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The equipment in railway station is complicated and diverse, and the health

status assessment and prediction of equipment is crucial to the safe and stable

operation of stations. GraphNeural Networks (GNNs) effectively combine graph

data with deep learning technology, which has stronger data and knowledge

representation capability and can efficiently handle some non-Euclidean spatial

data problems with irregular station equipment associated network structure.

Based on this, this paper takes the automatic gate machine and X-ray security

checker as an example and proposes a health status assessment and prediction

scheme for railway passenger station equipment based on Graph Long Short-

Term Memory (G-LSTM) neural network. This paper first analyzes the main

factors affecting the health status of passenger station equipment, as well as the

correlation between the equipment. Then, the initial graph network structure of

the passenger station equipment is constructed, and the G-LSTMmodel is used

to evaluate and predict the health status of the passenger station equipment.

Finally, this paper takes the automatic gate machine and X-ray security checker

of a high-speed railway station in Beijing as an example to verify the proposed

method. The experimental results show that all evaluationmetrics performwell,

indicating that the G-LSTMmodel has high accuracy in assessing and predicting

the health status of automatic gate machine and X-ray security checker. This

paper realizes the health status assessment and prediction of railway passenger

station equipment, which can provide some reference for the Prognostics and

Health Management (PHM) of equipment in railway stations.
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1 Introduction

In recent years, with the rapid improvement of China’s

high-speed railway intelligence level, the dependence of railway

passenger station transportation production and passenger

transportation organization on equipment and facilities has

been increasing, and railway passenger station equipment has

gradually shown the characteristics of diversification,

complexity, integration and intelligence, etc. The safe and

stable operation of passenger station equipment has become

an important guarantee for the safety of passenger station

operation and the improvement of passenger service quality.

Therefore, it is important to fuse and analyze the status

information of railway passenger station equipment, access

the health status, gain insight into and predict system

failures, and then avoid risks.

For the problem of equipment health assessment and

prediction, some experts and scholars have conducted in-

depth studies using traditional machine learning methods,

such as dynamic Bayesian networks [1, 2], support vector

machine regression [3–5], hidden Markov models [6–9],

pattern recognition [10], fuzzy sets and rough sets [11–13],

and so on. In-depth understanding of the mechanism of

equipment health status for different application

environments can effectively build a relational model

through the health indicators of equipment performance

degradation to achieve the evaluation and prediction of

equipment health status. In recent years, with the rapid

development of the information age, the various types of

monitoring and state operation information formed by

diverse-complex-intelligent equipment in long-term service

present typical big data characteristics with time-series

characteristics. Based on this, many experts and scholars

have carried out research related to equipment health

management with the powerful modeling and data

processing capabilities of deep learning, and it has been

widely used in many fields. For Prognostics and Health

Management (PHM) of equipment, a center task is to

predict the Remaining Useful Life (RUL). Yang et al. [14]

proposed a double-CNN framework for intelligent RUL

prediction. The method takes the original vibration signals

as input, which can solve the feature extraction problem

while preserving the operational information. Peng et al.

[15] proposed a Bayesian Deep-Learning-based (BDL-based)

method for health prognostics with uncertainty quantification.

The paper extended the existing deep learning models to

Bayesian Neural Networks (BNNs) and proposed a BNNs

learning and inference method based on variational

inference. Chen et al. [16] proposed an attention-based deep

learning framework for machine’s RUL prediction. In addition,

a feature fusion framework was developed to combine

handcrafted features with automatically learned features to

improve the performance of the RUL prediction. Ma et al.

[17] proposed a new extension of Long Short-Term Memory

(LSTM) network with convolutional operation integrated,

named CLSTM, and used it for ball bearing RUL prediction,

which is crucial to PHM of various rotating machines. A pure

data-driven method for bearing RUL prediction with little prior

knowledge was proposed in [18]. In this method, a recurrent

neural network based on encoder-decoder framework with

attention mechanism was proposed to predict Health

Indicate (HI) values that are closely related to RUL values.

