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Epileptic seizure prediction is one of the most used therapeutic adjuvant strategies
for drug-resistant epilepsy. Conventional methods are usually trained and tested on
the same patient due to the interindividual variability. However, the challenging
problem of the domain shift between different subjects remains unsolved, resulting
in low prevalence of clinical application. In this study, a generic model based on the
domain adaptation (DA) technique is proposed to alleviate such problems.
Ensemble learning is employed by developing a hierarchical vote collective of
seven DA modules over multi-modality data, such that the predictive
performance is improved by training multiple models. Moreover, to increase the
feasibility of its implementation, this study mimics the data distribution of clinical
sampling and tests the model under this simulated realistic condition. Based on the
performance of seven subnetworks, the applicability of each DA algorithm for
seizure prediction is evaluated, which is the first study that provides the
assessment. Experimental results on both intracranial and scalp EEG databases
demonstrate that this method can reduce the domain gap effectively compared with
previous studies.
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1 INTRODUCTION

1.1 Epilepsy Background
Epilepsy is a cerebral anomaly with the transient occurrence of unexpected seizures caused by
excessive or hypersynchronous neuronal activities [1]. It is the second most clinically
significant neurological disorder, which affects approximately 1.0% of the world’s
population [2]. The reliable seizure prediction device, which refers to anticipating an
upcoming seizure based on continuous electroencephalogram (EEG) signals, is an emerging
and important demand for drug-resistant individuals accounting for about 30% of the epileptic
[3, 4]. The early warning device could significantly prevent the injury of epileptic coma, or
even death.

EEG is a commonly used type of physiological signal that measures the epileptic brain activity,
which records rhythmic information induced by coordinated neuronal firing with characteristic
periodicity. The first-in-man forecast study was reported in 2013 [5], which offered the convincing
proof of the predictability of seizure. Since then, many EEG-based algorithms adopting the data-
driven technique have been presented.
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1.2 Related Work
Current research studies regarding seizure prediction can be
mainly categorized into two streams. The first stream typically
follows a binary classification scheme, which assumes that a
difference exists between the interictal and preictal stages. The
ictal and postictal sequences are discarded during the data
processing due to the futility of their contribution to forecast.
The second stream is to detect the fluctuation of a specific index
during the preictal period, such as the spike rate [6–8], zero-
crossing intervals [9], and phase/amplitude locking value [10]. If
the observed indicator exceeds the previously set threshold, an
early warning would be declared. Owing to the multiplicity of
multichannel EEG recordings, the first stream is more widely
recognized than the second one. This study also adopts the
strategy that distinguishes preictal states from interictal states,
which is depicted in Figure 1.

Approaches using the binary classification scheme commonly
adopt machine learning techniques like support vector machines
[11–13], random forests [14], and k-nearest neighbor [15]. For
the past few years, many deep learning frameworks, including
convolutional neural network (CNN) [16–19], 3D CNN [20],
long short-term memory (LSTM) network [21–23], and cascades
of DNN [24], have been exploited to analyze continuously
acquired epileptic EEG signals. However, there are still many
promising algorithms to be developed and applied further.
Ensemble learning is considered the state-of-the-art solution
for many challenging problems?. For instance, several
representative approaches, including HIVE-COTE [25],
boosting, bagging, and stacking?, have achieved high
performance for time series classification. Such methods are
appealing because it has stronger generalization ability than a
single model by training multiple subnetworks and combining
their predictions. For this reason, we attempt to probe into its
effectiveness for seizure prediction.

Most recently, various machine learning–based studies have
achieved high performance. However, these methods are not yet
in widespread use. Most of these research studies only provide
patient-specific results, namely, both training and testing sets are
collected from one subject. The reason for adopting this strategy
is that large interindividual variability is ubiquitous among
patients with epilepsy [26–28]. Therefore, an ensemble that
contains a number of domain adaptation modules is
developed in this study to reduce the impact of epileptic
individual variability.

1.3 Significance
Although conventional studies achieve encouraging successes in
seizure prediction task, their translation to the application
remains challenging, in part due to their limited domain
adaptability across different subjects. EEG patterns vary
significantly from patient to patient as shown in Figure 2, and
the issue regarding the model generalization ability remains
unsolved. In previous studies, the training and testing sets are
from the same patients, which can obtain a very high sensitivity
(< 85% on average). Although such trials are important for
personalized medicine, they are inconsistent with the clinical
scenario in most cases. In other words, conventional models may

perform well in one patient but be less effective in another, since
the domain gap between different subjects is partly ignored. In
practice, the training set is mainly composed of the previous
patient data, and only a small amount of user samples can be used
for training. The training set consisted of various subjects is the
source domain. The “unseen” user is the target domain. In the
existing literature, few research studies explore the domain shift
issue. Therefore, a general seizure prediction model that is similar
to clinical situation remains to explore and perfect further.

To alleviate the low popularization of clinical application and
circumvent the impact of interindividual variability, domain
adaptation (DA) is introduced for seizure prediction. However,
few studies aim at using these techniques in epileptic EEG. In the
fields such as image recognition and emotion-related EEG,
successful applications of domain adaptation approaches have
been reported [29, 30]. There are three main streams of DA
algorithms. The first stream exploits adversarial learning to
extract invariant information among source and target
domains. The second stream extends sample size with data
augmentation to access the target domain pattern in advance.

