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Identifying the essential characteristics and forecasting carbon prices is

significant in promoting green transformation. This study transforms the

time series into networks based on China’s pilots by using the visibility

graph, mining more information on the structure features. Then, we

calculate nodes’ similarity to forecast the carbon prices by link prediction.

To improve the predicted accuracy, we notice the node distance to

introduce the weight coefficient, measuring the impact of different nodes

on future nodes. Finally, this study divides eight pilots into different

communities by hierarchical clustering to study the similarities between

these pilots. The results show that eight pilots are the “small world”

networks except for Chongqing and Shenzhen pilots, all of which are “scale-

free” networks except for Shanghai and Tianjin pilots. Compared with other

predicted methods, the proposed method in this study has good predicted

performance. Moreover, these eight pilots are divided into three clusters,

indicating a higher similarity in their price-setting schemes in the same

community. Based on the analysis of China’s pilots, this study provides

references for carbon trading and related enterprises.
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1 Introduction

To effectively control CO2 emissions, an emission trading scheme (ETS) was

established by the EU in 2005, as a commodity to excise emission rights based on

greenhouse gas emission reductions [1]. Since its launch, the EU has continuously

optimized the carbon trading mechanism and subsequently formed a mature trading

system. It is the most successful carbon trading system, covering 31 countries, bringing

many experiences to China’s ETS [2].

“The 14th Five-Year Plan” pointed out that carbon dioxide emissions will strive to

achieve a “carbon peak” by 2030 and “carbon neutral” by 2060. During the 14th Five-Year

Plan, a stronger trading policy will be introduced to accelerate the transformation of a

high-carbon into a low-carbon nation, laying the foundation for “carbon neutrality” [3].

In the past 20 years, China’s CO2 emissions have increased six times faster than other

regions, accounting for about 70% of global CO2 emissions. Since 2020, China’s per capita
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CO2 emissions have exceeded the EU [4]. Therefore, introducing

a carbon trading mechanism has become an urgent task [5].

Subsequently, China established the Shenzhen pilot, Shanghai

pilot, Beijing pilot, Guangdong pilot, Tianjin pilot, Hubei pilot,

Chongqing pilot, and Fujian pilot since 2013, which is an

important means to address climate problems and fulfil the

international emission reduction commitments [6].

Due to China’s ETS pilots’ late opening, the mechanism is not

mature enough to be applied effectively [7]. Many professors

studied EU ETS, whereas a few researchers analyzed China’s ETS

pilots. In addition, there are lot of research works about the

factors affecting carbon price, but they seldom predict it.

Moreover, many studies have been conducted for one pilot

and not eight pilots, resulting in a less in-depth analysis of

the whole carbon market.

Recently, the complex network has attracted more attention.

The visibility graph is a bridge between time series and complex

networks, and the networks would retain the structural features

of the time series [8]; [9]; [10]. However, if there are no direct

links between two nodes, it is unknown whether they will create a

connection in the future. To address this problem, the study in

[11] proposed the link prediction based on the local randomwalk

(LRW) to evaluate the similarity between two nodes, thus

determining whether there is a link between them.

This study collects the daily carbon price in China’s eight

pilots and transforms the time series into eight networks by

visibility graph. Then, we analyze the network structures and

forecast the carbon prices based on link prediction. However,

we consider the importance of the node distance to introduce

the weight coefficient, which improves the predicted

performance further. Finally, this study divides these pilots

into different communities by hierarchical clustering,

providing a special perspective to study the similarity

between eight pilots.

Compared with existing studies, our contributions and core

work in this study are mainly in three aspects. (1) A few

researchers have studied the eight pilots in China together,

but we evaluate them as a whole. To further explore them, we

introduce the visibility graph to transform the time series. Based

on the network structure, we mine more node information to

analyze the features. (2) Most scholars only predicted the carbon

prices and did not analyze the network structure to extract more

information. We predict the carbon prices by link prediction and

analyze the predicted performance according to the network

features. Moreover, this study considers the importance of the

node distance to introduce the weights, improving the forecasting

accuracy. (3) Few studies have classified these pilots into different

communities, and this study divides them into several sub-

markets and analyzes their similarities.

