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We investigate the existence and stability of localized gap states at a non-linear
interface of non-linear fractional systems in a one-dimensional photonic lattice. By
using the direct numerical simulations and linear stability analysis, we obtain the
stability of the asymmetric localized gap states in the first and second finite gaps. Our
theoretical results show that the power of the localized gap states decrease gradually
as the increase of propagation constant and the non-linear landscape (non-linear
coefficient ratio between the left and right interface), providing insights into soliton
physics in non-linear periodic systems with fractional-order diffraction.
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1 Introduction

Fractional order has been introduced in many branches of sciences in past decades,
including the calculus theory [1], image processing [2], quantum mechanics [3–5], and
system control [2], to name a few. In 2002, Laskin first proposed fractional Schrödinger
equation (FSE) in quantum mechanics, describing the fractional quantum mechanics, with
the Riemann integral over the Brownian trajectory being replaced by the Lévy flight
trajectory; and by the way, the Riemann path on the brown trajectory is well described
by the standard Schrödinger equation [3–5]. Subsequently, many phenomena in the systems
with the fractional effect have been disclosed, such as fractional Hall effect [6], fractional
quantum oscillation [7], etc. In 2015, Longhi proposed a spherical optical resonator that
may realize the FSE in optics [8]. In recent years, the research based on the FSE became a
subject of great interest.A myriad of numerical studies have been reported, including the
propagation dynamics of various beams under fractional diffraction: zigzag and funnel-
shaped propagation trajectory of chirped Gaussian beam [9], non-diffracting beam and
conical diffraction of non-chirped Gaussian beam [10], abnormal interaction of Airy beam
[11], self-focusing dynamics of Airy Gaussian vortex beam [12], and beam propagation
management [13], etc. The stationary solutions of non-linear Schrödinger equation have
always been an interesting field. Therefore, when the non-linear Schrodinger equation is
expanded from the standard integer order to the fractional order, that is non-linear
fractional Schrödinger equation(NLFSE), many intriguing localized states/modes were
revealed, including spatial solitons supported by PT-symmetry, symmetric and
antisymmetric solitons, fundamental solitons, multipole gap solitons, discrete vortex
solitons, vortex solitons and gap solitons and so forth in Kerr nonlinearity [14–33].

On another hand, studies of solitons in periodic potentials have recently been extended to
nonlinear scenarios, namely nonlinear lattices [34–40]. Besides, the emergent soliton

OPEN ACCESS

EDITED BY

Yakup Yildirim,
Near East University, Cyprus

REVIEWED BY

Yiqi Zhang,
Xi’an Jiaotong University, China
Fajun Yu,
Shenyang Normal University, China

*CORRESPONDENCE

Jianhua Zeng,
zengjh@opt.ac.cn

Yali Qin,
ylqin@zjut.edu.cn

SPECIALTY SECTION

This article was submitted to Optics and
Photonics, a section of the journal
Frontiers in Physics

RECEIVED 05 December 2022
ACCEPTED 27 December 2022
PUBLISHED 26 January 2023

CITATION

Zhou S, Zeng J and Qin Y (2023),
Asymmetric localized states at a nonlinear
interface of fractional systems with
optical lattices.
Front. Phys. 10:1116344.
doi: 10.3389/fphy.2022.1116344

COPYRIGHT

© 2023 Zhou, Zeng and Qin. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 26 January 2023
DOI 10.3389/fphy.2022.1116344

https://www.frontiersin.org/articles/10.3389/fphy.2022.1116344/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1116344/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1116344/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.1116344&domain=pdf&date_stamp=2023-01-26
mailto:zengjh@opt.ac.cn
mailto:zengjh@opt.ac.cn
mailto:ylqin@zjut.edu.cn
mailto:ylqin@zjut.edu.cn
https://doi.org/10.3389/fphy.2022.1116344
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.1116344


phenomena in nonlinear media with inhomogeneous modulation of
non-linearity have attracted a great interest of scientists from
nonlinear community; various soliton structures were thus found,
including localized states [41, 43–48], fundamental solitons [42],
dissipative solitons [49, 50], vortex solitons [45, 46], truncated-
Bloch-wave solitons [51], vortex soliton tori [46], and twisted
vortex solitons rings [52].

Up to now, solitonic studies in the fractional nonlinear
Schrodinger equation with periodic potentials are mainly focused
on the homogeneous modulation of nonlinearity, while the solitons
under the inhomogeneous modulation of nonlinearity have not been
well studied. Relevant research reports in recent years also indicate
that fractional diffraction has varying degree of influence on the
properties of various solitons. Therefore, the physical system with
fractional diffraction and inhomogeneous modulation of non-linearity
may provide new insights into the formation and stability of localized
states.

Herein we aim to investigate the shift degree and the
corresponding power change of the localized states at a nonlinear
interface of one-dimensional photonic lattices with inhomogeneous
modulation of non-linearity and fractional diffraction. By using the
linear stability analysis and direct perturbed propagation, we report
numerical simulations for one-dimensional localized gap states, lying
into the first finite gap and the second one of the associated linear
Bloch spectrum, under value-changing Kerr nonlinear modulation,
and obtain the corresponding stability properties and power
dependency.

