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We propose an implementation of a generalized Su-Schrieffer-Heeger (SSH) model based
on optomechanical arrays. The topological properties of the generalized SSH model
depend on the effective optomechanical interactions which can be controlled by strong
driving fields. Three phases including one trivial and two distinct topological phases are
found in the generalized SSH model. The phase transition can be observed by turning the
strengths and phases of the effective optomechanical interactions via adjusting the driving
fields. Moreover, four types of edge states can be created in generalized SSH model of an
open chain under single-particle excitation, and the dynamical behaviors of the excitation in
the open chain are related to the topological properties under the periodic boundary
condition. We show that the edge states can be pumped adiabatically along the
optomechanical arrays by periodically modulating the amplitude and frequency of the
driving fields, and the state pumping is robust against small disorders. The generalized
SSH model based on the optomechanical arrays provides us a controllable platform to
engineer topological phases for photons and phonons, which may have potential
applications in controlling the transport of photons and phonons.

Keywords: optomechanical arrays, generalized Su-Schrieffer-Heeger model, topological phases, edge states,
adiabatic particle pumping

1 INTRODUCTION

In the past decades, rapid progress has been made in the field ofcavity optomechanical systems, in
which a cavity mode is coupled to a mechanical mode via radiation pressure or optical gradient force
(for reviews, see Refs. [1–6]). With the advance in technology and the requirement for providing new
functionality, the focus has been changed from the simplest optomechanical systems, based on a
single mechanical mode coupled to a single optical mode, to more complex setups, including many
optical or mechanical modes, such as optomechanical arrays, which are designed as a periodic
arrangement of optomechanical systems. Based on the current condition of experiments and
technology, optomechanical arrays might be realized in coupled optical microdisks [7–10], on-
chip superconducting electromechanical cavity arrays [11–14], and optomechanical crystals [15, 16].

In the past few years, quantum many-body effect in optomechanical arrays has attracted
considerable attentions [17–32]. Optomechanical arrays with parametric coupling between the
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mechanical mode and optical mode provide us a controllable
platform to simulate quantum many-body systems and
manipulate photons and phonons. Many interesting
phenomena have been studied, such as controllable photon
propagation [17, 18], synchronization [19–21], artificial
magnetic fields for photons [22], optically tunable Dirac-type
band structure [23, 24], Anderson localization of hybrid photon-
phonon excitations [25, 26], and Kuznetsov-Ma soliton [27].
Besides these, the optomechanical arrays can also be used to
engineer topological phase for both photons and phonons
[28–32].

Most of the optomechanical arrays, which are used to
demonstrate different topological phases and Chern insulators,
are implemented in two-dimensional optomechanical crystals.
However, two dimension is not a necessary condition for
engineering topological phase. The topological properties of
photons and phonons can also be realized in a one-
dimensional chain of optomechanical cavities. For example, in
the recent works, Z2 topological insulators [33] and Kitaev model
[34] were simulated via one-dimensional optomechanical arrays.

The Su-Schrieffer-Heeger (SSH) model, introduced from
polyacetylene [35], is well known as one of the simplest
models to demonstrate topological character in one dimension.
It has been proposed theoretically and demonstrated
experimentally in many different setups, such as cold atoms
and ions [36–46], optical systems [47–51], mechanical systems
[52–54], heterostructure [55], graphene nanoribbons [56],
plasmonic systems [57–63], and superconducting circuits
[64–71]. In addition, ladder systems, which consist of two or
more coupled SSH chains, have been used to demonstrate richer
topological quantum phases [72–77].

In this paper, we study the topological properties of a one-
dimensional optomechanical array, which can be mapped to a
generalized SSHmodel [78–85] including three complex hopping
amplitudes. Different from the standard SSH model, we find that
there are three phases in this generalized SSH model, among
which, one is trivial and the other two are distinct. It is worth
mentioning that a SSH model consisting of three hopping
amplitudes with real numbers was discussed in a recent Ref.
[77]. Besides the system in our paper is different from that in Ref.
[77], we further show that the topological properties of the
generalized SSH model depend on both the strengths and the
phases of the hopping amplitudes, and topological phase
transitions can be demonstrated by tuning the strengths and
phases of the effective optomechanical interactions via adjusting
the external driving fields. Moreover, we show that four types of
edge states can be found in generalized SSH model of an open
chain under single-particle excitation, and the dynamical
behaviors of the excitation in the open chain are related to the
topological properties under the periodic boundary condition.
We also show that the edge states can be pumped adiabatically
along the optomechanical arrays by periodically modulating the
amplitudes and frequencies of the driving fields.