Ren et al. [19] transformed feature values into feature maps as

the input of deep convolutional neural networks to effectively

predict the RUL of bearings. Li et al. [20] constructed

hierarchical gated recurrent networks by stacking multiple

hidden layers to capture nonlinear features and evaluate the

health condition to achieve health prediction of rolling

bearings. Chen [21] addressed the core problem of fault

prediction and health management of equipment systems

under complex operating conditions, and combined LSTM

networks to investigate in depth the data-driven health

condition assessment modeling method and RUL prediction

method. Zhang et al [22] used a Long Short-Term Memory-

Recurrent Neural Network (LSTM-RNN) to synthesize a data-

driven RUL predictor, and the constructed LSTM-RNN can be

used for offline data training to predict the battery RUL. Costa

et al. [23] proposed a deep learning method for domain

adaptation in prognostics based on a Long Short-Term

Memory Neural Network and a Domain Adversarial Neural

Network (LSTM-DANN). The proposed method provides a

promising approach to performing domain adaptation in

practical PHM applications. For multiple sensors data

environments, Shi et al. [24] proposed a Dual-LSTM

framework for degradation analysis and RUL prediction

using LSTM. A novel sensor data-driven RUL prediction

method was introduced in [25] by using a Deep Long Short-

Term Memory (DLSTM) network-based model. The method

integrates multiple sensory signals by using the DLSTM to

achieve more accurate and robust predictions. She et al. [26]

proposed a Bidirectional Gated Recurrent Unit (BiGRU) RUL

prediction method based on bootstrap method, and obtained

the confidence interval of RUL by bootstrap method. Since

traditional RUL prediction methods are not effective in

complex systems with multiple components, multiple states

and a large number of parameters, Chen et al. [27] first used

Kernel Principal Component Analysis (KPCA) for nonlinear

feature extraction; then, Gated Recurrent Unit (GRU) was used

to predict RUL.

Traditional neural networks have obvious advantages in

dealing with regular structured Euclidean spatial data, but are

slightly inadequate in dealing with some non-Euclidean spatial

data with irregular association network structure. Graph Neural

Networks (GNNs) effectively combine graph data with deep

learning technology, which has stronger data and knowledge

representation capability and can efficiently solve the problem of
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assessing and predicting the health status of railway passenger

station equipment, however, there are few related studies.

Therefore, this paper proposes a Graph Long Short-Term

Memory (G-LSTM) method for evaluating and predicting the

health status of railway passenger station equipment, taking the

automatic gate machine and X-ray security checker (hereinafter

referred to as “gate” and “security checker”) as an example.

Firstly, we analyze the factors influencing the health status of

railway passenger station equipment and the association rules

between equipment. Then, the initial graph structure of

passenger station equipment is constructed based on the

equipment association relationship, and the health status of

passenger station equipment is evaluated and predicted by

using graph neural network model. Finally, we realize the

health monitoring management of passenger station

equipment operation status.

2 Preliminary

2.1 Graph neural networks

A graph is a data structure that models a set of objects

(nodes) and their relationships (edges). In recent years, research

on analyzing graphs with machine learning has received

increasing attention due to their powerful expressive power,

and a large number of studies and applications have been

carried out in several fields, such as social networks,

recommender systems, protein-protein interaction networks,

knowledge graphs, causal inference, etc. GNNs are deep

learning-based methods that operate on the graph domain

[28] and focus on tasks such as analyzing node (graph)

classification, node (graph) regression, link prediction, node

state prediction, node clustering, graph partitioning, and

graph visualization. The standard design flow of GNN models

is shown in Figure 1.

GNNs are usually classified into Graph Convolution

Neural Network (GCNN), Graph Recurrent Neural

Network (GRNN), Graph Attention Network (GAT),

Graph Auto Encoder (GAE), Graph Generative Network

(GGN), Graph Spatial-Temporal Network (GSTN), etc.

[29]. In addition, based on the above basic graph neural

networks, numerous variants of graph neural networks

have been derived, such as Adaptive Graph Convolutional

Neural Network (AGCNN) [30], Graph Long Short-Term

Memory Network (Graph LSTM) [31], Gated Graph Neural

Network (GGNN) [32], etc.

For the problem studied in this paper, the main advantages of

GNNs compared to traditional deep learning algorithms are as

follows.

2.1.1 Broader application scenarios
Traditional deep learning toolbox is designed for regular

Euclidean data like sequences and grids with translation

invariance, while GNNs are mainly applied to graph data in

non-Euclidean space with extremely irregular structure, and

graph data no longer satisfy translation invariance. In the real

world, graph data are prevalent. Railway passenger stations have

diverse equipment and complex relationships with each other,

which are more appropriately described using graph data.