The rest of this article is organized as follows: Section 2

provides a literature review of China’s ETS analysis; Section 3

introduces some concepts about network science and link

prediction. In Section 4, the proposed method and the data

are illustrated in detail; Section 5 shows the results and analysis,

and we conclude our work in Section 6.

2 Literature review

Most academic research on carbon prices has focused on the

causes that affect it and made predictions about it. Therefore, we

introduce the two aspects in Section 2.1 and Section 2.2.

Moreover, to further study the changing dynamic of the

carbon prices in China’s ETS pilots, we analyze the relevant

research in Section 2.3.

2.1 The influencing factors of the carbon
prices

Many researchers have analyzed the reasons that induce the

dynamic of carbon prices, which are mainly divided into three

categories: energy, climate, and macroeconomic events [12].

The study in [13] found that carbon prices are positive to

crude oil and natural gas prices and insignificantly influenced by

coal prices. In addition, they concluded that energy is the main

influencing factor in carbon prices. The study in [14] used

quantile regression to study the nonlinear effects of coal, oil,

natural gas, and other energy prices on carbon prices.

Moreover, the study in [13] concluded that temperature

extremes positively affect carbon prices. The study in [15]

found that changes in temperature at freezing temperatures

have a greater impact on carbon prices than shallow

temperatures, and high temperatures do not have such an effect.

The authors of [16] thought the macroeconomic environment

would affect carbon prices. When the economic situation arises,

industrial production activities increase, the demand for carbon

emission rights increases, and carbon prices increase accordingly.

Conversely, carbon prices will also decrease when the financial

situation declines. The study in [17] analyzed the impact of

industrial output on carbon trading prices. They found that the

only industries in the EU’s industrial output significantly affecting

carbon prices are the combustion and steel industries.

2.2 The forecasting of the carbon prices

To further analyze carbon prices, many experts have

predicted prices that provide some experiences to control CO2

emissions. There are three main methods to forecast time series:

statistical models, artificial intelligence algorithms, and ensemble

models. Statistical models are the methods to forecast the

samples’ trend, including the generalized auto-regressive

conditional heteroskedasticity (GARCH) model, auto-

regressive integrated moving average (ARIMA) model, grey

model GM (1,1), and so on. The authors of the study in [18]
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made a comparative analysis based on the daily data of the

Europe Climate Exchange by using the GARCH model. The

process is simple in statistical models, but there are also

unavoidable drawbacks; hence, they are not suitable for non-

linearity and non-stationary problems.

To address the limits of the statistical models, artificial

intelligence algorithms are widely used to capture samples’

features. They mainly include back-propagation neural networks

(BPNN), least squares support vector regression (LSSVR), and long

short-term memory networks (LSTM). The authors of the study in

[2] thought that the dynamics of the carbon prices were chaotic and

proposed a multi-layer perceptron network prediction model to

forecast the third phase prices in the EU. The study in [19] used

ARIMA and LSSVM models to predict carbon prices. Moreover,

particle swarm optimization (PSO) is used to find the best

parameters for LSSVM to improve predicted accuracy.

To obtain a better performance in forecasting carbon prices,

ensemble models that decompose the time series are proposed. The

ensemble models mainly conclude empirical mode decomposition

(EMD), variational mode decomposition (VMD), and so on. The

authors of the study in [20] forecasted the carbon prices in the

Guangdong pilot by back-propagation (BP), support vector

machines (SVM), and a hybrid model of EMD-BP-DNN,

respectively. In addition, they compared the forecasting

performances of these models.

2.3 Relevant studies on China’s ETS pilots

The existing research on China’s ETS pilots also considered

two aspects: the influencing factors and predictions in the carbon

prices. Although there is not much research on eight pilots, it still

has reference values.

Unlike the EU market, China’s carbon prices are mainly

affected by coal rather than crude oil. The authors of the study

in [21] examined the relationship between China’s ETS pilot and its

influencing variables: coal price, economy, temperature, and the

EU’s carbon prices. The results show a long-term co-integration

relationship between them, and coal prices are the dominant factor.

The study in [22] discussed the price drivers in ETS pilots by

structural mutation testing and an auto-regressive distributed lag

model. They proved that oil prices are positively correlated with

carbon prices, while coal prices are negatively correlated. The study

in [23] studied the driving factors (macroeconomic risks,

environmental factors, and energy) in China’s carbon prices by

quantitative analysis and the causes affecting price by the dynamic

correlation measurement method.