It is worth mentioning that, after the submission of the first
version of this manuscript to arXiv [86], there are many new
advances have been made in the field of topological phases in
optomechanical arrays based on SSH model, such as topological

state transfer and topological beam splitter [87], photon-phonon
conversion [88], etc. Moreover, topological insulator in two
synthetic dimensions was proposed based on an
optomechanical resonator [89], and phononic edge modes
with unidirectional propagation was simulated in a two-
dimensional optomechanical nanobeam lattice [90].

The remainder of this paper is organized as follows. In
Section 2, we show the theoretical model of a generalized
SSH model based on optomechanical arrays. In Section 3,
we study the topological properties of the generalized SSH
model and show that there are three phases, one is trivial and
two are distinct. Moreover, we show that phase transitions can
be observed by tuning the strengths of the optomechanical
interactions. In Section 4, four types of edge states are
introduced and the relation between the dynamical
behaviors of singleparticle excitation in the open chain and
the topological properties under the periodic boundary
condition are discussed. In Section 5, we demonstrate that
the edge states can be pumped adiabatically along the
optomechanical arrays by modulating the amplitudes and
frequencies of the driving fields periodically. Finally, the
results are summarized in Section 6.

2 THEORETICAL MODEL

We propose to implement a generalized SSH model by
an optomechanical array with N cavity modes and N
mechanical modes, which are coupled only by optomechanical
interactions, without hopping of photons between neighboring
cavity modes (or hopping of phonons between mechanical
modes). The Hamiltonian of the optomechanical array is
(Z � 1)

H0 � ∑N
j�1

ωc,ja
†
jaj + ωm,jb

†
jbj +Hj( ), (1)

with

H1 � g1,0b
†
1 + g1,+b

†
2( )a†1a1[

+ Ω1,0e
iω1,0t +Ω1,+eiω1,+t( )a1] +H.c.,

(2)

for the first cavity mode,

HN � gN,0b
†
N + gN,−b

†
N−1( )a†NaN[

+ ΩN,0e
iωN,0t +ΩN,−eiωN,−t( )aN] +H.c.,

(3)

for the last cavity mode, and

Hj � gj,0b
†
j + gj,+b

†
j+1 + gj,−b

†
j−1( )a†jaj[

+ Ωj,0e
iωj,0t + Ωj,+eiωj,+t + Ωj,−eiωj,−t( )aj]

+H.c.,

(4)

for the jth cavity mode (1 < j < N), where aj (a
†
j) is the bosonic

annihilation (creation) operator of the jth cavity mode (j � 1,
2, . . . , N) with resonant frequency ωc,j, bj (b

†
j) is the bosonic

annihilation (creation) operator of the jth mechanical mode with
resonant frequency ωm,j, and gj,0 (gj,±) is the optomechanical
coupling strength between the jth cavity mode and the jth
mechanical mode (the (j ± 1)th mechanical mode). The jth
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cavity mode is driven by a three-tone laser at frequencies ωj,0 �
ωc,j − ωm,j and ωj,± � ωc,j − ωm,j±1 with amplitudesΩj,0 andΩj,± in
the well resolved sidebands regime (ωm,j ≫{κj, cj}, where κj is the
decay rate of the jth cavity mode, and cj is the damping rate of the
jth mechanical mode).

To deal with the Hamiltonians in Eqs 2–4, we will employ the
linearization approach widely used for optomechanics [91–96] in
the weak single-photon optomechanical coupling regime and
under strong driving condition gj,σ ≪ κj ≪Ωj,σ (σ � 0, ±). The
operator for each cavity modes is written as the sum of its classical
mean value αj(t) and quantum fluctuation operator δaj as aj →
αj(t) + δaj. For convenience of the presentation, we rename δaj→
aj. The classical mean value αj(t) can be given approximately as
αj(t) ≈ αj,0eiωj,0t + αj,+eiωj,+t + αj,−eiωj,−t, where the classical
amplitude αj,0 ≈ − i2Ωj,0/(κj + 2iΔj,0) [αj,± ≈ − i2Ωj,±/(κj +
2iΔj,±)] is given approximately by solving the classical
equation of motion with amplitude Ωj,0 (Ωj,±) and detuning
Δj,0 ≡ ωc,j − ωj,0 (Δj,± ≡ ωc,j − ωj,±). In the interaction picture
with respect to Hrot � ∑N

j�1[ωc,ja
†
jaj + ωm,jb

†
jbj], the linearized

operator aj is given by

aj → aje
iωc,jt + ∑

σ�0,±
αj,σe

iωj,σ t. (5)

