F(Δp) � Δp−τH
Δp
Δpp

( ) nκ

�v
( )(1−τ)

, (22)

FIGURE 6 | Burst size distribution G(s) from slow drainage experiments.
The line has a slope of −1.32 corresponding to the results predicted by the
analytical prediction Eq. 21. The data for EXP-2 (blue triangles) has been
shifted vertically by 0.4. Data from Ref. [71].

FIGURE 7 | The dependence of the crossover functionH (Δp/Δp*) of the
pressure jump distribution in a modified invasion percolation simulation [63].
For each value of κ, the points represent averages over five independent
simulations on 200 × 1,500 lattices. The scaling exponent 0.30 ≈ 1/(1 +
]D). Data is taken from [63].
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where Eqs 20, 17 give the cutoff pressure Δpp

Δpp � 1
N(pc)

nκ

N(pc)�v( ) −1
1+]D

. (23)

Figure 7 shows the scaling function H (Δp/Δpp) for various
values of κ from invasion percolation simulations [16] which
confirms (22) and (23).

We will in the following use F(Δp) to calculate the work.
Assume that the viscosity is low such that the total time of
the bursts is short, and can be neglected compared to the total
time considered. The work can then be calculated by averaging
Eq. 15

W � Mnκ〈p〉∫∞

0
ΔpF(Δp)dΔp, (24)

whereM is the total number of bursts during the time considered.
Here we have assumed that the average pressure in each burst (p2 +
p3)/2 in Eq. 15 is independent of the capillary pressure drop of that
burst and therefore can be averaged independently ofΔp. The value
of that average is 〈p〉. This assumption can be readily verified
experimentally if we look at the typical temporal signature of the
capillary pressure in one experiment, see Figure 8. The pressure
signal in this figure corresponds to an experiment performed with a
liquid withdrawal rate of 1ml/h on a horizontal model, i. e, the
angle θ � 0° (see Figure 1). The data is shown after the transient
regime in which the capillary pressure grows from 0 to the
fluctuating signal around a characteristic pressure 〈p〉. Notice
that the typical size of the fluctuations in the pressure do not
seem to depend strongly on the instantaneous value of the pressure,
thus confirming the assumption made in the derivation of Eq. 24.
This can be better seen from the insets in the shaded red and green

regions in the plot. We observe the typical Haines jumps signature
characteristic of slow drainage processes. The signal on the left
inset is statistically very similar to that on the right, thus further
justifying the assumptions inEq. 24), i.e., that the capillary pressure
drop Δp in a given burst does not depend strongly on the average
pressure in the burst at steady state. The thick horizontal line in the
plot denotes a characteristic pressure 〈p〉 � 210 Pa.

By inserting the expression for F(Δp) from Eq. 22 into Eq.
24, we have

W � M〈p〉�v nκ

�v
( )2−τ ∫∞

0
Δp1−τH

Δp
Δpp

( )dΔp �

M〈p〉�v nκ

�v
( )2−τ

Δpp2−τI,

(25)

where I is the integral

I � ∫∞

0
y1−τH(y)dy. (26)

Then by using Eq. 23 we obtain

W � M�v〈p〉I nκ

�vN(pc)( )
(2−τ)]D
1+]D

. (27)

Assume that we consider the time tw the front needs to move a
length w corresponding to the width of the model. Within this
time the invading fluid has invaded an area a2S of S pores. The
total number of bursts considered M can be calculated as S/〈s〉,
where 〈s〉 is the average size of the bursts

〈s〉 � Isp2−τ � I
κn

N(pc)�v( )
(2−τ)]D
1+]D

. (28)

where I is the integral in (26). We then get the following simple
expression for the work

W � S�v〈p〉. (29)

This expression is the well-known relation of the work
expressed as a pressure times a volume change 〈p〉ΔV, where
ΔV � S�v � Sa2b � qtw is the volume injected by the pump during
the time tw.

We can then calculate the total dissipation within tw by using
Equations 16, 29

Φ�W−Es � Sa2b〈p〉−c2a22S−Cc2ab2S(D−1)/D−c1abSe, (30)

where C is a constant. Here the second term corresponds to the
contribution to the surface energy from the top and the bottom
interfaces (see discussion after Eq. 15) and the third term to the
contribution from the side walls. The D − 1 term in the exponent
is due to the cut between the fractal invasion structure and the
sidewall using one of Mandelbrot’s rules of thumb [48, 49]. The
last term corresponds to the surface energy connected to the
contours of the trapped clusters Se seen in red in Figure 4. For
large S the third term can be neglected and

Φ ≈ Sa2b〈p〉 − c2a
22S − c1abSe. (31)