Moreover, there are many methods to predict carbon prices.

The authors of the study in [24] proposed a model based on a

combination of an empirical modal decomposition algorithm

(EMD) and a generalized auto-regressive condition

heteroscedasticity model (GARCH), which predicted five

pilots’ prices after 2016. The authors of the study in [25]

proposed a combination forecasting model based on the

hybrid interval multi-scale decomposition method and its

application to forecasting interval-valued carbon prices. To

mine the relationship between these pilots, the authors of the

study in [26] visually analyzed the seven pilots by visibility graph

and studied the similarity and heterogeneity.

3 Preliminary

3.1 Visibility graph algorithm

The authors of the study in [27] proposed a visibility graph

algorithm, transforming the time series into visibility graphs. In the

study, China’s ETS daily carbon prices as the time series values were

mapped to each visual node in the network and then the linkages

between all nodes were constructed by using the visibility graph

algorithm [28]. Assuming a given time series

T � (t1, y1), (t2, y2), . . . (tN,yN){ }, yN is the value at tN
correspondingly. If there is a node (tb, yb) between node (ta, ya)
and (tc, yc) and it satisfied ta < tb < tc, then whether two nodes

construct a link depends on the following equation:

yb <ya + yc − ya( ) tb − ta( )
tc − ta( ). (1)

Commonly, if there is a link between two nodes in a

histogram, they can also be linked in a network. For example,

if any two vertical bars can see each other’s top, then these 2 bars

are supposed to take a linkage [29]; [30]. Next, we can create an

adjacent metric based on the corresponding time series. Finally, a

network is constructed by network science, as shown in Figure 1.

3.2 Topological measures of the VG

3.2.1 Average degree
The average degree is the average value of all the nodes’

degree in a network. Ki is the degree of node i, describing the

number of nodes directly connected to it. Commonly, the larger

the node degree, the more communication the node and the

larger the average degree, demonstrating that the network is

more frequently communicated. The average degree is calculated

by Eq. 2 and denoted by 〈 k〉.

〈 k〉 � 1
N

∑N
i�0

ki. (2)

It also can be expressed as follows:

〈 k〉 � 2E
N
, (3)

where E represents the number of edges in a network andN is the

number of nodes in a network.
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3.2.2 Network diameter
The network diameter is a measure that the maximum value of

distance between all nodes in a network, denoted as D, and

expressed as

D � max dij( ), (4)

where dij is the shortest distance of node i and node j, which

defined as the least number of edges from node i to node j.

3.2.3 Average path length
The average path length is a vital character in a network,

meaning the average of the shortest distance between any

two nodes, denoted by L. The smaller the average path

length, the more frequent communication between all

nodes in the network. The calculation formula is shown as

follows:

L � 2
N N − 1( ) ∑i≥j dij. (5)

3.2.4 Network density
The network density is used to measure the closeness in the

network, denoted by Dg. The higher the Dg, the more tightly

connected the network. Dg is expressed by

Dg � E

N N − 1( ). (6)

3.2.5 Average clustering coefficient
The average clustering coefficient refers to the clustering

coefficient of the whole network, denoted as C(0≤C≤ 1), which
means that the clustering coefficients of all nodes are averaged. In

a network, suppose node i is connected to ki nodes and we denote

the actual number of edges existing between these ki nodes as Ei;

then, we can define the clustering coefficient of node i as the ratio

of Ei to the total maximum possible proportion of the number of

edges ki (ki−1)/2, and the calculation formula of Ci is as follows:

Ci � 2Ei

ki ki − 1( ). (7)

Then, the average clustering coefficient is denoted by

C � 1
N

∑N
i�1

Ci. (8)

3.2.6 Community structure
To further explore the network, we introduce the community

structure. Nodes are tightly connected between the same

communities while sparsely connected between different

communities [31]. Usually, the modularity Q function is used

to describe the accuracy of community division, which was

devised by the authors of the study in reference [32]. The

closer the Q takes to 1, the more obvious the community

structure is [33], which is expressed as follows:

Q � 1
2E

∑
i,j

aij − kikj
2E

( )δ gi, gj( ). (9)

Moreover, the function δ(gi, gj) is defined as: if node i and

node j belong to the same community, δ(gi, gj) = 1, otherwise δ(gi,

gj) = 0 [34]