We assume: 1) min[|αj,0|, |αj,±|]≫ 1 and max{gj,0, gj,±}≪ κj, so
that we can only keep the first-order terms in the small quantum
fluctuation operators aj and a†j as

a†jaj → a†j ∑
σ�0,±

αj,σe
iΔj,σ t +H.c.. (6)

2) min{ωm,j, |ωm,j − ωm,j′|j′�j±1}≫max{|gj,0αj,0|, |gj,±αj,±|}, and
ωm,j � ωc,j − ωj,0 and ωm,j±1 � ωc,j − ωj,±, such that the rotating
terms can be neglected safely, and the linearized Hamiltonian
with resonant interactions is obtained as

Hj ≈ Jeiϕa†jbj + za†jbj+1 + va†jbj−1 +H.c., (7)

where Jeiϕ ≡ gj,0αj,0, v ≡ gj,−αj,−, and z ≡ gj,+αj,+. We assume that the
strengths (Ωj,0,Ωj,±) and detunings (Δj,0, Δj,±) of the driving fields
are constant (or change slowly in the Section for adiabatic particle
pumping), so the classical amplitudes (αj,0, αj,±) are constant in
the steady state (or change slowly for adiabatic particle pumping).
In this case, the classical mean value can be used as a parameter to
define J, ϕ, v and z in the Hamiltonians. Without loss of
generality, we assume that J, ϕ, v and z are real numbers and
the global phase factor ϕ can be tuned by adjusting the relative
phase of the driving fields. It should be noted that all these
assumptions given above are widely used in the theories for
optomechanical systems [4], including in one- and two-
dimensional optomechanical lattices [28–34, 87–90].

By substituting Eq. 7 into Eq. 1, the linearized
Hamiltonian for the optomechanical array in the interaction
picture with respect to Hrot � ∑N

j�1[ωc,ja
†
jaj + ωm,jb

†
jbj] is

given by

H � ∑N
j�1

Jeiϕa†jbj + ∑N−1

j�1
va†j+1bj + zb†j+1aj( ) +H.c., (8)

as schematically shown in Figure 1. The linearized Hamiltonian
for the optomechanical array shows a generalized SSH model
with hopping amplitude z ≠ 0 between the jth cavity mode and
(j + 1)th mechanical mode. When the coupling strength z � 0, the
Hamiltonian for the optomechanical array becomes the well-
known SSH model [78]. It can also be dealt with as a Bogoliubov
Hamiltonian if the counter-rotating terms, ζaj+1bj + ζ′ajbj+1 + H.
c. with coupling strengths ζ and ζ′, are taken into account
[41, 42].

3 TOPOLOGICAL PHASE TRANSITION

To study the topological phase transition in the generalized SSH
model, we set a periodic boundary condition, so the linearized
Hamiltonian for one-dimensional optomechanical array can be
redefined as

H′ � ∑N
j�1

Jeiϕa†jbj + va†
jmodN( )+1bj + zb†

jmodN( )+1aj( ) +H.c.,

(9)

where “mod” stands for the modular calculation. By using the
discrete Fourier transform for aj and bj as

aj
bj

( ) � ∑
k

e−ikj
ak
bk

( ), (10)

then the Hamiltonian in Eq. 9 can be rewritten as

H′ � ∑
k

a†k b†k( )H′ k( ) ak
bk

( ) (11)

with

H′ k( ) � 0 h k( )
h* k( ) 0

( ) (12)

and

FIGURE 1 | (Color online) Schematic diagram of a generalized SSH
model based on an optomechanical array. aj and bj denote the cavity and
mechanical modes respectively, and they are coupled with three different
hopping amplitudes Jeiϕ (bold black lines), v (thin green lines) and z (red
dashed lines). The optomechanical array can be implemented by an array of
coupled optical microdisks [7–10], on-chip superconducting circuit
electromechanical cavities [11–14], and optomechanical crystals [15, 16].
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h k( ) � Jeiϕ + ve−ik + zeik, (13)

where k is the wavenumber in the first Brillouin zone. The
dispersion relation of the generalized SSH model with periodic
boundary conditions is given by

E � ± Jeiϕ + ve−ik + zeik
∣∣∣∣ ∣∣∣∣. (14)

The topological invariant of an insulating Hamiltonian can be
characterized by the dispersion relation and the winding numbers
W defined by [77, 78].

W � 1
2πi

∫
π

−π
dk

d ln h k( )
dk

. (15)

For the generalized SSH model with h(k) given by Eq. 13,
the winding number is either 0 or ±1, depending on the
parameters J, ϕ, z and v. The phase diagram is shown in
Figure 2. When the phase factor ϕ � 0, the winding
number is: 1) W � 1 if z > v and z + v > J; 2) W � −1 if
z < v and z + v > J; 3) W � 0 if z + v < J.