FIGURE 1
Standard design flow of GNN models [28].
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However, traditional deep learning algorithms perform much

less well on graph data than GNNs.

2.1.2 Efficient utilization of structural features
Compared with traditional deep learning models, GNNs are

more universal in information mining and data modeling

because graph data contain richer information. Graph data

consist of a series of nodes and edges. The nodes are

connected by edges, which can effectively and fully express

the information such as dependencies between nodes, thus

maximizing the structural features of realistic graphs. In the

railway passenger station environment, various types of

equipment can be regarded as nodes. Through GNNs, we can

better characterize the correlations between devices, explore the

potential connections between them, and enhance the

understanding of knowledge.

2.1.3 Reasoning and cognitive ability
GNNs can effectively handle various relationships and

generate reasoning graphs from various unstructured data,

which is expected to help improve the performance of

various knowledge reasoning tasks and solve a series of

problems such as relational reasoning that cannot be

handled by traditional deep learning methods. The

application of GNNs to railway passenger station

environment is a positive attempt to promote “railway

passenger station intellectualization.” To be sure, it needs

more extensive and in-depth research by subsequent scholars

to realize the real intelligent equipment that can reason and

think.

GNNs also have many application scenarios in railway

passenger station operation management, such as GCNN-

based cross-video personnel tracking, GCNN-based face and

voice emotion recognition, knowledge inference-based

equipment fault assessment and prediction, GNN-based

equipment knowledge graph representation, GNN-based

passenger information advisory recommendation

system, etc.

2.2 Long short-term memory neural
network

LSTM neural network [33] is an improvement of the

traditional Recurrent Neural Networks (RNNs), which is

effective in processing time series data, it can preserve the

information so that it can be used later, solve the gradient

disappearance problem, realize the memory of historical

states, and has better performance in time series

prediction, thus LSTM neural networks are widely used in

many fields.

The LSTM is basically the same as the RNN, but the

difference is that the LSTM has a relatively more refined

processing unit inside the LSTM, which can effectively

store important information, discard unnecessary

information, and update the information at each time

step. The schematic diagram of the LSTM unit structure is

shown in Figure 2, in which there is a memory unit to store

historical information, corresponding to the neurons in the

hidden layer of the original RNN. Furthermore, it includes

FIGURE 2
Schematic diagram of LSTM cell structure.
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forget gate, input gate and output gate for updating the

information.

As shown in Figure 2, the specific definitions of each part in

the LSTM cell are given as follows.

ft � σ Wf · ht−1, xt[ ] + bf( ) (1)
it � σ Wi · ht−1, xt[ ] + bi( ) (2)
ot � σ Wo · ht−1, xt[ ] + bo( ) (3)

~ct � tanh Wc · ht−1, xt[ ] + bc( ) (4)
ct � ft+ct−1 + it+~ct (5)
ht � ot+tanh ct( ) (6)

where, xt represents the input vector in time t ; ct is the cell state;

ht is the hidden layer output vector; ft, it and ot are the activation

vectors of forget gate, input gate and output gate, respectively;

Wf ,Wi ,Wo and Wc are the weight matrices; bf , bi , bo and bc
are the bias matrices; σ is the sigmoid activation function; +

denotes the Hadamard product.

Then, the reverse transmission of the error term along time is

given by

δt−1 � δTo,tWoh + δTf,tWfh + δTi,tWih + δT~c,tW~ch (7)

where, Woh , Wfh , Wih and W~ch are weight matrices.

According to the definitions of δo,t, δf,t, δi,t, δc̃,t , it is known

that

δTo,t � δTt +tanh ct( )+ot+ 1 − ot( ) (8)
δTf,t � δTt +ot+ 1 − tanh ct( )2( )+ct−1+ft+ 1 − ft( ) (9)
δTi,t � δTt +ot+ 1 − tanh ct( )2( )+~ct+it+ 1 − it( ) (10)
δT~c,t � δTt +ot+ 1 − tanh ct( )2( )+it+ 1 − ~c2( ) (11)

According to the above equations, the equation for

passing the error term forward to any k time can be

obtained as:

δTk � ∏t−1
j�k

δTo,jWoh + δTf,jWfh + δTi,jWih + δT~c,jW~ch (12)

The weight gradient is calculated with the following

equations.

zE

zbo
� ∑t

j�1
δo,j (13)

zE

zbi
� ∑t

j�1
δi,j (14)

zE

zbf
� ∑t

j�1
δf,j (15)

zE

zbc
� ∑t

j�1
δ~c,j (16)

The weights are updated with the following equation.