3.3 Link prediction

Link prediction is a method to forecast the likelihood of two

unlinked nodes establishing a link in the future based on the

FIGURE 1
Process of time series transforming to a network.
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existing network analysis. Since a time series converts into a

network, then the time series prediction map into a network

prediction. In addition, most link prediction methods are based

on node similarity, such as common neighbors (CN), resource

allocation index (RA), and so on. The authors of the study in [11]

proposed a competitive prediction method based on the local

random walk (LRW), which measures the similarity by a walker

walking randomly in the network. Correspondingly, the higher

similarity between two nodes, the higher probability they will

connect in the future.

3.3.1 Local random walk
In the method, a visibility graph is described as an

unweighted network G (V, E), where V is the set of nodes

and E is the set of edges. Then, the transition probability

matrix that a random walker stays at node x and moves to

node y in one step, denoted by Pxy and obtained by

Pxy � axy
kx

, (10)

where axy = 1 if node x is connected to node y, otherwise axy = 0.

kx is the degree of node x.

After t steps, the probability �πx(t) that the walker moves

from node x to node y is calculated by

�πx t( ) � PT �πx t( ), (11)
where PT is the transposition of matrix P. Suppose there is a N

length time series and an N × 1 vector with the xth element

equaling to one and others to 0, then the vector is devoted by
�πx(0), representing that the walker starts walk from node x.

Then, the similarity between node x and node y based on

LRW is calculated by

SLRWxy t( ) � kx
2E

πxy t( ) + ky
2E

πyx t( ). (12)

However, there is a problem that a random walker will walk

too far away from node x to node y even though node x is

adjacent to node y, resulting in unsatisfactory predictions. To

address the issue, a higher similarity method is proposed, which

ensures a random walker walks in a local part rather than other

parts of the network. Superposed random walk (SRW) similarity

between node x to node y is denoted by SLRWxy , as follows:

SSRWxy t( ) � ∑t
l�1

SLRWxy l( ). (13)

Then, SLRWxy (n) = SLRWyx (n) and SSRWxy (t) = SSRWyx (t).

3.3.2 Node distance
According to the method proposed in [35] , the distance di→j

between node ti and node tj is calculated by Eq. (14), which

corresponding time values in point (ti, yi) and (tj, yj), respectively.

di→j � |ti − tj|. (14)

4 Method and data

The method is proposed to predict carbon prices utilizing the

visibility graph and link prediction, which will be illustrated in

detail and divided into three parts. In Section 4.1, the preliminary

work based on visibility graph and link prediction will be

introduced. In Section 4.2, an initial prediction will be

obtained based on the node similarity. In Section 4.3, node

distance will be taken into consideration to improve initial

predicted accuracy.

4.1 Preliminary work

The preliminary work including three main steps as follows:

Step 1: Transforming a time series to a visibility graph

A given time series T � (t1, y1), (t2, y2), . . . (tN, yN){ } can

map into a network by visibility graph algorithm, as illustrated in

Eq. (1).

Step 2: Calculating the node similarity based on LRW

The similarity between any two nodes based on LRW model

is first calculated by Eqs (10)–(12). Then, to sum, the results of

SSRW = [S1N, S2N, . . . S((N−1)N)] will obtain the similarities between

the last node N and all previous (N − 1) nodes by using Eq. 13.

Step 3: Finding out the most similar nodes

The maximum value of SSRW is denoted by SMN, and then

node (tM, yM) is the most similar point to node (tN, yN).

4.2 Initial forecasting

Suppose to forecast the future node (tN+1, yN+1), and it is the

closest to the last observed node (tN, yN), namely, it will be

directly influenced by node (tN, yN). However, the future node is

not only influenced by the nearest node but also previously

observed values. In Section 4.1, the higher similarity node (tM,

yM) is obtained, and it is the most similar point to node (tN, yN),

meaning it represents the previous data. Therefore, it is

considered to carry all the historical information to forecast

the future nodes.

As node (tM, yM) and node (tN, yN) have the most similarity in

the network, they will directly link to forecast the future node

(tN+1, yN+1), the calculation of yN+1 by Eq. 15 according to the

study in [36].

yN+1 � yN − yM

tN − tM
tN+1 − tM( ) + yM. (15)
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As shown in Figure 2, it describes the process of the linear

approximation prediction. Clearly, node (t3, y3) are the most

similar point to (t6, y6), which determines the future node (t7, y7).