The Hamiltonian for the generalized SSH model in the
momentum space can be written in an alternative form as

H′ k( ) � d k( ) · σ̂
� dx k( )σ̂x + dy k( )σ̂y + dz k( )σ̂z,

(16)

where σ̂x, σ̂y, and σ̂z are the Pauli matrices, and

dx k( ) � J cos ϕ + v cos k + z cos k, (17)

dy k( ) � J sinϕ − v sin k + z sin k, (18)

dz k( ) � 0. (19)

The winding number can also be obtained graphically by
counting the number of times the loop winds around the
origin of the dx, dy plane.

We show the dispersion relation and the path that the
endpoint of the vector d(k) traces out in Figure 3 for v > z.
As the wavenumber runs through the Brillouin zone, k � 0→ 2π,
the path that the endpoint of the vector d(k) is a closed ellipse of
long axis v + z and short axis |v − z| on the dx, dy plane, centered at
(J, 0), and the endpoint rotates around the origin clockwise. It is
clear that the winding number isW � −1 when z + v > J for z < v,
and the winding number is W � 0 when z + v < J.

Two more figures about the dispersion relation and the path
that the endpoint of the vector d(k) traces are shown in
Supplementary Figures S1, S2 in the supplementary material
[97]. As v � z, the path of the endpoint of the vector d(k) becomes
a straight line on the dx-axis. As v < z, similarly to the case for v >
z, the path of the endpoint of the vector d(k) is also a closed
ellipse of long axis v + z and short axis |v − z| on the dx, dy plane,
centered at (J, 0). However, the endpoint rotates around the
origin counterclockwise for v < z. So we can conclude that the
winding number is 1)W � 1 when z + v > J and v < z; 2)W � −1
when z + v > J and v > z; 3) W � 0 when z + v < J. These consist
with the results shown in Figure 2.

The above results are obtained under the condition for ϕ � 0.
In Figure 4, we show that the topological phase transition can be
induced by tuning the phase ϕ. For ϕ ≠ 0, the path that the
endpoint of the vector d(k) is centered at (J cosϕ, J sinϕ), so the

FIGURE 2 | (Color online) Phase diagram of the generalized SSH model
with ϕ � 0. The winding number is:W � 1 if z > v and z + v > J;W � − 1 if z < v
and z + v > J; or W � 0 if z + v < J.

FIGURE 3 | (Color online) Dispersion relations of the generalized SSH model with different hopping amplitude J: (A) J � 0; (B) J/v � 1; (C) J/v � 1.8; (D) J/v � 2.5.
(E–H) The paths of the endpoint of the vector d(k) corresponding to (A–D) are shown on the dx, dy plane as the wavenumber is sweeped across the Brillouin zone, k � 0
→ 2π. The other parameters are z/v � 0.8 and ϕ � 0.
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symmetry of the path about the dx-axis is broken. The topological
phase transition appears when E � 0, as shown in Figure 4B,
which gives the critical phase ϕc as

tan ϕc �
z − v

z + v
tan k, (20)

where

cos2 k � J2 − z − v( )2
z + v( )2 − z − v( )2. (21)

As v > z, we haveW � −1 for ϕ � 0 in Figure 4A; we haveW � 0
for ϕ � 0.1 in Figure 4C; the winding number is not well-defined
at the critical point for ϕ � ϕc ≈ 0.04 as shown in Figure 4B. On
the contrary, see Supplementary Figure S3 in the supplementary
material [97], if v < z, we haveW � 1 for ϕ � 0; we haveW � 0 for
ϕ � 0.3; there is no well-defined winding number at the critical
point ϕ � ϕc ≈ 0.12. The paths [see Figures 4D–F and
Supplementary Figures S3D,F] that the endpoint of the
vector d(k) traces, corresponding to dispersion relation [see
Figures 4A–C and Supplementary Figures S3A,C], show the
phase transition from W � ±1 to W � 0 by tuning ϕ.

4 EDGE STATES

We now study how to demonstrate topologically protected edge states
in the optomechanical array of an open chain under single-particle
excitation. To be specific, we propose an optomechanical array of an
open chain for N � 8, then the wave function for the Hamiltanion in
Eq. 8 under single-particle excitation can be defined as

Ψ t( )| 〉 � ∑N
j�1

c2j−1 t( ) aj
∣∣∣∣ 〉 + c2j t( ) bj

∣∣∣∣ 〉[ ], (22)

where P2j−1(t) � |c2j−1(t)|2 and P2j(t) � |c2j(t)|2 denote the
occupying probabilities in the jth cavity mode and jth
mechanical mode, respectively. For simplicity, we define Pi(t) �
|ci(t)|2 with the position index i, shown in Figure 1.