FIGURE 8 | Typical evolution of the pressure signal during an
experiment. In this specific case, the liquid was withdrawn from the bottom at
a rate of 1 ml/h and the model was positioned horizontally, i.e., θ � 0°. The
thick horizontal line denotes a characteristic average pressure during the
bursts 〈p〉 � 210 Pa. The left and right insets (shaded respectively in red and
green) show zoomed in sections of the signal, where we can see the
characteristic Haines jumps. The signal looks statistically similar in both insets,
thus justifying the assumptions made in Eq. 24.
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The length of the front n, seen as the green line in Figure 4, is
given by

n∝ (w/a)Df ∝ SDf/D ∝ S
Df/De
e , (32)

where Df is the fractal dimension of the front (not included
trapping) and De is the fractal dimension of contours of the
trapped clusters. From Figure 4 we see that the measured
fractal dimensions for De and D seem very close, effectively
indistinguishable from one another considered the error bars.
This result implies that S ∝ Se. In the experiment shown in
Figure 4 we have measured the proportionality relation to be Se
� 1.32S. We have also measured the prefactor linking S and the
window size w/a (see relation (32)), obtaining the expression S �
0.72 (w/a)D. By plugging these two equations into Eq. 31 for the
dissipation ϕ, we gain access to the full energy balance of
the system, the resulting plot is shown in Figure 9. In this
figure we see how the total applied work W (thick black line) is
split into the dissipated energy ϕ (blue) and the surface
energy associated to creation of the top and bottom interfaces
Est � c2a

22S (green) and the lateral interface Esl � c1abSe (yellow).
The dissipation is calculated directly from Eq. 31. The total applied
work, the surface energy associated to the top and bottom
interfaces and that associated to the lateral interfaces are given
respectively by the first, second and third terms in Eq. 31. Because
all terms in (31) and 29 are proportional to S the ratios ϕ/W, Esl/W
and Est/W are independent of w/a for large systems.

In the computation of the energy balance in Figure 9 using
Eqs 31, 32, we used ϵ � 0.71 measured from the experimental
images (see Figure 5), c � 0.064N/m, ψ � 70°, c1 � (1 − ϵ)c +
ϵc cos(ψ) � 0.034N/m, 〈p〉 � 210Pa andD � 1.87, see Figure 4. As
previously stated, our assumptions for c1 and c2 correspond to
the scenario in which no film of the defending wetting fluid is left
behind covering the solid surfaces after the invasion by the
nonwetting phase.

If instead of the quasi-two-dimensional system considered
thus far we had a three-dimensional long square channel with a

cross sectional area of w2, Eq. 29 for the work would remain the
same, while Eq. 30 for the dissipation would be modified to

Φ � Sa3〈p〉 − c1a
2Se − 4 Cc2a

2S(D−1)/D, (33)

where C is a constant. When the system gets large the last term
can be neglected compared to the two first terms such that

Φ ≈ Sa3〈p〉 − c1a
2Se. (34)

If the invaded surface area Sea
2 times the characteristic pore

size a is proportional to the invaded volume Sa3, the ratio ϕ/W
and Esl/W will be independent of w/a.

4 STABILIZING FIELDS AND CROSSOVER
LENGTHS

Let’s now take into account a gravitational field and consider an
experiment where a low density fluid with density ρ1 and viscosity
μ1 � 0 invades another fluid with a higher density ρ2 and viscosity
μ2 from above (See Figure 1). The mapping between the
occupation probability in percolation theory f and the capillary
pressure p is given by [76, 78].

f � ∫p

0
N(pt)dpt. (35)

We therefore have

f − fc � ∫p

pc

N(pt)dpt, (36)

where the critical occupation probability is fc and the critical
percolation pressure is pc. As before, N (pt) is the normalized
capillary pressure threshold distribution. Now, by Taylor
expanding N (pt) around pc to the lowest order in p − pc in
Eq. 36 we get

f − fc � N(pc)(p − pc). (37)

It is reasonable to assume that the viscous pressure drop in the
displaced fluid will depend linearly on the length scale since there
are no trapped invading fluid clusters in the displaced fluid. Let us
consider the capillary pressure at a height x. Since the
gravitational field also depends linearly on the length scale x
we have

f − fc � N(pc) Δρga − qμ2a

kA
( )(x − x0)/a � F(x − x0)/a, (38)

where x0 corresponds to a the height along the front where the
capillary pressure is at the percolation threshold. Here k is the
permeability felt by the displaced fluid, A the cross-section area of
the porous medium, and Δρ � ρ2 − ρ1 the density difference
between the fluids. The fluctuation number F

F � N(pc) Δρga − qμ2a

kA
( ), (39)

is a dimensionless number [61] which characterizes the
gravitational and viscous fields and the capillary pressure

FIGURE 9 | Energy balance showing how the width of the model w/a
(horizontal axis) influences the applied work (thick black line), and how this
work is split into energy dissipation (blue), surface energy associated to the top
and bottom surfaces (green) and surface energy associated to the lateral
surfaces (yellow).
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fluctuations. Note that the width of the capillary pressure
threshold distribution is σ ≈ 1/N (pc), as the distribution is
normalized. We will then use an assumption, first introduced
by Sapoval [27, 57, 79, 80], that the correlation length in
percolation will scale as the width of the front η � (x − x0) ∝
ξ, where ξ is the percolation correlation length. This is based on
the observation that the largest trapped cluster of wetting fluid is
limited by the front width. From percolation theory, the
correlation length ξ is given by [76].