4.3 Improved forecasting

To improve the predicted accuracy, the node distance is

considered to this method based on the initial forecasting, which

determines the weight coefficients of yN+1 and yN, respectively.

Step 1: Calculating the node distance

The distance between node (tM, yM) and node (tN, yN) is

determined by Eq. 16, denoted by dM→N.

dM→N � |tM − tN|, (16)

where tM and tN are corresponding time values (M < N).

Similarly, the distance between node (tM, yM) and node (tN+1,

yN+1), node (tN, yN), and node (tN+1, yN+1) is calculated by

dM→N+1 � |tM − tN+1|, (17)
dN→N+1 � |tN − tN+1|. (18)

Step 2: Determination of the weight coefficient

Furthermore, the closer the node (tM, yM) and node (tN, yN),

the less importance the node (tM, yM). However, node (tM, yM)

contains less historical information about past, which has the

same effect as node (tN, yN) to predict future information.

Conversely, if node (tM, yM) is far away from node (tN, yN),

the importance of node (tM, yM) is higher because it carries more

historical information for further predictions [37].

Then, the weight coefficients are defined by

wN � dM→N

dM→N+1
, (19)

wN+1 � 1 − wN, (20)

where wN+1 denotes the weight coefficient of the predict value

yN+1 and wN denotes the weight coefficient of the last observed

value yN. Figure 2 gives a more vivid interpretation.

Step 3: Final weighted prediction

Commonly, the larger the dM→N, the larger dM→N+1 and the

smaller the wN, demonstrating node (tM, yM) with more useful

historical information. Therefore, the final predicted results are

calculated by

ŷN+1 � wN+1*yN+1 + wN*yN. (21)

4.4 Data

The seven pilots’ carbon prices per day from January 2014 to

June 2021 are collected from China’s Carbon Emission Trading

Network (http://k.tanjiaoyi.com/) except the Fujian pilot.

Because the Fujian pilot was constructed to operate in 2016,

the pilot’s daily carbon prices are collected from January 2017 to

June 2021. In addition, the transaction prices are used as the

carbon prices except the Shenzhen pilot. Since six allowances

(SZA-2013 to SZA-2019) traded in the Shenzhen market, it takes

the average transaction prices as the carbon prices. Missing data

are added bymoving the average in the previous week. Therefore,

these eight China pilots’ carbon prices are shown in Figure 3.

5 Results and analysis

This section will analyze the data from January 2014 to June

2021 between China’s pilots. First, to realize the link prediction, this

study transforms the time series into a visibility graph by the VG

model and studies the network structures in the carbon price of eight

pilots. In addition, we predict carbon prices by the proposedmethods.

To verify the predicted accuracy, the error indicators are used to

analyze. Finally, we introduce hierarchical clustering to study the

similarity between these eight pilots in China.

5.1 The network structure results

We construct eight networks by the data of Beijing, Fujian,

Shanghai, Chongqing, Hubei, Shenzhen, Guangdong, and

FIGURE 2
Process of linear approximation prediction. wN+1 (red curve)
is the weight coefficient of yN+1, wN (green curve) is the weight
coefficient of yN.
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Tianjin pilots, respectively. After mapping the time series to eight

networks by visibility graph, we calculate the characteristic

statistics by Eqs 2-9, as shown in Table 1.

Usually, the average degree reflects the importance of a node

in networks. The average degree is the largest in Tianjin pilot,

whereas Shanghai and Shenzhen pilots are small, reflecting that

the carbon prices in Tianjin pilot are much affected by previous

price fluctuations. The Shanghai pilot has the smallest diameter.

The diameter of Chongqing and Shenzhen pilots is 13, indicating

that the Shanghai pilot is easily influenced by the near prices.

However, Chongqing and Shenzhen pilots are easily affected by

earlier prices. Correspondingly, the changing trend of the average

path length is as same as the diameter. In addition, the

density is ranged from 0.004 to 0.017, which illustrates

the tightness of the network. The average clustering

coefficient indicates the aggregation of the network

structure, ranging from 0.692 to 0.834. Moreover, the

modularity of Beijing and Shenzhen pilots surpasses 0.8,

reflecting that their community structures are apparent. The

modularity in the Shanghai pilot is the lowest, indicating that

the community structure is insignificant.