Wji ← Wji − η
zEd

zWji
(17)

where, η denotes the learning rate.

2.3 Graph structure representation

In order to ensure the safe and stable operation of railway

passenger station environment, this paper mainly evaluates and

predicts the health status of railway passenger station equipment

based on the graph structure method.

In the structural representation of the equipment graph, the

equipment related to the passenger station is considered as

nodes, and the connections or potential relationships between

equipment and equipment are used as connected edges. The

graph G consists of an ordered quaternion (V,D,O,A) , where V
denotes the non-empty set of nodes, D denotes the set of edges

that do not intersect with V , O denotes the association function

(each edge in G corresponds to an unordered vertex pair of G ),

andA denotes the set of attributes of the nodes (the main factors

influencing the health status of equipment nodes). The health

status graph representation of railway passenger station

equipment is shown in Figure 3. The shape of the nodes in

the diagram represents the type of equipment, such as a square

represents a gate, a triangle represents a security checker, etc. The

different colors of the nodes indicate the different health status of

the equipment, and the connected edges between the nodes

indicate a certain association relationship between the health

status of different equipment.

The healthy operation data of railway passenger station

equipment shows obvious time-series characteristics with the

changes of each influencing factor. To address this problem, this

paper proposes a G-LSTM neural network-based method for

assessing and predicting the health status of railway passenger

station equipment, focusing on two types of associated

equipment (gates and security checkers) to carry out related

research.

3 A G-LSTM based method for
assessing the health status of railway
station equipment

3.1 Factors influencing the health status of
equipment

In the railway passenger station environment, there are many

different equipment. In addition to the above-mentioned gates

and security checkers, other common railway passenger station

equipment includes: ticket vending machine, archway metal
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detector, train information display, monitoring system, voice

broadcasting system, escalator or elevator, etc. With the global

coronavirus (COVID-19) pandemic, many railway passenger

stations have also placed infrared thermal imaging

thermometers at their entrances. A variety of equipment

forms a very complex association graph. On the one hand, all

passengers have to check their tickets and undergo rigorous

security checks when entering the station. As a vital part of the

station automation system, gates and security checkers play a key

role as “gatekeepers.” For this reason, compared to other

equipment, gates and security checkers are subjected to

greater passenger pressure and are more likely to be damaged,

so the assessment and prediction of their health status is of great

significance. On the other hand, there are clear correlations

between gates and gates, between gates and security checkers,

and between security checkers and security checkers (Figure 4).

This scenario is well suited to be described using graph data. In

conclusion, the subsequent parts of the paper will take gates and

security checkers as an example to build the model, and then

access and predict their health status. It is worth noting that the

health status prediction method proposed in this paper is not

only applicable to gates and security checkers, but can also be

extended to other railway passenger station equipment.

There are many factors affecting the health status of gates and

security checkers in railway passenger station, which are usually

divided into human factors and inherent factors. Human factors

FIGURE 3
Initial health status of railway passenger station equipment.

FIGURE 4
The association structure of gates and security checkers in railway passenger station. (G, Gates; S, Security Checkers).
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refer to the wrong operation of equipment management

personnel, operating irregularities and other operational

misconduct; inherent factors mainly include rated life,

production time, frequency of use/running time, maintenance,

troubleshooting, etc. This paper will focus on the frequency of

use/running time, maintenance, production time and other

inherent factors on the health status of the equipment to

analyze and study.

3.2 Equipment health status correlation
modeling based on frequency of use/
running time

The association structure of gates and security checkers in

railway passenger stations is shown in Figure 4, where the square

nodes represent the gate devices and the circular nodes represent

the security checkers. When passengers pass through the gates

and security checkers, they follow the nearest distance principle,

that is, passengers choose the nearest neighboring equipment to

pass; when the gates and security checkers have too much traffic

or are closed, the nearest neighbor traffic distribution and the

next nearest neighbor traffic distribution scheme is adopted to

distribute the flow of people to other equipment of the same type.