FIGURE 1 | Definition of three brain states in continuous epileptic EEG
recordings.

FIGURE 2 | Seizure prediction is a patient-specific problem. The
discriminative models (dashed line) of various individuals (circle and triangle)
differ significantly.
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The third stream establishes general features based on specific
prior knowledge.

Inspired by the success in other areas, we hope to extend DA
to the field of seizure prediction. Since many DA techniques
[31–33] have been provided, an ensemble learning–based
model, the hierarchical vote collective of DA subnetworks
(HIVE-CODAs), is proposed in this study. HIVE-CODAs
combine the advantages of various DA methods. Besides, it
can evaluate the applicability of each DA algorithm. In general,
the main contributions of this study are summarized as
follows:

• A generic model, HIVE-CODA, is proposed to tackle the
DA problem for seizure prediction. It is the first attempt to
reduce the domain disparity between different patients and
to test the model under simulated clinical sampling
conditions.

• Ensemble learning is introduced into this model by
developing a hierarchical vote collective. Such a
framework can improve the predictive performance and
generalization ability due to the combination of multiple
DA subnetworks.

• This study is the first study to evaluate the applicability of
different DA algorithms for seizure prediction, which is
crucial for follow-up studies.

Based on DA techniques and ensemble learning, the proposed
model provides an above par disturbance rejection property,
making the model more robust and practical for clinical
application. Experiments on two public databases, the Freiburg
Hospital EEG database and the CHB-MIT EEG database [34, 35],
are conducted for model evaluation. Results indicate that HIVE-
CODA achieves better domain adaptability compared with other
state-of-the-art baselines.

2 DATA ACQUISITION AND
PREPROCESSING

2.1 Patients
Two public EEG datasets, the Freiburg Hospital Intracranial EEG
database [34] and the CHB-MIT scalp EEG database [35], are
adopted to evaluate the generalization capability of HIVE-
CODAs. The Freiburg Hospital EEG database includes time
series of 87 seizures from 21 people with medically intractable
focal epilepsy, ranging from 10 to 50 years old (8 male and 13
female patients). EEG signals are recorded invasively with six
electrodes (3 near the epileptic focus and the other three distal to
the epileptogenic zone). The sampling rate for all patients is
256 Hz (data of Patient No. 12 are sampled at 512 Hz but are
down-sampled to 256 Hz).

The CHB-MIT database consists of scalp EEG sequences of 22
epileptic subjects, including five male patients ranging from 3 to
22 years and 17 female patients from 1.5 to 19 years. The EEG
signals are recorded at a 256 Hz sampling rate with 16-bit analog-
to-digital converters. Most samples are acquired from surface
electrodes of 23 channels following the 10–20 standard system for

electrodes placement. Each patient has a subfolder that contains 9
to 42 recordings.

2.2 Data Selection and Labeling
Power line noise removal is implemented to denoise the data. We
discarded the frequency bands of 47–53 and 97–103 Hz in the
intracranial EEG set and the frequency bands of 57–63 and
117–123 Hz in the scalp EEG set. It is because noise
commonly appears at 50 Hz for the Freiburg database and
60 Hz for the CHB-MIT database. Moreover, a subject
selection is performed. Only patients with at least two seizures
but fewer than 15 seizures per day are used for prediction, since
less than two seizures are not enough to support training and
more than 15 seizures make the forecast purportless. The chosen
subjects are listed in Tables 1, 2.

A prerequisite for seizure prediction is the reliable distinction
between preictal and interictal samples. We set 30 min before
seizure onset as the seizure prediction horizon (SPH), which
follows empirical evidence of comparison tests as applied
multiple preictal lengths, and the seizure occurrence period is
set to 0. A seizure should occur within 30 min after the predictor
returns a positive. The raw EEG recordings are then divided into
continuous, non-overlapping fragments by a 5-s time window.
The sample number for each subject is sufficient (>7,200) to
support training. Besides, we remarked that the amount of
interictal samples is much larger than preictal samples. To
remedy the sample imbalance, a random subsample on the
interictal signals is performed to make an equal quantity of
preictal and interictal training samples.

3 METHODS

To learn the domain-invariant representation, we proposed a
generic seizure prediction model: the hierarchical vote collective
of DA subnetworks (HIVE-CODAs). HIVE-CODA is an
ensemble that combines 7 DA modules over multi-modality
data. Each subnetwork is assigned a weight via the
probabilistic voting scheme to equilibrate its value. By
analyzing the most contributive DA component and its feature
space, we provided a preliminary conclusion about the
generalized information during the preictal period among
various individuals.

3.1 Clinical Situation Simulation
Conventional approaches only provide the patient-specific
results. Such frameworks may obtain high precision but are
not consistent with the signal recording situation in real life. It
is difficult to collect a large number of long-term EEG samples
from one specific patient during clinical treatment, such that the
sample size is unable to support the training process. Therefore,
we considered using DA technology to apply data from other
subjects to predictor training for the particular subject.