5.2 “Small world” and “scale-free”
properties

As seen in Table 1, except Chongqing and Shenzhen pilots,

these networks have a considerable average clustering coefficient

and small average path length, showing “small world” characters.

It reflects that the future carbon prices are easily affected by the

historical prices, and are mainly influenced by the hubs in the

networks.

FIGURE 3
Carbon prices in China’s ETS pilots; the different colors represent different pilots.

TABLE 1 Characteristic statics of eight China’s ETS pilots.

Beijing Fujian Shanghai Chongqing Hubei Shenzhen Guangdong Tianjin

Diameter 9 8 2 13 7 13 9 7

Average degree 10.504 16.587 6.04 18.992 16.184 6.334 11.16 26.634

Average path length 4.087 3.945 1.996 5.745 3.418 6.156 3.987 2.625

Modularity 0.804 0.769 0.242 0.734 0.583 0.85 0.731 0.483

Average clustering coefficient 0.761 0.753 0.834 0.71 0.728 0.774 0.746 0.692
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Figure 4 and Table 2 show the power-law degree distribution

of China’s ETS pilots, where γ is the exponent of the power-law

degree distribution and R2 is the fitting goodness. Clearly, the

larger the fitting goodness, the more conforms to the “scale-free”

properties. The “scale-free” network shows that only a few nodes

have a large degree, whereas most nodes in the network have little

linkage to other nodes, which reflects a severe heterogeneity in

degree distribution. In this study, the properties indicate that

future carbon prices will be affected easily by highly degree nodes,

which have many linkages with other nodes in the network.

Usually, the exponent γ is between 1 and 2. Beijing, Fujian,

Chongqing, Hubei, Guangdong, and Shenzhen pilots are the

“scale-free” network, except Shanghai and Tianjin pilots. To

further mine their features, we analyze the topology network

for Beijing and Shanghai pilots in Figure 5. However, the nodes’

degrees are described by different colors. The larger the degree,

the large the node size is. Clearly, there are a few hubs and many

low-degree nodes in the Beijing pilot, whereas there are many

hubs and a few low-degree nodes in Shanghai. It proves that our

experimental results are correct.

The “scale-free” pilots show that the nodes with a high degree

are easily affected by previous prices, and they also easily affect

future carbon prices. Moreover, the carbon prices of pilots are not

easily affected by events because there are a few hubs that would

be influenced. Moreover, the fitting goodness of Fujian and

Guangdong is about 60%, and others are all higher than 80%.

Hubei shows the highest R2, and the value is 0.866. However, in

Shanghai and Tianjin pilots, γ is 0.606 and 0.844, respectively. In

addition, Shanghai and Tianjin have a low R2, meaning the fitting

effect has a bad performance. As the financial technology center,

the Shanghai topology network is different from others not with

“scale-free” features. It communicates with many cities, and there

are many carbon-reducing technologies here. Due to these

characters, the carbon prices in Shanghai are easily affected by

emergency events because there are many hubs that would be

attacked.

FIGURE 4
Degree distribution of the VGN of China’s ETS pilots. (A–H) The degree distribution of Beijing, Fujian, Shanghai, Chongqing, Hubei, Guangdong,
Shenzhen, and Tianjin, respectively.

TABLE 2 Exponent of power-law degree distribution and the fitting goodness.

Beijing Fujian Shanghai Chongqing Hubei Shenzhen Guangdong Tianjin

Γ 1.593 1.371 0.606 1.294 1.339 2.128 1.172 0.844

R2 0.831 0.677 0.382 0.806 0.866 0.843 0.603 0.567
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5.3 Carbon price forecasting

In this section, we calculate the average carbon price in a

month as the monthly price, and then the proposed method is

adopted to forecast the monthly carbon prices in China’s pilots.

Specifically, we divide China’s ETS pilots into a Universe dataset

T from January 2014 to June 2021. First, the data from January

2014 to September 2015 are selected as a training set to predict

October 2015. Then, the actual value of October 2015 will be

added to the training set to forecast the next value. Above all, this

process will be repeated until the value of June 2021 is predicted.