(ξ/a)∝ (f − fc)−], (40)

Using Sapoval’s argument, and inserting Eq. 40 into Eq. 38
gives [26, 61].

η/a∝F
−]
1+]. (41)

Therefore, when F > 0, the front will be stabilized with
a characteristic length scale η [26, 27, 61]. This scaling
behaviour is shown in Figure 10. The blue dots show
experimental data taken from [61] where the authors analyzed
the scaling of the invasion front in drainage by keeping the Bond
number Bo � Δρga2/c � 0.154 fixed but changing the capillary
numberCa by varying the flow rate q (seeFigure 10 in Ref. [61] and
experiments 1, 2, 3, 4, 5, 7, and 9 in Table I in the same reference).

Let us first assume that the gravitational effect is large enough such
that it is the characteristic length scale η that sets the width of the
front η <w. Consider again a time scale tw corresponding to the time
the front needs to move a length scale w. Dividing space into cells of
size η2, below which the fluid distribution is fractal, the number of
pores S and Se are given by

S∝
w

η
( )2

η

a
( )D

, Se ∝
w

η
( )2

η

a
( )De

, (42)

and the work can be written as

W � −g(ρ2h + ρ1(L − h))qtw + qμ2 h

kA
Sa2b

+Sa2b〈p〉,
(43)

where h is the average position of the front from the lower outlet.
The first term in (43) is the negative work due to the hydrostatic
pressure, the second term the work due to the viscous pressure in
the displaced fluid, and the last term is the work needed to
continuously build up the interface energy. The work must be
equal to the dissipation Φ plus the surface energy Es minus the
change in gravitational potential energy ΔUp (corresponding to
the first term in Eq. 43)

W � Φ + Es − ΔUp. (44)

We then get the dissipation

Φ � qμ2 h

κA
Sa2b + Sa2b〈p〉

−c2a22S − Cc2ab2S
(D−1)/D − c1abS

De
e ,

(45)

which for large S can be approximated as

Φ � qμ2h

κA
Sa2b + Sa2b〈p〉 − c2a

22S − c1abS
De
e . (46)

Note that in the limit of very slow processes, the flow rate q
becomes negligible so the first term in this Eqs 45, 46 can be
ignored, thus recovering Eqs 30, 31. In the scenario in which η >
w, the relations for S and Se will change to

S∝
w

a
( )D

, Se ∝
w

a
( )De

, (47)

but we will still have the same expressions for W and ϕ. Again if
De �D, the ratios ϕ/W, Esl/W and Est/Wwill be independent ofw/
a for large systems.

5 SATURATION BEHIND THE INVASION
FRONT

The upscaling problem of calculating the large scale saturation
involves identifying the cross-over length scale where the fluid
distribution is no longer fractal. Let L be the length of the porous
model and assume L > w. The final saturation behind the front of
the invading fluid and its dependence on the pressure across the
model has been studied in Ref. [81]. In this study, we considered the
volume of the invaded fluid in boxes with size corresponding to the
width of the invading front. On length scales below this size, the
structure of the invading fluid is fractal, while on length scales larger
than this size, the structure is homogeneous. For sufficiently large F,
when η is the characteristic length scale of the front, the saturation
SFnw of the nonwetting fluid behind the front becomes [81].

SFnw ∝
Lwd−1
ηd( ) η

a( )Dad
Lwd−1 � η

a
( )D−d

, (48)

where d is the spatial dimension (2 or 3). Hence using Eq. 41

SFnw ∝F−](D−d)/(]+1). (49)

However, when the fluctuation number F is sufficient small, η
> w, and the width of the model wwill be the characteristic length
scale in the problem. Then

FIGURE 10 | The dependence of the front width η/a on the generalized
Bond number Fa/(cN (pc)) � Bo − Ca. The blue dots correspond to data taken
from [61] where the Bond number Bo � Δρga2/c � 0.154 is kept fixed but the
capillary number Ca � qμ2a

2/(ckA) is changed by varying the flow rate q.
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SFnw ∝
w

a
( )(D−d)

. (50)

Figure 11 shows a two-dimensional invasion percolation
simulation with a gravitational field together with drainage
experiments performed by Ayaz et al. [81]. The red dash-dotted
line confirms the predictions of the theoretical scaling in Eq. 49.
We make the important remark here that in the equations
considered above we have neglected the boundary effects at the
inlet and outlet since L/w≫ 1. These boundary effects are however
important when the characteristic length scale of the front w is of
the same order as the length L of the system [74].