The energy spectrum of a generalized SSH model for N � 8 is
shown in Figure 5. Under the conditions z ≪ v or z ≫ v, see
Figures 5A,D, the energy spectrum of a generalized SSHmodel is
similar to that of the standard SSH model. However, due to the
level crossings for the nearest neighbor eigenmodes and avoided

FIGURE 4 | (Color online) Dispersion relations of the generalized SSHmodel for hopping amplitude J/v � 1.2 with different phase: (A) ϕ � 0; (B) ϕ � ϕc ≈ 0.04; (C) ϕ �
0.1. (D–F) The paths of the endpoint of the vector d(k), corresponding to (A–C), are shown on the dx, dy plane as the wavenumber is sweeped across the Brillouin zone,
k � 0 → 2π. The other parameter is z/v � 0.8.

FIGURE 5 | (Color online) Energy spectrum of the open chain
optomechanical array for N � 8 as a function the intracell hopping amplitude J
for different intercell hopping amplitude z: (A) z/v � 0.1; (B) z/v � 0.8; (C) z/v �
1.0; (D) z/v � 10. The phase factor is ϕ � 0.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 8138015

Xu et al. Generalized Su-Schrieffer-Heeger Model

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


level crossings for the next-nearest neighbor eigenmodes, there
are four (N/2) degenerate points of the zero-energymodes within the
interval 0 < J < z + v, as shown in Figures 6A,B, which are the local
enlarged drawings of the boxes with red dashed-line in Figures
5A,D. When z � 0.8v, as shown Figure 5B, there are degenerate
points for the nearest neighbor eigenmodes and avoided level
crossings for the next-nearest neighbor eigenmodes. But when
z � v, as shown Figure 5C, all the avoided level crossings for the
next-nearest neighbor eigenmodes disappear.

The probability distributions of the eigenstates, corresponding
to the points marked in Figures 6A,B, are shown in Figures
6C–F. It is obvious that the probability distributions of the
eigenstates are localized. We define four edge states, i.e., left
cavity (LC), left mechniacal (LM), right cavity (RC), right
mechniacal (RM) edge states, as

LC| 〉 � ∑N
j�1

c1e
−2 j−1( )/ξ aj

∣∣∣∣ 〉, (23)

LM| 〉 � ∑N
j�1

c2e
−2 j−1( )/ξ bj

∣∣∣∣ 〉, (24)

RC| 〉 � ∑N
j�1

c2N−1e2 j−N( )/ξ aj
∣∣∣∣ 〉, (25)

RM| 〉 � ∑N
j�1

c2Ne
2 j−N( )/ξ bj

∣∣∣∣ 〉, (26)

where ξ > 0 is the localization length determined by the
amplitudes of v, z, and J. When v ≫ z and J ≪ v + z
(corresponding to the winding number W � − 1 under the
periodic boundary condition), as shown in Figures 6C,D, the
edge states are the hybridized states of the LC edge state and RM
edge state. A concise physical picture for the edge states with v≫ z
and J ≪ v + z is shown in Figure 6G, where dimers are formed
between bj and aj+1, and a1 and bN are isolated from the others.

Similarly, when v≪ z and J≪ v + z (corresponding to the winding
numberW � 1 under the periodic boundary condition), the edge
states are the hybridized states of the LM edge state and RC edge
state, as shown in Figures 6E,F. The physical picture for the edge
states with v ≪ z and J ≪ v + z is shown in Figure 6H, where
dimers are formed between aj and bj+1, and b1 and aN are isolated
from the others. When J > v + z (corresponding to the winding
number W � 0 under the periodic boundary condition), dimers
are formed between aj and bj, and no modes are isolated from the
others (the physical picture is not shown in the text). Thus, there
is no edge state when J > v + z.