Finally, we will obtain the predicted set from January 2016 to

June 2021. Particularly, the Fujian pilot dataset is from January

2017 to June 2021. The training set is from January 2017 to

September 2018, predicting the carbon prices from October

2018 to June 2021. The process of the method is shown in

Algorithm 1.

To verify the efficiency of the improved method, we

compare two forecasting methods and the results in

Figure 6. In this panel, (A–H) represents the predicted

results in Beijing, Fujian, Shanghai, Chongqing, Hubei,

Shenzhen, Guangdong, and Tianjin pilots, respectively.

As can be seen, the blue line is the initial predicted values,

the green line is the improved predictions, and the red line is

the actual values. If the red line is close to the blue line or

green line, indicating that the predicted accuracy of the

proposed method is high. Conversely, the farther away the

red line from the blue line, the worse the predicted accuracy.

Moreover, if the green line is closer to the red line than the

blue line, the improved method has a better predicted

performance in a network.

To evaluate the predicted accuracy of the proposed method,

this study adopts three error measures: mean absolute

difference (MAD), root mean square error (RMSE), and

mean absolute percentage error (MAPE). These error

indicators are denoted by

MAD � 1
N

∑N
t�1

|ŷt − yt|, (22)

RMSE �

�������������
1
N

∑N
t�1

ŷt − yt( )2√√
, (23)

MAPE � 1
N

∑N
t�1

|ŷt − yt|
yt

, (24)

where N is the number of predicted values, ŷ(t) represents
the predicted value at t time, and y(t) is the actual value at

t time.

The predicted accuracy is high if the results exhibit a low

MAD, RMSE, or MAPE. Namely, the proposed method has a

FIGURE 5
Different colors indicate nodes with different degree; the higher the degree, the larger the node size. (A) There are a few hubs and many low-
degree nodes in Beijing. (B) There are a few low-degree nodes and many hubs in Shanghai.
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FIGURE 6
The forecasting results in panel. (A–H) The predicted results in Beijing, Fujian, Shanghai, Chongqing, Hubei, Shenzhen, Guangdong, and Tianjin
pilots, respectively.
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good prediction performance. To verify its forecasting

performance further, we introduce the moving average

(MA) method, a linear combination of residual terms to

forecast. The order of MA is determined by ACF, which

describes the correlation between the current and past

values. Moreover, we compare three strategies of the initial

predictions, the improved predictions, and the MA

predictions in eight pilots, as shown in Table 3.

According to these data, the order of MA is 2. From

Table 3, the performance of predicted values by MA(2) is

worse than the method proposed by this study. The improved

method has a better predicted capacity, showing that the node

distance is also an important character in networks, so it is

necessary to consider the weight coefficient. Moreover, the

result explains that future prices will be affected by historical

issues, not only recent events. The price fluctuations in the

Hubei, Guangdong, and Tianjin pilots are flat, and the

MAD(b) are all less than 1. These pilots start with a low

price and actively encourage enterprises to reduce emissions.

They are not easily affected by related events based on their

“scale-free” features, so the carbon prices are stable to obtain

a good forecasting performance.

Conversely, the forecasting performance in Beijing,

Chongqing, and Shenzhen pilots is the worst, the RMSE(b)

exceeds 3 because their prices fluctuate greatly. Beijing as the

highest pilot with the worst MAD(b) and RMSE(b), 4.966 and

9.077, respectively. It cooperates with many enterprises with

rich trading products, so there are a lot of uncertain factors to

affect forecasting validity. Similarly, the Shenzhen pilot is the

first carbon trading market, covering 40% of carbon

emissions. In addition, it is one of the pilot areas with the

largest number of enterprises and the most active

transactions, so its prices are easily affected by other

factors, such as coal, climate, and economic events.

Moreover, Shenzhen and Chongqing pilots are not the

“small world” networks with poor communication,

inducing a bad predicted performance.

Besides, we have to consider the impact of the COVID-19

epidemic on carbon market trading, and the emergency has

affected the predicted accuracy. Due to the abruptness of the

COVID-19 outbreak, we cannot precisely estimate the trend of

carbon prices. Thus, we cannot obtain a good forecasting

performance.