The training and testing strategy is depicted in Figure 3. The
training and validation sets consist of existing patient data and
one seizure of the target subject, while the remaining target
seizures served as the testing set. The selection of seizure for
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training refers to the idea of the leave-one-out cross-validation
(LOOCV) approach [36]. Moreover, the combined data are
partitioned into five folds, and 80% of the samples are
assigned to the training set, while the remaining 20% is named
for the validation set to prevent overfitting.

3.2 Modular Hierarchical Structure
HIVE-CODAs include seven constituent modules: subject-
invariant domain adaption (SIDA) [37], conditional deep
convolutional generative adversarial networks (C-DCGANs)
[38], plug-and-play domain adaptation (PPDA) [39],
maximum independence domain adaptation (MIDA) [40],
maximum mean discrepancy–adversarial autoencoders (MMD-
AAEs) [41], model-agnostic learning of semantic features
(MASF) [42], and cone manifold domain adaptation (CMDA)
[43]. The modular hierarchical structure is depicted in Figure 4.

Since few domain adaptation techniques of epileptic EEG have
been reported, we applied seven state-of-the-art approaches from
the related fields to constitute the subnetworks of HIVE-CODAs.
Several modules require images as inputs, instead of time series,
such that we generate the spectrograms from EEG segments using
the short-time Fourier transform (STFT) [44]. The raw EEG
recordings are translated into two-dimensional matrices
composed of frequency and time axes. Then the EEG
fragments and their spectrograms will be sent forward to the
corresponding modules depending on their modalities.

3.3 Modules Based on Adversarial Learning
1) MMD-AAE: We developed the MMD-AAE module referring
to the study mentioned in reference [41], which aims at assessing
the effectiveness of maximum mean discrepancy (MMD)
measure and adversarial autoencoders (AAEs). An MMD-
based regularization term is proposed to align the distributions

among various subjects. The AAE architecture is applied to learn
the latent codes that are universal to all domains. The sharable
information is captured by matching the aligned distribution to
an arbitrary prior distribution. Thus the MMD-AAE may
circumvent the overfitting to source data.

2) SIDA: We also estimated the performance of SIDA on
epileptic EEG, which combines power spectral density (PSD)
features and adversarial learning [37]. SIDA focuses on the
extraction of the invariant representations among different
domains. The sharable information is jointly learned with the
task loss Ltask and subject confusion loss Lsubj. The training
procedure adopts the adversarial strategy, which is implemented
with a gradient reversal layer. Suppose that there are N source
samples xi{ }Ni�1, the process can be explicitly written as follows:

L � 1
N

∑
N

i�1
Ltask h f xi; θ( ); c( ), ci( )

−λ 1
N

∑
N

i�1
Lsubj g f xi; θ( ); ϕ( ), si( ),

(1)

θ̂, ĉ � argmin
θ,c

L θ, c, ϕ̂( )( ), (2)

ϕ̂ � argmax
ϕ

L θ̂, ĉ, ϕ( )( ), (3)

where θ, c, ϕ represent the network parameters and θ̂, ĉ, ϕ̂ are
their updated forms. λ is the trade-off positive parameter. h(·)
and g(·) are the classification task and subject discrimination
outputs. ci, si denote the corresponding labels for Ltask and Lsubj,
respectively. Note that, a specific feature extraction component is
assembled in HIVE-CODAs since the inputs of SIDA are PSD
features in accordance with the study mentioned in
reference [37].

3.4 Modules Based on Data Augmentation
1) C-DCGANs: By introducing C-DCGANs [38], we tested the
feasibility of using data augmentation and convolutional neural
networks (CNN) to remedy the domain discrepancy. The main

TABLE 1 | Details of the Freiburg Hospital test set.

Patient Gender Age (years) Seizure type No. of seizures

Pt 1 F 15 SP 4
Pt 2 M 38 SP, CP, GTC 3
Pt 3 M 14 SP, CP 5
Pt 4- F 26 SP, CP, GTC 5
Pt 5 F 16 SP, CP, GTC 5
Pt 6 F 31 CP, GTC 3
Pt 8 F 32 SP, CP 2
Pt 9 M 44 CP, GTC 4
Pt 10 M 47 SP, CP, GTC 5
Pt 11 F 10 SP, CP, GTC 4
Pt 12 F 42 SP, CP, GTC 3
Pt 13 F 22 SP, CP, GTC 2
Pt 14 F 41 CP, GTC 4
Pt 15 M 31 SP, CP, GTC 4
Pt 16 F 50 SP, CP, GTC 5
Pt 17 M 28 SP, CP, GTC 5
Pt 18 F 25 SP, CP 5
Pt 19 F 28 SP, CP, GTC 4
Pt 20 M 33 SP, CP, GTC 5
Pt 21 M 13 SP, CP 5

F, female; M, male; SP, simple partial; CP, complex partial; and GTC, generalized tonic-
clonic.

TABLE 2 | Details of the CHB-MIT test set.