In the normal operation of the equipment, as the frequency of

use of the gate and the running time of the security checker have a

greater relationship with the flow of passengers through the

equipment, this paper analyzes the impact of frequency of use

and running time on the health status of the equipment by the

flow of passengers. Among them, the gate can directly express its

frequency of use by the passenger flow data, and evaluate the

status of the equipment; the health status of the security checker

is mainly related to its running time, which can convert the

passenger flow into its running time, and then realize the

evaluation and prediction of the equipment status.

According to Figure 4, it can be seen that there is a spatio-

temporal uniformity between the gates and the security checkers.

Since the health status of the two types of equipment is closely

related to the passenger flow, the passenger flow data of each

security checker can be deduced from the passenger flow data

passing through each gate. According to the passenger flow rules,

it is known that: assuming that each security checker is associated

with four gates, the passenger flow of the security checker can be

obtained from the number of passengers passing through its

neighboring gates, defined as:

yj � w1 xi + xi+1( ) + w2 xi−1 + xi+2( ), i � 1, 2,/, n, j

� 1, 2,/, m (18)

where, yj denotes the passenger flow through the j -th security

checker; xi−1, xi, xi+1, xi+2 denotes the passenger flow of the four

gates close to the j -th security checker;w1 denotes the constraint

weight of the passenger flow of the two gates nearest to the j -th

security checker and w2 denotes the constraint weight of the

passenger flow of the two gates next nearest to the j -th security

checker, satisfying w1 + w2 � 1.

By using the daily passenger flow data of each security

checker, the running time of each security checker per day

can be predicted. Assuming that the daily passenger flow

through a certain security checker is the highest, and setting

the running time of that security checker to T hours, then after

the data regularization process, we can use Eq. 19 to obtain the

running time of each security checker per day.

f1:
yT
j � T ×

yi

y max
, j � 1, 2,/, m,

yj
T̂ � T − yT

j , j � 1, 2,/, m,

⎧⎪⎪⎨⎪⎪⎩ (19)

where, yT
j denotes the running time of the security checker under

load; yj
T̂ denotes the running time of the security checker

without load; ymax denotes the maximum passenger flow

through a security checker per day; then wiyT
j + wiiyj

T̂ can

indicate the effective working time of the security checker, wi

and wii are adjustable parameters.

3.3 Equipment health status correlation
modeling based on maintenance and
production time

Equipment in railway passenger stations is usually

maintained using regular schedules, and experience-based

management methods such as regular maintenance and

preventive maintenance have an impact on the safe operation

and O&M (Operation and Maintenance) costs of the equipment.

In addition, the difference in equipment brands and production

time also has an impact on the health status of the equipment.

Maintenance refers to the inspection and upkeep of

passenger station equipment in accordance with equipment

inspection, overhaul plans and requirements. Maintenance can

prevent or timely detect equipment failures, reduce the

probability of equipment failures and extend the equipment

life cycle. Eq. 20 is used here to express the evaluation rule of

maintenance on the service life of equipment.

f2: ym � e−μx (20)

where, ym denotes the frequency/time of use obtained by maintaining

the equipment; μ denotes the fitness factor; and x denotes the input

characteristics of each node, i.e., the maintenance cycle.

The situation varies for equipment with different production

time, when its rated service life is fixed, and will be updated by Eq. 21.

f3: yb � wbrandu1 − wyearu2 + f2 xm( ) (21)

where, yb denotes the expected remaining frequency/time of use

of the equipment after production; u1 denotes the equipment
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brand (quantified as a numerical feature); u2 denotes the used

years; wbrand and wyear denote the weight coefficients of the

equipment brand and the used years, respectively; and f2(xm)
is the output of Eq. 20.

3.4 Equipment health status correlation
modeling based on troubleshooting

During operation, since the equipment is subject to its own

quality problems, operational normality, human damage, sudden

changes in the operating environment and other factors, it can

result in sudden or episodic failure problems and affect the

normal operation of the equipment. Therefore, the frequency

of equipment troubleshooting within a certain cycle is also an

important factor affecting the health status of the equipment.

The correlation function of the troubleshooting frequency on

equipment health in a given cycle can be defined as follows.

f4: yr � k1v, 0≤ v≤ s1,
k2v

α, s1 < v< s2,{ (22)

where, yr denotes the impact of troubleshooting frequency on the

health status of the equipment; k1, k2, α is the fitness factor; s1
refers to the steady state threshold of the equipment, within

which the equipment performance is stable; s2 refers to the

threshold of the equipment in a damaged state, beyond which

the equipment is in a dangerous state at any time; v is the

troubleshooting frequency of equipment during the cycle.