5.4 Cluster results

Hierarchical clustering is a method to analyze the nodes’

similarity, measured by node distances. The steps are as follows:

TABLE 3 Errormeasurements of carbon prices forecasting in eight pilots. (A–C) The initial forecastingmethod, improved forecastingmethod, andMA
(2), respectively.

Beijing Fujian Shanghai Chongqing Hubei Shenzhen Guangdong Tianjin

MAD(a) 5.915 2.242 1.930 3.775 1.054 2.434 1.022 1.135

MAD(b) 4.966 1.838 1.626 3.201 0.952 2.212 0.882 0.975

MAD(c) 8.327 4.876 4.622 4.516 2.793 3.092 8.883 3.135

RMSE(a) 10.731 3.586 3.131 6.312 1.740 3.536 1.597 2.615

RMSE(b) 9.077 3.128 2.766 5.431 1.611 3.212 1.359 2.097

RMSE(c) 15.325 13.569 9.087 7.677 5.033 5.368 13.688 5.462

MAPE(a) 0.104 0.159 0.085 0.441 0.047 0.101 0.061 0.076

MAPE(b) 0.085 0.127 0.071 0.352 0.042 0.091 0.052 0.067

MAPE(c) 0.142 0.367 0.270 0.349 0.123 0.095 0.407 0.190

FIGURE 7
lustering results of China’s ETS pilots by hierarchical
clustering; they are divided into three communities.
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Step 1: Each node is considered a cluster

Step 2: The distances between each cluster is calculated, and the

two closet clusters are merged into a group

Step 3: The previous operations are repeated until all clusters are

merged into a cluster

Step 4: The final cluster results are obtained

We divide eight pilots into three communities, which are

seen as each sub-market, as shown in Figure 7. The higher the

similarity between these pilots divided into a cluster, so they

in the same sub-market are similar in price dynamics, and we

use different colors to denote different groups. Beijing and

Guangdong pilots are a community with the most similarity to

China’s pilots because they encourage companies to save

energy with a good performance to reduce emissions.

Likewise, Shanghai and Shenzhen pilots belong to a cluster

with a high GDP, illustrating that their operational

mechanisms are similar. They cover the more

comprehensive industries, and their penalties are also

strict. Then, the rest of these pilots belong to a sub-market.

They operate from a low price and trade in a single product

with an inactive performance.

6 Conclusion

Carbon emission reduction has promoted the global carbon

market development. To further control CO2 emission

effectively, this study analyzes the eight pilots in China

based on network science. According to the network

structures of eight pilots, we conclude that most pilots show

the “scale-free” and “small world” features. Meanwhile, we

predict the carbon prices by introducing the weight

coefficient that measures the node distance, acquiring a

better performance than before. We combine network

science and link prediction, providing an effective method to

forecast carbon prices. Finally, to study the similarity between

these pilots, this study divides eight pilots into different

communities by hierarchical clustering.

In this study, our analysis supplies experiences and

policies among these pilots, providing crucial theoretical

guidance for market participants to participate actively. The

carbon pricing tool is a mechanism to stimulate markets to

reduce emissions. Thus, it is important to predict carbon

prices, which can stimulate innovation and improve

productivity. However, the sudden outbreak of COVID-

19 affects carbon market trading, so it is necessary to

forecast carbon prices to change policies for decision

makers. But, the uncontrollability and instability result in

worse forecasting performance.

The subsequent research work would like to progress in the

following areas: (1) This study predicts monthly carbon prices

based on eight pilots. However, we will next consider forecasting

the daily data in a pilot, maintaining more topology features to

obtain a better predicted performance. (2) EEMD will be

introduced to decompose the time series to mine the data

features. After getting different IMFs and a residue, we predict

them by different methods and integrate the results to obtain a

final result. (3) To improve the accuracy, we can transform

unweighted networks into weighted networks by different

similarity indices in link prediction, even considering the

reliability of the communication route.

To further respond effectively to global warming, China’s

carbon market can be considered from the following aspects:

First, the cooperation with the global carbon market should be

deepened and we should start exploring the internationalization

path, accelerating the internationalization of China’s pilots. At the

same time, as the largest carbon market, China’s carbon market is

expected to play a scale advantage in construction. Second, we

should strengthen the construction of the basic legal system and

improve the system specification. Third, we should take the carbon

market as the leading market mechanism for coordinating energy

conservation, emission reduction, and promote positive synergy.
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