Patient Gender Age (years) Seizure type No. of seizures

Pt 1 F 11 SP, CP 7
Pt 2 M 11 SP, CP, GTC 3
Pt 3 F 14 SP, CP 6
Pt 5 F 7 CP, GTC 5
Pt 6 F 2 CP, GTC 4
Pt 7 F 15 SP, CP, GTC 3
Pt 8 M 4 SP, CP, GTC 5
Pt 9 F 10 CP, GTC 4
Pt 10 M 3 SP, CP, GTC 6
Pt 13 F 3 SP, CP, GTC 5
Pt 14 F 9 CP, GTC 5
Pt 17 F 12 SP, CP, GTC 3
Pt 18 F 18 SP, CP 6
Pt 19 F 19 SP, CP, GTC 3
Pt 20 F 6 SP, CP, GTC 5
Pt 21 F 13 SP, CP 4

F, female; M, male; SP, simple partial; CP, complex partial; and GTC, generalized tonic-
clonic.
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idea of C-DCGANs is increasing generalization capability via
artificial EEG data generation. A generative adversarial network
(GAN) is exploited to expand the training set, and an end-to-end
CNN is employed as the classifier. We remarked that C-DCGANs
also involve the adversarial learning due to the application of
GAN. However, the generation function of GAN is highlighted in
HIVE-CODAs, instead of the minmax optimization, such that we
placed emphasis on the assessment of data augmentation.

2) MIDA: MIDA subnetwork is developed to measure the
importance of background information and feature
augmentation. In MIDA framework, an inner product space is
established, where feature vectors are maximally independent in
the sense of a Hilbert–Schmidt independence criterion (HSIC)
[40]. The feature augmentation is performed via generating latent
representations based on the background knowledge like
acquisition time. The original feature vectors are expanded by
concatenating with the produced features. According to the study
mentioned in reference [40], we exploited the domain label

(which domain a sample belongs) as the background
information since no device label and the acquisition time is
provided in the epileptic EEG database.

3.5 Modules Based on Specific Features
1) CMDA: The CMDA module is adopted to evaluate the
applicability of manifold on epileptic EEG. Referring to the
study menitioned in reference [43], the latent feature space
among various domains is regularized by modeling sharable
information on the Riemannian cone manifold. Specifically,
covariance matrices P of EEG segments are computed to
constitute the manifold M. The CMDS module leverages the
global Riemannian mean P̂ and the local Riemannian mean �P(k)

to describe the cross-domain center and the centroid of the set
{P(k) | P(k) ∈ M} for the kth-domain (cite). By using the parallel
transport approach, the projections of {P(k)} on the tangent space
T P̂M can describe the invariant features among source domains
as follows:

FIGURE 4 | Block diagram of HIVE-CODAs: the raw EEG recordings convert into multi-modality data to meet the input requirement of the corresponding module.
The jth DA module outputs the voting vector p(j)

i to claim its decision. Then the voting vectors will be selected adaptively with the weight matrices to produce the
probability of class i. Meanwhile, the weight layer will be exploited for DA subnetwork assessment.

FIGURE 3 | Illustration of clinical situation simulation.
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Ŝ
k( ) � Γ�P k( )→P̂ S k( )( ), ∀ k, (4)

S k( ) � Log�P k( ) P k( )( ), (5)

where Ŝ
(k)

denotes the generalized features, ΓB→A(·) represents
the parallel transport from B to A, and S(k) represents the
projection of P(k) on the tangent space T �P(k)M with the
logarithm map (cite). In general, each domain feature is
parallelly transported from �P(k)to the global centroid P̂, and
the transported point Ŝ

(k)
is embedded in the 〈·, ·〉P̂ inner product

space to make the generalized features describable in the
Euclidean space.

2) PPDA: The long short-term memory (LSTM) architecture
and a peculiar learning strategy are evaluated by adding the
PPDA module. PPDA divides the latent features into private
portions specific to each subject and generalized components
among all subjects. To leverage both the universal and private
feature vectors, PPDA develops a learning procedure including
the training phase, calibration phase, and test phase. Specially, the
LSTM layer is adopted for encoding and decoding.

3) MASF: To assess the applicability of meta-learning and
semantic features, the MASF module is employed in HIVE-
CODAs. According to the study mentioned in reference [42],
a model-agnostic learning paradigm is exploited to minimize the
domain gap via using a global class alignment loss Lglobal and a
local sample clustering lossLlocal. The knowledge about interclass
relationships and the domain-independent class-specific
cohesion/separation is captured by Lglobal and Llocal,
respectively, which is given as follows:

ψ, θ( ) ← ψ, θ( ) − η▽ψ,θ Ltask + Lmeta( ), (6)

Lmeta ← β1Lglobal + β2Llocal, (7)

where ψ, θ are the network parameters, η is the learning rate, and
β1, β2 denote the weighting coefficients. Ltask represents the loss
function of the predictive task. By introducing both global and
local information, the semantic structure regarding the EEG
feature space is regularized explicitly.

3.6 Weighted Voting Scheme
To evaluate the contribution of each subnetwork, a weighted
voting structure is introduced at the end of the network. We
assumed that there are G modules for the classification with C
classes. For an arbitrary class y � i, we denote by w(j)

i the weight
assigned to the jth module, where i ∈ [1, . . . , C] and
j ∈ [1, . . . , G]. Then the collective probability pi for the ith
class is the normalized weighted sum over modules:

pi �
∑G

j�1w
j( )

i p
j( )

i

∑C
i�1∑

G
j�1w

j( )
i p

j( )
i

. (8)

The prediction result ŷ can be given as follows:

ŷ � argmax
i

pi. (9)

The applicability of each algorithm on epileptic EEG could be
estimated via observing its weight unit. Besides, a more balanced
and intuitive collective could be created as the subnetworks are
trained adaptively.