3.5 Comprehensive assessment model for
the health status of passenger station
equipment

Through the correlation modeling analysis of the above-

mentioned factors on the equipment status, Eqs 18–21 are

evaluated comprehensively, and the comprehensive evaluation

model of the gates and the security checkers is obtained as

follows.

g1 � ω1x + ω2f2 + ω3f3 (23)
g2 � φ1f1 + φ2f2 + φ3f3 (24)

where, g1 denotes the integrated usage frequency of gates, g2

denotes the integrated running time of security checkers, and

ωi,φi denotes the fitness weight, where i � 1, 2, 3 .

In addition, when establishing the assessment model for

the health status of equipment, the influence of the

troubleshooting in Eq. 22 on the equipment health status

needs to be considered comprehensively. We use research and

analysis to develop the health status assessment rules of the

equipment, and combine the above comprehensive evaluation

model to assess the health status of the gates and security

checkers in two dimensions, as shown in Table 1 and Table 2.

At a certain moment, when the evaluation rules of the two

dimensions are inconsistent, the relatively poor evaluation

result is chosen as the health status of the equipment in order

to ensure the safe operation of the equipment to the greatest

extent.

3.5.1 Rules for evaluating the health status of
gates

The evaluation rules for the health status of the gate are

shown in Table 1, where N 1 indicates the total number of the

gate openings and closings, C1 indicates the cumulative number

of uses of the gate, and v1 indicates the number of

troubleshooting of the gate per year.

3.5.2 Rules for evaluating the health status of
security checkers

The evaluation rules for the health status of the security

checker are shown in Table 2, where N 2 indicates the total

operating hours of the security checker, C2 indicates the

cumulative hours of use of the security checker, and v2
indicates the number of troubleshooting of the security

checker per year.

Based on the comprehensive assessment model for the

health status of equipment, after obtaining the time-series

TABLE 1 Rules for evaluating the health status of gates.

C1/v1 Health status Node color marking

[0, 23N 1]/[0, 2] Healthy

(23N 1 , 34N 1]/(2, 5] Hidden danger

(34N 1 ,N 1]/(5, 8] Dangerous

(N 1 ,+∞)/(8,+∞) Seriously dangerous

TABLE 2 Rules for evaluating the health status of security checkers.

C2/v2 Health status Node color marking

[0, 23N 2]/[0, 2] Healthy

(23N 2 , 34N 2]/(2, 5] Hidden danger

(34N 2 ,N 2]/(5, 8] Dangerous

(N 2 ,+∞)/(8,+∞) Seriously dangerous

Frontiers in Physics frontiersin.org08

Yao et al. 10.3389/fphy.2022.1080972

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1080972


input of the factors influencing the operation status of

equipment in passenger station, it is transformed into an

information matrix, and then the LSTM neural network is

used to evaluate and predict the operation status of equipment

in passenger station. At the same time, the health status

structure diagram of equipment in railway passenger

station is updated by the above status assessment rules.

4 Experiments

4.1 Experimental data set and
experimental environment

The experimental data in this paper are mainly selected from

the basic biographical information of the equipment of the gates

and security checkers at the entrance of a high-speed railway

passenger station in Beijing, and the daily passenger flow through

the gates during the period from October 2018 to December

2019. In order to reflect the diversity of experimental data, two

passenger station area devices of group 1 (18 gates and 5 security

checkers) and group 2 (16 gates and 4 security checkers) are

selected as experimental objects, and the actual valid

experimental data are about 15,300 items after processing

certain missing items and abnormal items, which are divided

into training set, validation set and test set according to the ratio

of 6:2:2.

The passenger flow data set of the gates contains four

columns of data: DATE, NUM, Machine No., and Position,

where the NUM column is used as the input vector. In order

to facilitate the neural network processing, all data are

normalized before the experiment, i.e., the time series

of each gate is subtracted from its mean value and

divided by its standard deviation. The details are shown

in Table 3.

The experimental environment in this paper is Ubuntu

20.04.4 LTS operating system, NVIDIA graphics card GTX

1650, and the software versions used are: CUDA 11.6, cuDNN

8.3, Python 3.6.13, Tensorflow 2.5.0, Keras 2.7.0.