Figure 7 shows the time evolution of the probability
distribution for the generalized SSH model with the open
boundary condition (i.e., an open chain for N � 8). In
Figures 7A–E, an excitation is injected at the first cavity
mode P1(0) � 1 for z � v/10, and in Figures 7F–J, an
excitation is injected at the first mechanical mode P2(0) � 1
for z � 10v. From these figures, we can find that: 1) When J � z≪
v or J � v ≪ z, as shown in Figures 7A,F, the excitation almost
localizes in the injected cavity or mechanical mode like a soliton
for a long time. With a larger value of J (still with J < z + v), as
shown in Figures 7B,G, the excitation spreads to the nearest
neighbor modes and the localization of the excitation becomes
weaker. 2) When J � z + v (i.e., the topological phase transition
point), as shown in Figures 7D,I, the excitation, oscillating like
a soliton, travels in the open chain and reflects back at the ends.
The traveling speed (the period of oscillation) depends the
hopping amplitudes: the excitation travels much faster in
Figure 7I with z/v � 10 and J/v � 11 than in Figure 7D with
z/v � 0.1 and J/v � 1.1. As J is away from the topological phase
transition point (J ≠ z + v), as shown in Figures 7C,E [or Figures
7H,J], the distribution of the traveling excitation disperses
much faster than the case with J � z + v. That is, the
excitation travels like a soliton with less dispersion in the
open chain when the system works at the critical point J � z + v.

FIGURE 6 | (Color online) (A, b) are the local enlarged drawings of (Figures 5A, D). (C–F) show the probability distributions of the eigenfunctions corresponding to
the points shown in (A, B). (G) Edge states appear at a1 and bN corresponding to (C, D) for v≫ z and J≪ v + z. (H) Edge states appear at b1 and aN corresponding to (E,
F) for z ≫ v and J ≪ v + z.
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5 ADIABATIC PARTICLE PUMPING

As discussed in the previous section, when the driving strengths
Ωj,σ and detunings Δj,σ (σ � 0, ±) of the external lasers are
constant, and as a result the parameters J, ϕ, z and v are time
independent in the steady state, then an excitation injected at one
edge will stay there like a stationary state for long. However,
we will show that it is possible to transfer the edge states from
one to another by adiabatic pumping with periodically modulated
optomechanical array. The periodically modulated optomechanical
array can be realized by modulating the strengthsΩj,σ and detunings
Δj,σ of the driving fields, so that the detuning between the cavity
modes and mechanical modes u(t) and the classical amplitude αj,σ
become time dependent. By solving the classical equation of motion
under the condition that the modulation frequency ω is much lower
than the mechanical resonant frequency ωm,j, the classical amplitude
αj,σ can be expressed approximately as

αj,σ t( ) � −i∫
t

0

Ωj,σ τ( )e
κj
2 +i ωc,j−ωj,σ( )[ ] τ−t( )dτ. (27)

Following the same approach used in Section 2, the linearized
Hamiltonian of the periodically modulated optomechanical array is
given by

H � ∑N
j�1

ua t( )
2

a†jaj +
ub t( )
2

b†jbj + J t( )a†jbj[ ]
+ ∑N−1

j�1
v t( )a†j+1bj + z t( )b†j+1aj[ ] +H.c.,

(28)

where J(t)eiϕ ≡ gj,0αj,0(t), v(t) ≡ gj,−αj,−(t), and z(t) ≡ gj,+αj,+(t). To
detect the robustness of the adiabatic pumping, we will consider
the disorder effect by adding normally distributed random
fluctuations ϵ with zero mean value to ua(t), ub(t), J(t), v(t),
and z(t) in the numerical calculations.

First, we consider a smooth modulation sequence as

ua t( ) � A

2
sin ωt( ),

ub t( ) � 0,

J t( ) � A 1 − cos ωt( )[ ],
v t( ) � const.,

z t( ) � const.,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

where, u(t) and J(t) are modulated periodically with amplitudes
A/2 and A, and frequency ω; ub(t), v(t), and z(t) are constant.

The instantaneous spectrum of the Hamiltonian in Eq. 28with
time dependent pump sequence defined in Eq. 29 is shown in
Figures 8A,B. In Figures 8C–F, the probability distributions of
eigenstates corresponding to the points shown in Figures 8A,B,
are approximately the edge states defined in Eqs 23–26 as:
Figure 8C, LC edge state; Figure 8D, RM edge state;
Figure 8E, RC edge state; Figure 8F, LM edge state. When the
adiabatic approximation holds, the system will stay in the same
eigenstate. Figure 8A shows how a LC edge state is adiabatically
pumped to the RM edge state during a pumping cycle, in the
mean while Figure 8B shows how a RC edge state is adiabatically
pumped to the LM edge state within a pumping cycle.