TABLE 3 | Results compared with conventional methods on the Freiburg Hospital
database.

Source Target CNN LSTM HIVE-CODAs

Sn FPR (/h) Sn FPR (/h) Sn FPR (/h)

S.C. Pt 1 0.73 0.24 0.72 0.23 0.83 0.11
S.C. Pt 2 0.58 0.31 0.66 0.30 0.85 0.09
S.C. Pt 3 0.67 0.26 0.67 0.25 0.85 0.13
S.C. Pt 4 0.67 0.27 0.71 0.16 0.84 0.12
S.C. Pt 5 0.48 0.40 0.45 0.32 0.73 0.18
S.C. Pt 6 0.75 0.27 0.58 0.38 0.86 0.11
S.C.* Pt 8 0.55 0.34 0.53 0.29 0.66 0.32
S.C. Pt 9 0.65 0.19 0.75 0.16 0.83 0.15
S.C. Pt 10 0.51 0.37 0.58 0.26 0.79 0.24
S.C. Pt 11 0.69 0.36 0.54 0.21 0.87 0.22
S.C. Pt 12 0.66 0.18 0.65 0.24 0.84 0.17
S.C.* Pt 13 0.56 0.31 0.52 0.23 0.68 0.27
S.C. Pt 14 0.47 0.48 0.57 0.29 0.76 0.23
S.C. Pt 15 0.66 0.19 0.70 0.17 0.88 0.12
S.C. Pt 16 0.53 0.37 0.44 0.46 0.79 0.19
S.C. Pt 17 0.63 0.36 0.42 0.41 0.63 0.28
S.C. Pt 18 0.72 0.18 0.73 0.20 0.83 0.20
S.C. Pt 19 0.44 0.29 0.47 0.33 0.75 0.14
S.C. Pt 20 0.43 0.37 0.46 0.33 0.74 0.26
S.C. Pt 21 0.64 0.32 0.50 0.28 0.84 0.12

Avg. 0.60 0.31 0.56 0.27 0.80 0.18

S.C., simulated clinical samples; Sn, sensitivity; FPR, false prediction rate; and Avg.,
average result. Note that S.C.* uses NO samples of the predictor user.
The bold values denote outliers.

TABLE 4 | Results compared with conventional methods on the CHB-MIT
database.

Source Target CNN LSTM HIVE-CODAs

Sn FPR (/h) Sn FPR (/h) Sn FPR (/h)

S.C. Pt 1 0.57 0.36 0.55 0.28 0.72 0.16
S.C. Pt 2 0.48 0.39 0.42 0.27 0.65 0.22
S.C. Pt 3 0.64 0.30 0.58 0.32 0.75 0.27
S.C. Pt 5 0.54 0.42 0.45 0.41 0.76 0.23
S.C. Pt 6 0.66 0.31 0.62 0.32 0.72 0.15
S.C. Pt 7 0.65 0.25 0.55 0.25 0.83 0.28
S.C. Pt 8 0.64 0.28 0.57 0.20 0.74 0.20
S.C. Pt 9 0.48 0.35 0.45 0.26 0.63 0.31
S.C. Pt 10 0.47 0.32 0.51 0.24 0.62 0.34
S.C. Pt 13 0.55 0.22 0.50 0.23 0.73 0.26
S.C. Pt 14 0.55 0.42 0.44 0.32 0.72 0.35
S.C. Pt 17 0.47 0.4 0.42 0.42 0.62 0.28
S.C. Pt 18 0.58 0.32 0.45 0.34 0.73 0.29
S.C. Pt 19 0.59 0.22 0.53 0.21 0.79 0.17
S.C. Pt 20 0.60 0.25 0.57 0.27 0.77 0.22
S.C. Pt 21 0.62 0.28 0.62 0.27 0.77 0.15

Avg. 0.53 0.32 0.51 0.29 0.72 0.24

S.C., simulated clinical samples; Sn, sensitivity; FPR, false prediction rate; and Avg.,
average result.
The bold values denote outliers.
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4 RESULTS AND DISCUSSION

In this section, the comparison results and weight matrix are
provided to verify the generalization ability and evaluate the DA
algorithms. HIVE-CODA is assessed on both intracranial and
scalp EEGs. We adopted three common measures for evaluation:
sensitivity, false alarm rate per hour (FPR), and area under the
receiver operating characteristic curve (AUC).

4.1 Generalization Ability Analysis
The comparison experiments are conducted to demonstrate the
advantages of HIVE-CODAs over other conventional methods.
Many time/frequency domain–based approaches have been
applied to predict upcoming seizures. Two classic deep neural
networks, CNN and LSTM, are selected to assess the
generalization ability of our method, which have achieved
success in patient-specific forecast. We also attempted to find
a generic algorithm across different subjects for comparison.
However, little existing research considers the similarity of
data acquisition to clinical situation and uses plenty of
“unseen” patient’s samples for training. The implementation
details of CNN and LSTM refer to references [17] and [22],
and the experimental results are listed in Tables 3, 4.