4.2 Initial graph construction

The initial graph of the health status of equipment will be

used as the initial input graph of the G-LSTMmodel, focusing on

the evaluation and prediction of the health status of equipment at

a certain moment in time. Using the previous graph structure

representation method to construct the initial graph, gates and

security checkers will be used as nodes, and the association

relationship between the equipment will be represented by

edges. Using the experimental data set, the health status of the

equipment at a given moment can be obtained by correlation

modeling based on influencing factors and the health status

evaluation rules.

Specifically, firstly, according to the basic biographical

information of equipment, a structure graph without

equipment health information is constructed; Then, the

experimental dataset of this paper is transformed into

information on the frequency of use of gates and the running

time of security checkers by the content of Section 2.2, and the

above information is weighted and accumulated with the number

of maintenance, brand and other influencing factors to obtain the

initial comprehensive measurement data of the equipment; Next,

the current health status of all equipment is obtained according

to the rules for evaluating the health status of equipment; Finally,

the initial graph of the health status of each equipment in the

passenger station at a certain moment is plotted using Networkx,

as shown in Figure 5, where the gates are labeled 0–33 and the

security checkers are labeled a~i.

4.3 Model training and testing

In this paper, we mainly use the Keras framework with

TensorFlow as the back-end engine to implement the health

status prediction of equipment, and the core algorithm used is

LSTM. Two LSTM recurrent layers are stacked in the training

network to improve the expressiveness of the network, while

dropout is used in each LSTM layer to suppress the overfitting

effect, which effectively improves the accuracy of the

experimental results. The model is compiled with the root

mean square prop (RMSProp) and adaptive momentum

(Adam), using Mean Absolute Error (MAE) as the loss

function and Mean Square Error (MSE) and Mean Absolute

Percentage Error (MAPE) as the evaluation metrics. When the

MAE is smaller, it means the loss is smaller, and when the MSE

and MAPE are smaller, it means the prediction accuracy is

higher. The specific formula is shown below.

MAE � 1
N

∑N
i�1

g1
i − gact

∣∣∣∣ ∣∣∣∣( ) (25)

MSE � 1
N

∑N
i�1

g1
i − gact( )2 (26)

TABLE 3 The data set of passenger flow at gates of a high-speed
railway station in Beijing.

Date NUM Machine No. Position

1/10/2018 319 001 Group 1–1

1/10/2018 354 002 Group 1–2

1/10/2018 368 003 Group 1–3

. . . . . . . . . . . .

26/12/2019 339 049 Group 2–49

26/12/2019 89 050 Group 2–50

26/12/2019 207 051 Group 2–51
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MAPE � 100%
N

∑N
i�1

g1
i − gact

gact

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣( ) (27)

where, g1
i denotes the predicted value of the integrated usage

frequency of gates or integrated running time of security

checkers; gact is the actual value; and N is the total number

of samples.

For all the gates and security checkers in the passenger

station, their comprehensive measurement data are input into

the network model in this paper for training separately, and

during the training process, the hyperparameters (the number of

units per layer or the learning rate of the optimizer) are

continuously adjusted for each equipment to find the best

configuration. Taking gate 1-1 (corresponding to “Group 1-1”

in Table 3) as an example, after 200 epochs of training, the

comparison image of training MAE and verification MAE, and

the comparison image of training MSE and verification MSE are

shown in Figure 6.

As shown in Figure 6, the experimental effect of the

method is similar in the training dataset and validation

dataset samples, and the correlation error gradually

decreases as the number of iterations increases. When the

training iterations are about 200, the decreasing trend of the

validation MAE and validation MSE of this gate is basically

smooth, around 0.20 and 0.10, respectively, which achieves

better experimental results.

The optimal model obtained on the training set was used to

conduct experiments on the test set. The change curves of the

predicted and real values obtained from the test set through the

network were monitored in the experiment, indicating that the

model has a good predictive capability. Taking gate 1-1 and

security checker a as an example, Figure 7 below shows the

prediction performance of both on the test set.

Meanwhile, the MAE, MSE, and MAPE of the gates and

security checkers are evaluated on all test set samples,

respectively, and their average values are taken as shown in

Table 4, and the experiments show that the G-LSTM has high

prediction accuracy.