In section IV we considered an invading fluid with a
negligible viscosity μ1 � 0. Let us now instead consider the
scenario in which this fluid has a non-negligible viscosity μ1.
In that case the fluctuation number will be

F � N(pc) Δρga + qμ1a

k1A
− qμ2a

kA
( ), (51)

where k1 is an effective permeability that depends on the
characteristic crossover length scale of the system which is
either η or w. The expression (51) is meaningful only if the
pressure drop in the invading fluid depends linearly on the length
scale along the average flow direction. Network simulations in
two dimensions however, show a linear change in the capillary
pressure due to viscous flow [59, 60]. This is due to the loop-less
strands in the invading nonwetting fluid. It is of great interest to
know if this is also valid in three dimensions.

The structure left behind the front is a fractal structure with
clusters of all length scales up to the characteristic length scale η
or w [27, 58]. Therefore if η < w, the permeability k1(F) will be a

function of F. If we know this functional dependence we can solve
the equation

F � N(pc) Δρga + qμ1a

k1(F)A − qμ2a

kA
( ), (52)

with respect to F and thereby find the characteristic length scale η
from

η/a∝F
−]
1+]. (53)

We then also know the saturation through Eq. 48. A goal for
future experiments/simulations/theory should therefore be to
measure/predict the permeability dependence of the invading
fluid as function of the characteristic length scale η.

6 CONCLUSION

In this paper, we discussed the importance of capillary
fluctuations in porous media, as well as the characteristic
length scales set by the competition between capillary
fluctuations and external fields, gravitational or viscous. We
focused on fluid fronts that are stabilized by gravitational
and viscous fields. The fluctuation number F, which describes
the scaling of the front width η, was introduced. When
considering viscous and gravitational fields, the theory
describes well the scaling of the width of the fluid front and
the final saturation of the fluid left behind the invasion front
observed in experiments. On a length scale smaller than η, the
structure within the front is generally fractal, while on a length
scale larger than η, it is homogeneous. The characteristic length
scale η is thus of primary importance in defining a relevant
Representative Elementary Volume (REV) for an average Darcy
description of the two-phase flow problem.

We also discussed the energy dissipation caused by out-of-
equilibrium Haines jumps and calculated the total elastic
energy released by those jumps using the pressure drops
connected to the jumps’ known scaling behavior. When the
invasion front is in a steady state regime, we find that the
elastic energy released by the jumps corresponds to the
work applied to the system, as expected. However, this
description also explains the local activity and dissipation
caused by local Haines jumps, as well as how it is related to
dissipation on a larger scale.

We calculated the energy dissipation and saturation left
behind the invasion front in addition to the work done by the
pump to push the fluid front forward. These quantities are
affected by the generalized fluctuation number, as well as the
fractal dimension of the invasion structure, the fractal dimension
of the contour of the trapped clusters, and the exponent ], which
describes the divergence of the correlation length in percolation
as it approaches the critical percolation threshold fc. The workW,
dissipation Φ, and surface energy Es were discovered to be
proportional to the number of pores invaded S, with fractal
scaling on length scales smaller than the characteristic length
scale, η or w, but scaling with the spatial dimension on larger

FIGURE 11 | The final saturation as a function of the generalized Bond
number Fa/(cN (pc)) �Bo −Ca is plotted both for experimental (black dots) and
numerical results (blue stars) produced via invasion percolation with a
gravitational field, together with the predicted result Eq. 49 (red dash-
dotted line) in two dimensions. The capillary number Ca � qμ2a

2/(ckA) � 1.2 ·
10–4 is kept fixed while the Bond number Bo � Δρga2/c is changed in the
experiments. Numerical and experimental data from [81].
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length scales. Hence, the ratio of these energies stays constant as
the system size increases.

The theory described here is a bottom-up approach that
allows the problem to be scaled up from small to large scales.
The theoretical results were compared to and found to be
consistent with quasi-two-dimensional experiments. Because
of the small temperature increase involved in heat dissipation
from the Haines jumps (mK or less), it is very challenging to
measure these temperature fluctuations. Such a measurement
remains to be done. An experimental verification of the
theoretical scaling of the invasion front and the saturation
behind the front for three-dimensional porous media is also
of great interest for future work [81]. Experiments involving
changing the gravitational effects in a geophysical centrifuge
could be one way to accomplish this. The porous medium in a
real rock is typically not homogeneous, in contrast to the porous
media considered here. As a result, it is of great interest to extend
the theory to include also the case of inhomogeneous porous
media, for example with a porosity gradient.
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