The experiment regarding the intracranial EEG is performed
based on the widely used Freiburg Hospital database. Table 3
illustrates that HIVE-CODAs achieve a sensitivity of 80% and an
FPR of 0.18/h on average, which outperforms other forecast
models. For the outlier-like Pt 17, HIVE-CODAs do not
produce the desired effectiveness, which might be caused by a
larger domain gap existing in the sample space.

Evidently, performances of all these prediction approaches
show a significant decline compared with the patient-specific
results in their literature. This phenomenon is reasonable since

the training and testing samples are collected from one same
subject in prior studies, which consider little about the
generalization ability. Conversely, our method is implemented
based on the existing database and small amount of “unseen”
patient’s data, which is more coincident with the real clinical
situations. Though the precision is not relative high, the model
performance is sufficient for the daily needs of patients, as it
approximates to the first-in-man trial [5].

In terms of scalp EEG, the experiment is conducted based on
the public CHB-MIT database, produced by the Massachusetts
Institute of Technology. As shown in Table 4, HIVE-CODAs
achieve a sensitivity of 72% and an FPR of 0.24/h on average.
Since the conventional algorithms consider little about the
domain shift among different patients, HIVE-CODAs exhibit
obvious advantages over other prediction models. Still, for several
outliers like Pt 2, Pt 9, Pt 10, and Pt 17, the sensitivity of our
approach is slightly higher than the lower bound of a random
binary classifier. HIVE-CODA is a variation over deep learning
models. As such, it carries with it the uncertainties associated to
deep neural networks, in particular a lack of formal convergence
guarantees.

Furthermore, experiments compared with DA algorithms are
conducted. Results of AUC value are listed in Tables 5, 6. For the
Freiburg Hospital database, results indicate that HIVE-CODAs
achieve higher generalization ability than the conventional
algorithms. It also testifies to the application potential of
integrated DA modules on processing epileptic EEG. To be
specific, the interindividual variability could be alleviated, and
the existing forecast systems could be transferred to the clinic due
to the emerging technologies in DA.

For the CHB-MIT database, the conventional studies show a
lower performance in a clear margin compared with their patient-
specific results, which is consistent with the experiment

TABLE 5 | Results compared with DA methods on the Freiburg Hospital database.

Source Target MIDA MASF PPDA MMD-AAE SAN C-DCGANs SIDA CMDA HIVE-CODAs

S.C. Pt 1 0.59 0.63 0.74 0.78 0.78 0.80 0.81 0.80 0.86
S.C. Pt 2 0.56 0.62 0.71 0.77 0.78 0.77 0.83 0.82 0.86
S.C. Pt 3 0.55 0.62 0.67 0.74 0.75 0.80 0.77 0.83 0.84
S.C. Pt 4 0.52 0.57 0.56 0.57 0.61 0.62 0.62 0.64 0.75
S.C. Pt 5 0.60 0.63 0.72 0.79 0.79 0.80 0.80 0.82 0.85
S.C. Pt 6 0.54 0.53 0.55 0.65 0.68 0.66 0.73 0.74 0.79
S.C.* Pt 8 0.48 0.51 0.55 0.54 0.56 0.57 0.57 0.61 0.68
S.C. Pt 9 0.50 0.55 0.61 0.69 0.68 0.70 0.70 0.73 0.80
S.C. Pt 10 0.53 0.63 0.60 0.69 0.68 0.69 0.70 0.74 0.77
S.C. Pt 11 0.62 0.65 0.70 0.77 0.81 0.73 0.83 0.82 0.87
S.C. Pt 12 0.63 0.63 0.70 0.68 0.71 0.75 0.78 0.77 0.85
S.C.* Pt 13 0.46 0.52 0.60 0.64 0.64 0.68 0.67 0.68 0.74
S.C. Pt 14 0.48 0.55 0.63 0.65 0.66 0.69 0.68 0.71 0.78
S.C. Pt 15 0.59 0.69 0.69 0.73 0.75 0.78 0.77 0.82 0.86
S.C. Pt 16 0.45 0.48 0.58 0.62 0.67 0.69 0.67 0.70 0.76
S.C. Pt 17 0.46 0.48 0.52 0.54 0.54 0.55 0.55 0.56 0.68
S.C. Pt 18 0.61 0.64 0.68 0.75 0.77 0.79 0.78 0.81 0.86
S.C. Pt 19 0.46 0.47 0.53 0.54 0.53 0.55 0.58 0.60 0.69
S.C. Pt 20 0.50 0.55 0.60 0.67 0.69 0.68 0.71 0.70 0.78
S.C. Pt 21 0.52 0.58 0.60 0.62 0.66 0.55 0.69 0.72 0.83

Avg. 0.53 0.58 0.63 0.64 0.65 0.69 0.71 0.73 0.80

S.C., simulated clinical samples. Note that S.C.* uses NO samples of the predictor user.
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conducted on intracranial EEG. Moreover, all these model
performances drop to a varying degree compared with the
precisions on the Freiburg test set. It might be caused by the
advantages of ensemble learning in analyzing low spatial
resolution recordings, namely, the scalp EEG signals. In other
words, intracranial EEG recordings have the high spatial
resolution and SNR, and the artifacts are typically seen in
scalp EEG [46, 47]. This result also illustrates that HIVE-
CODAs have superiority for processing complex time series
due to the diverse inner pattern of the collective structure.