The dynamics of the probability distributions of an open chain
with a time dependent pump sequence defined in Eq. 29 is
obtained numerically. As shown in Figure 9A, the excitation
at the first cavity mode (LC edge state) quickly expands into the
bulk, and then the probability distribution is concentrated around
the Nth mechanical mode (RM edge state) at the end of the first
pumping cycle. In the second pumping cycle, the excitation
expands into the bulk again and concentrates on the first
cavity mode (LC edge state) at the end of the second pumping
cycle. Similarly, as shown in Figure 9B, the excitation at the first
mechanical mode (LM edge state) expands into the bulk and

FIGURE 7 | (Color online) Time evolution of the probability distribution of an open chain forN � 8: (A–E) z/v � 0.1 and P1(0) � 1, with (A) J/v � 0.1, (B) J/v � 0.3, (C) J/
v � 1.0, (D) J/v � 1.1, (E) J/v � 1.2; (F–J) z/v � 10 and P2(0) � 1, with (F) J/v � 1, (G) J/v � 3, (H) J/v � 10, (I) J/v � 11, (J) J/v � 12. The phase factor is ϕ � 0.

Frontiers in Physics | www.frontiersin.org January 2022 | Volume 9 | Article 8138017

Xu et al. Generalized Su-Schrieffer-Heeger Model

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


concentrates on theNth cavity mode (RC edge state) at the end of
the first pumping cycle, and then the excitation expands into the
bulk again and concentrates on the first mechanical mode (LM
edge state) at the end of the second pumping cycle. These results
are consistent with the instantaneous spectrum in the adiabatic
limit, as shown in Figure 8. However, due to the Landau Zener
transition, which occurs at the degenerate points ωt � 2nπ (n is

positive integer), the periodical behavior of the probability
distribution becomes less well-resolved in the following cycles.
To prove that the adiabatically pumping is immune to small
disorders, we re-plot Figures 9A,B in Figures 9C,D by adding the
normally distributed disorder ϵwith a standard deviation 3) 0.05v
and 4) 0.5v. It is clear that Figures 9C,D are essentially identical
to those in Figures 9A,B, i.e., the adiabatically pumping is robust
against small disorders.

As shown in Figures 8, 9, with time dependent pump
sequence defined in Eq. 29, the LC edge state can be pumped
adiabatically to the RM edge state, and the LM edge state can be
pumped adiabatically to the RC edge state, and vice versa.
However, the LC edge state cannot be pumped adiabatically to
the RC edge state, and the LM edge state cannot be pumped
adiabatically to the RM edge state. Now, we consider another
smooth modulation sequence to realize the adiabatical pumping
between the LC (LM) edge state and the RC (RM) edge state. The
smooth modulation sequence is defined by

ua t( ) � A

2
sin ωt( ),

ub t( ) � 0,

J t( ) � const.,

v t( ) � A 1 + cos ωt( )[ ],
z t( ) � A 1 − cos ωt( )[ ].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

Here, u(t), v(t) and z(t) are modulated periodically with amplitudes
A/2 and A, and frequency ω, while ub(t) � 0 and J(t) is constant.

The instantaneous spectrum of the Hamiltonian in Eq. 28with
time dependent pump sequence defined in Eq. 30 is shown in

FIGURE 8 | (Color online) Instantaneous spectrum of the open chain optomechanical array forN � 8. The time dependent pump sequence is defined in Eq. 29, with
(A) z/v � 0.1, A/v � 1.1, and ω/v � 2π/100; (B) z/v � 10, A/v � 11, and ω/v � 2π/10. (C–F) show the probability distributions of the edge states corresponding to the points
shown in (A, B). The phase factor is ϕ � 0.

FIGURE 9 | (Color online) Time evolution of the probability distribution of
an open chain forN � 8. The time dependent pump sequence is defined in Eq.
29, with (A, C) z/v � 0.1, A/v � 1.1, ω/v � 2π/100, and P1(0) � 1; (B, D) z/v � 10,
A/v � 11, ω/v � 2π/10, and P2(0) � 1. (A, B) are plotted without disorder;
(C) is plotted for the normally distributed disorder ϵ with a standard deviation
0.05v; (D) is plotted for the normally distributed disorder ϵ with a standard
deviation 0.5v. The phase factor is ϕ � 0.
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Figure 10A. In Figures 10B–E, the probability distributions of
eigenstates corresponding to the points shown in Figure 10A, are
approximately the edge states defined in Eqs 23–26 as:
Figure 10B LC edge state; Figure 10C RM edge state;
Figure 10D LM edge state; Figure 10E RC edge state. When
the adiabatic approximation holds, the system will stay in the
same eigenstate. Figure 10A shows how a LC edge state is
adiabatically pumped to the RC edge state during a pumping
cycle, in the mean while, a LM edge state is adiabatically pumped
to the RM edge state within a pumping half-cycle.