4.4 Experimental prediction

Since the equipment manufacturers and production time

of passenger stations are different, and their service life and

FIGURE 5
Initial graph of the health status of equipment in railway passenger station.
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rated life also differ, the health status of the two types of

equipment in the future period is predicted using the method

in this paper.

First, based on the initial graph of equipment in Figure 5, the

equipment health status is predicted for 100 days thereafter using

the data predicted based on the test set samples. At the same time,

it is compared with the real test set samples. The experimental

results show that the same graph of the health status of

equipment can be obtained using both types of experimental

data, as shown in Figure 8.

In addition, the model in this paper can be applied to predict

the experimental scenarios for the next 100, 300, 500, and

700 days, by the rolling prediction method, i.e., continuously

using the data obtained from our prediction as the real data, and

thus further predicting the next data. Figure 9 shows the forecast

for gate 1-1 in the next 100 and 300 days.

Based on the numerical results obtained from the

prediction, the future health status of the equipment can be

predicted. Figure 10 below shows the possible health status of

the equipment after 100 days (Figure 10A), 300 days

FIGURE 6
Comparison of training and validation. (A) Training MAE and Validation MAE; (B) Training MSE and Validation MSE.

FIGURE 7
Prediction effect of the G-LSTM on the test set. (A) Gate; (B) Security checker.

TABLE 4 Test results of G-LSTM

Average MAE Average MSE Average MAPE (%)

Gates 0.2318 0.1176 5.57

Security checkers 0.2504 0.2610 2.04
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(Figure 10B), 500 days (Figure 10C) and 700 days (Figure 10D)

in the future based on the initial graph of Figure 8, which

provides a reference basis for the maintenance of the

equipment.

4.5 Analysis of experimental results

In this paper, we conduct experimental verification for gates

and security checkers in a high-speed railway passenger station.

FIGURE 8
The health status graph of equipment in railway passenger station after 100 days.

FIGURE 9
The forecast for the next 100 and 300 days. (A) 100 days; (B) 300 days.
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The experimental results show that the G-LSTM model

proposed in this paper obtains the average MAE: 0.2318,

0.2504, average MSE: 0.1176, 0.2610 and average MAPE:

5.57%, 2.04% for the gates and security checkers on the test

set samples, realizing the assessment and prediction of the

health status of railway passenger station equipment. The

method in this paper can be extended to other equipment in

passenger stations to reflect the health status of railway

passenger station equipment more comprehensively, which

has good application value. In addition, on the one hand, we

can provide a decision basis for passenger station managers

based on the health status prediction results. Managers can

combine the health status of equipment at different locations in

passenger stations for dynamic guidance of passenger flow to

avoid inconvenience to passengers due to potential equipment

failure. On the other hand, according to the current health

status and deterioration trend of equipment, it provides

differential maintenance strategies for passenger station

equipment managers to avoid equipment failure to the

greatest extent and ensure the safety of passenger stations.

5 Summary

In this paper, we combine graph data and deep learning

technology and propose a G-LSTM based method for assessing

and predicting the health status of equipment in passenger

stations. This paper mainly describes the health assessment and

prediction of gates and security checkers. Firstly, we analyzed the

correlation modeling of the factors influencing the health status of

equipment in railway passenger station. Then, we constructed a

comprehensive assessment model for the health status of

equipment in passenger station. Finally, we selected gates and

security checkers in a high-speed railway passenger station for

experimental verification. The experimental results show that the

G-LSTM model can be used to evaluate and predict the health

FIGURE 10
Equipment health status prediction. (A) Health status prediction after 100 days; (B) Health status prediction after 300 days; (C) Health status
prediction after 500 days; (D) Health status prediction after 700 days.
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status of equipment with high experimental accuracy. The method

proposed in this paper realizes the health management such as

abnormal status warning, remaining life prediction, etc.

In the future, we will continue to optimize and improve the

method proposed in this paper, and extend its application to all

kinds of equipment in passenger stations to realize the health

management of all equipment. At the same time, we can explore

the application of various GNNs in multiple scenarios in

passenger stations, such as recommendation algorithms based

on GNNs to provide personalized information push services for

passengers, and equipment link prediction of passenger stations

based on spatio-temporal graph convolutional neural networks

for detecting key equipment information and early warning

prediction of paralysis, etc. In addition, although GNNs have

carried out applied research in many fields, challenges still exist

due to the complexity of the graph structure, and there is plenty

of room for continuous optimization in model structure.
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