4.2 Module Performance Analysis
As few studies evaluate the applicability of different DA
algorithms for seizure prediction, this study provides an
analysis based on the adaptively trained weight matrices.
HIVE-CODAs introduce several successful machine learning
models from related fields and assess their performance. The
subnetworks are conducted via a statistical analysis of the
weighted voting layer. The weight distributions are presented
in Figure 5. The greater the normalized weight, the greater the
contribution of the corresponding DAmodule. DAmethods with
high contributions are considered to have larger potential. This
study also tests the predictive precision of each module running
alone (with the other modules’ weights reset to 0). The results of
AUC values are illustrated in Figure 6. A detailed discussion
regarding these DA techniques is provided as follows.

1) CMDA: CMDA relies on Riemannian manifold–based
features to capture the characteristic scale of the neuronal
events, which was proposed for motor imagery. As shown in
Figure 5, CMDA surpasses the other approaches on both
intracranial and scalp EEG datasets. We conjectured that the
inner pattern of EEG sequences may obey a compact distribution
in the embedding space, such that the manifold-based methods
that capture continuous subspace might be applicable to such
task. The experimental result indicates that the analytic
Riemannian manifold can potentially be used to develop a
robust seizure predictor.

2) SIDA: The SIDA module is an adversarial neural network
from the area of emotion recognition. It uses EEG spectra as input
to learn a new representation, minimizing loss of emotion
recognition and subject confusion. As we can see, SIDA makes
relatively larger contribution compared with other modules. It
might be due to the combination of CNN and generative
adversarial network (GAN), which have been exploited to
extract invariant latent features successfully. The weight unit
of SIDA module may suggest the potential effect of adversarial
learning on generalization ability, since SIDA exploited the
architecture of GAN. However, this conjecture needs to be
further verified for the SIDA module as it adopts the power
spectral density (PSD) features as inputs.

3) C-DCGANs: C-DCGANs use conditional GANs to generate
EEG artificially, which is developed for the detection of subject’s
movement intention (MI). We noticed that the performance of
data augmentation–based module is not desired compared with
the specific features and adversarial learning–based subnetworks.
The degradation might be caused by the limitation of EEG data
augmentation. The fake data usually involve more artifacts [48]
that may contaminate EEG data. Still, C-DCGANs provide a
decent accuracy, which suggests that data augmentation still has
potential in developing a generic seizure forecast model.

4) MMD-AAE: By matching the aggregated posterior with a
prior distribution, the MMD-AAE module extracts the cross-
domain features with adversarial learning. This scheme was
originally used for image recognition. On both intracranial
and scalp EEG datasets, MMD-AAE outperforms MIDA,
MASFF, and PPDA modules and exhibits a slight decrease
compared with the C-DCGAN module. Due to the above par
performance of MMD-AAE, the conjecture in 2) about the
superiority of adversarial learning is verified to some extent.
This superiority may derive from the variational inference
process of MMD-AAE, which alleviates the overfitting to the
source domains effectively.

5) PPDA: PPDA is a technology applied to EEG-based
emotion recognition. It uses LSTM-based encoder to

TABLE 6 | Results compared with DA methods on the CHB-MIT database.

Source Target MIDA MASF PPDA MMD-AAE SAN C-DCGANs SIDA CMDA HIVE-CODAs

S.C. Pt 1 0.60 0.64 0.65 0.73 0.75 0.77 0.77 0.80 0.86
S.C. Pt 2 0.48 0.52 0.46 0.64 0.66 0.70 0.69 0.82 0.86
S.C. Pt 3 0.54 0.53 0.59 0.65 0.67 0.68 0.71 0.83 0.84
S.C. Pt 5 0.52 0.56 0.62 0.70 0.75 0.74 0.74 0.82 0.85
S.C. Pt 6 0.52 0.55 0.61 0.66 0.74 0.75 0.73 0.74 0.79
S.C. Pt 7 0.59 0.61 0.64 0.70 0.72 0.75 0.76 0.74 0.79
S.C. Pt 8 0.51 0.58 0.61 0.67 0.70 0.71 0.71 0.61 0.68
S.C. Pt 9 0.47 0.49 0.52 0.58 0.60 0.61 0.64 0.73 0.80
S.C. Pt 10 0.46 0.50 0.49 0.51 0.55 0.54 0.60 0.74 0.77
S.C. Pt 13 0.49 0.53 0.46 0.58 0.62 0.63 0.62 0.68 0.74
S.C. Pt 14 0.47 0.53 0.55 0.63 0.66 0.68 0.70 0.71 0.78
S.C. Pt 17 0.51 0.54 0.52 0.61 0.63 0.62 0.64 0.56 0.68
S.C. Pt 18 0.50 0.51 0.53 0.58 0.61 0.62 0.66 0.81 0.86
S.C. Pt 19 0.51 0.53 0.56 0.63 0.66 0.66 0.69 0.60 0.69
S.C. Pt 20 0.55 0.56 0.59 0.65 0.68 0.72 0.74 0.70 0.78
S.C. Pt 21 0.51 0.53 0.60 0.66 0.71 0.73 0.77 0.72 0.83

Avg. 0.51 0.54 0.56 0.64 0.66 0.67 0.69 0.70 0.74

S.C., simulated clinical samples.
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FIGURE 5 |Module performance analysis for the Freiburg Hospital (A) and CHB-MIT (B) database. It is calculated based on the learned weight vector of each DA
subnetwork.