The adiabatically pumping can also be studied directly by the
dynamics of the probability distribution for an open chain with a
time dependent pump sequence defined in Eq. 30. In Figure 11A,
the excitation at the first cavity mode (LC edge state) quickly
expands into the bulk, and then concentrates on the Nth cavity
mode (RC edge state) at the end of the first pumping half-cycle. In
the second pumping half-cycle, the excitation expands into the
bulk again and concentrates on the first cavity mode (LC edge
state) at the end of the first pumping cycle. Similarly, as shown in
Figure 11B, the excitation at the first mechanical mode (LM edge

state) expands into the bulk and concentrates on theNthmechanical
mode (RM edge state) at the end of the first pumping half-cycle, and
then the excitation expands into the bulk again and concentrates on
the first mechanical mode (LM edge state) at the end of the first
pumping cycle. However, the periodical behavior of the probability
distribution becomes less well-resolved in the following cycles, which
is induced by the Landau Zener transition at the degenerate points
ωt � nπ (n is positive integer). Figures 11A,B are re-plotted in
Figures 9C,D for the normally distributed disorder ϵwith a standard
deviation 0.01A. Clearly, the adiabatically pumping is immune to the
small disorders.

Overall, with time dependent pump sequence defined in Eq.
29, the LC edge state can be pumped adiabatically to the RM edge
state, and the LM edge state can be pumped adiabatically to the
RC edge state; with time dependent pump sequence defined in
Eq. 30, the LC edge state can be pumped adiabatically to the RC
edge state, and the LM edge state can be pumped adiabatically to
the RM edge state. Therefore, the four edge states can be pumped
from one to another adiabatically with smooth modulation
sequence.

6 CONCLUSION

In summary, we have proposed to implement a generalized SSH
model based on optomechanical arrays. This generalized SSH
model supports two distinct nontrivial topological phases, and
the transitions between different phases can be observed by
tuning the strengths and phases of the effective
optomechanical interactions. Dynamical control of the
effective optomechanical interactions can be realized by tuning
the strengths and phases of driving fields slowly, which allow for
dynamical control of the topological phase transitions. Moreover,
four types of edge states can be generated in the generalized SSH
model of an open chain under single-particle excitation, and the
dynamical behaviors of the excitation in the open chain depend
on the topological properties under the periodic boundary
condition. We show that the edge states can be pumped
adiabatically along the optomechanical arrays by periodically
modulating the amplitudes and frequencies of the driving
fields, and the adiabatically pumping is immune to small
disorders. Our results can be applied to control the transport
of photons and phonons, and the generalized SSH model based

FIGURE 10 | (Color online) Instantaneous spectrum of the open chain optomechanical array forN � 8, J/A � 0.1, and ϕ � 0. The time dependent pump sequence is
defined in Eq. 30 with ω/A � 2π/600. (B–E) show the probability distributions of the edge states corresponding to the points shown in (A).

FIGURE 11 | (Color online) Time evolution of the probability distribution
for an open chain of N � 8. The time dependent pump sequence is defined in
Eq. (30) with ω/A � 2π/600, (A, C) P1(0) � 1; (B, D) P16(0) � 1. (A, B) are plotted
without disorder; (C, D) are plotted for the normally distributed disorder ϵ
with a standard deviation 0.01A. The other parameters are J/A � 0.1 and ϕ � 0.
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on the optomechanical arrays provides us a tunable platform to
engineer topological phases for photons and phonons.
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Supplementary Figure S1 | (Color online) Dispersion relations of the generalized
SSH model with different hopping amplitude J: (A) J � 0; (B) J/v � 1; (C) J/v � 2; (D)
J/v � 2.5. (E–H) The paths of the endpoint of the vector d(k) corresponding to (A–D)
are shown on the dx, dy plane as the wavenumber is sweeped across the Brillouin
zone, k � 0 → 2π. The other parameters are z/v � 1 and ϕ � 0.

Supplementary Figure S2 | (Color online) Dispersion relations of the generalized
SSH model with different hopping amplitude J: (A) J � 0; (B) J/v � 1; (C) J/v � 2.2;
(D) J/v � 2.7. (E–H) The paths of the endpoint of the vector d(k) corresponding to
(A–D) are shown on the dx, dy plane as the wavenumber is sweeped across the
Brillouin zone, k � 0 → 2π. The other parameters are z/v � 1.2 and ϕ � 0.

Supplementary Figure S3 | (Color online) Dispersion relations of the generalized
SSHmodel for hopping amplitude J/v � 1.2 with different phase: (A) ϕ � 0; (B) ϕ � ϕc
≈ 0.12; (C) ϕ � 0.3. (D–F) The paths of the endpoint of the vector d(k) corresponding
to (A–C) are shown on the dx, dy plane as the wavenumber is sweeped across the
Brillouin zone, k � 0 → 2π. The other parameter is z/v � 1.5.
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