FIGURE 6 | AUC of different modules on the Freiburg Hospital test set (A) and the CHB-MIT test set (B).
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decompose the features into general characteristics applicable to
all individuals and personalized characteristics. Dividing the raw
EEG data into subject-specific information and generalized
information is a commonly-adopted strategy for domain
adaptation. However, for seizure prediction, PPDA displays
subpar performance, which we did not expect. Feature
decomposition and the adoption of LSTM seem reasonable in
these tasks. However, due to the few reports of relevant models, it
cannot be absolutely determined that the decomposed features
and LSTM are not suitable for epileptic signals.

6) MASF:MASF exploits semantic features and gradient-based
meta-learning to establish a model-agnostic learning paradigm.
In the field of image processing, successful application of MASF
has been reported. Notably, the performance of the semantic
feature–based method is unsatisfactory. We conjectured that the
discriminant hyperplane in the feature space may be too complex
to be adapted by the explicit semantic features. Moreover, the
limitation of the initial neural architecture for meta-learning
might also be a constraint of the search space.

7) MIDA:MIDA is originally applied in the emotion recognition
field. The purpose of this model is to reduce differences in domain
distributions by learning a subspace with maximum independence.
Figure 5 indicates that all the DA methods can outperform the
MIDA module. This result was expected, given the limited
background information on epileptic data. Obviously, the
background-specific features are not valid characteristics.

Based on these results, we observed that adversarial learning
and manifolds may achieve good performance in epilepsy
prediction. In addition, CNN and PSD features may also have
the potential to process epileptic signals. In the domain
generalization field, CNN has gradually become one of the

most popular algorithms. This also further echoes the
conjecture about CNN in this experiment. Note that the
module performance may be variable on some special cases,
since several outliers (in the Freiburg dataset, Pt 11, 21 for the
C-DCGAN module; in the CHB-MIT dataset, Pt 2, 13 for the
PPDA module, Pt 21 for C-DCGANs module, and Pt 2 for
CMDA module) have been observed.

4.3 Model Applicability Analysis
Here, we attempt to summarize the universal characteristics and
architectures based on the observations of DA algorithms in
Section 4.2. The weight vectors of three types of DA methods
(specific features, data augmentation, and adversarial learning)
are quantified in a statistical analysis, which is depicted in
Figure 7.

As shown in Figure 7, the adversarial learning–based
approaches exhibit obvious advantages over the other DA
methods on both intracranial and scalp EEG. Meanwhile, the
weight distribution indicates that model performance
regarding the specific features and data augmentation is
volatile. Comparing adversarial learning to specific features,
we reckon that the amount of above par weights is about 64%
up. Comparing adversarial learning to data augmentation, a
further 61% benefit is obtained, for a total of about 125%
margin over data augmentation–based methods. These
observations give us confidence in the efficacy of
adversarial learning for processing epileptic signals, and we
conjecture that data augmentation is relatively inferior for
alleviating individual variability.

In particular, the manifold feature of CMDA surpasses all the
other methods, such that the effectiveness of manifold feature

FIGURE 7 | Distribution of weight matrices of three types of DA algorithms.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 81168110

Peng HIVE-CODAs

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


requires a further demonstration. The statistical significance of
the manifold feature is assessed for discriminating preictal and
interictal stages across different patients. The two-sample
Kolmogorov–Smirnov test [49] at a 5% significance level (p <
0.05) is implemented during the evaluation.

The significance analysis for each patient is provided in Tables
7, 8. The unqualified performance index is marked in bold
format. For the manifold feature, 17 of 20 subjects in the
Freiburg dataset and 13 of 16 subjects in the CHB-MIT
dataset present an adequately distinguished ability. According
to this observation, the manifold-based methods might be the
promising techniques in developing a robust seizure predictor.

5 CONCLUSION

This study proposes a universal approach to alleviate the problem
of individual variability in epileptic seizure prediction. By
combining the DA and ensemble learning techniques, the

proposed HIVE-CODA model mitigates the effects of epileptic
individual variance and increases the generalization ability. Besides,
a simulated clinical sampling scenario is adopted during training
and testing periods, which is the first attempt to adopt this
evaluating strategy. Compared with the patient-specific scheme
in conventional studies, such an assessment model is relatively
demanding and challenging. Nonetheless, HIVE-CODAs achieve
high domain shift robustness and precision, which demonstrates its
feasibility of real-world applications.

By analyzing the contributions of each module, the
experimental results also demonstrate the effectiveness of
adversarial learning and manifolds in epileptic seizure
prediction. The underlying causes of this phenomenon remain
unclear because there is no definitive explanation of the dynamics
of epilepsy in the existing literature. However, the success of the
manifold module in this experiment brings new inspiration. We
speculate that the mapping of EEG in the high-dimensional space
may follow a compact distribution, so the kernel-based method
for searching hyperplanes may have potential in this task. The
search for more powerful DA algorithms and the underlying
reasons will be considered as part of our future research extension
to achieve higher performance.
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