2 Model

The propagation of light in a one-dimensional photonic lattice
with fractional diffraction can be described by the normalized NLFSE,
which yields:

i
zψ

zz
� −1

2
z2

zx2
( )

α/2

ψ + V x( )ψ + h x( ) ψ∣∣∣∣ ∣∣∣∣2ψ (1)

Here, ψ is the slowly varying amplitude of the optical beam, z and
x being the normalized longitudinal antransverse coordinates;
(z2/zx2)a/2 is the one-dimensional fractional Laplacian operator,
with the value of Lévy index α, which is set to the interval
1< α≤ 2. When α � 2, Eq. 1 restores to the standard non-linear
Schrödinger equation with second-order diffraction. V(x) is the
photonic lattice (linear periodic modulation of refractive index)

: V(x) � V0sin 2(x), where V0 being modulation depth of the
lattice. We set V0 � 6 throughout. The remaining h(x) represents the
value-changing (domain wall-like) Kerr non-linear coefficient along
the transverse coordinate x, following:

h x( ) � g1 x( )
g2 x( ){ � 1, x< 0

20, x≥ 0
{ (2)

here, we define the associated non-linear coefficient ratio as m � g2(x)
g1(x)

for discussion. Here, the constant coefficients g1(x) and g2(x) are at
the same sign, and both are self-defocusing Kerr nonlinear, thus the
change is only for nonlinear strength. In experiments, such non-linear
landscape can be controlled by a technique called Feshbach resonance
in the field of BEC, and may be realized by appropriate forms of optics
or direct current electric field induction in optics context [34]. In the

linear case (ignoring the last term), the Eq. 1 could produce the linear
band structure for the photonic lattice, Figure 1 shows such case at the
Lévy index value α � 1.4. It is seen that, in addition to a semi-infinite
gap, there are several finite band gaps. In this paper, we mainly
consider the localized states populated within the first finite gap
and the second one, and both gaps are within propagation
constant β: −3.382≤ β≤ − 1.373 and −4.804≤ β≤ − 3.457,
respectively.

Next, we take the stationary soliton solution as ψ(x, z) �
ϕ(x) exp(−iβz) in Eq. 1, we then obtain:

βϕ � −1
2

z2

zx2
( )

α/2

ϕ + V0sin
2 x( )ϕ + h x( )ϕ3 (3)

Here, ϕ is the transverse profile of the light beam. Eq. 3 can be
numerically solved by the modified square operator iterative method
[48]. The total power P of the localized state yields P � ∫+∞

−∞ |ϕ(x)|2dx.
The stability is a very important issue for localized states. To this

end, it is necessary to perform linear stability analysis of them.We take
the perturbation solution of Eq. 3 as:

ψ � ϕ + v exp λz( ) + iw exp λz( )[ ] exp(−iβz) (4)
Here, v and w are the real and imaginary parts of the perturbation
eigenvalue function, satisfying |v|≪ |ϕ|, |w|≪ |ϕ|. λ is the
corresponding unstable growth rate. By substituting Eq. 4 into
Eq. 1 and linearizing it, we can obtain the following eigenvalue
problem:

FIGURE 1
(Color online) Band-gap structure of linear spectrum β(K) for
optical lattice V(x) � V0 sin 2(x) at V0 � 6 and Lévy index α � 1.4. Regions
SIG, 1st BG and 2nd BG denote, respectively, the semi-infinite gap, the
first and second band gaps.
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iλv � −1
2

z2

zx2
( )

α/2

w + β + V0sin
2 x( )[ ]w + h x( )ϕ2w (5)

iλw � −1
2

z2

zx2
( )

α/2

v + β + V0sin
2 x( )[ ]v + h x( )ϕ2v (6)

Then, by using the Fourier collocation method [54], we can
obtain the unstable growth rate, and judge the linear stability of the
localized states according to the real part Re(λ). The corresponding
localized state is linearly unstable provided that Re(λ) ≠ 0, and
stable otherwise.

3 Numerical simulation and discussion

For discussion, the Lévy index is fixed at α � 1.4 throughout. We
try to find the stability regions of stable and the unstable localized
states in the form of gap solitons in the first and the second finite gaps.
To study the profile changes of localized states under non-uniform
nonlinear modulation, in addition to the case of nonlinear coefficient
ratio m � 20, we also cons-ider two cases of uniform non-linear
modulation with non-linear coefficient ratio g=1 as reference,
where the non-linear coefficients are γ � 1 and γ � 20 respectively.
In fact, the localized states under uniform non-linearity may be called
symmetric modes, while the cases for non-uniform nonlinear
modulation being asymmetric modes [55]. As an example of stable
transmission, we choose a situation in the middle of the first gap with
propagation constant β � −1.8, whose profile is shown in Figure 2A. In
comparison, the localized states under two uniform non-linearity
conditions are shown in Figure 2B. We can find that compared
with the localized states in uniform non-linearity, the localized
state under non-uniform nonlinear modulation has a little position

shift, and its intensity and profile of the localized state are in between,
according to the Figures 2A, B. Subsequently, the perturbed evolution
(propagation) of localized states in non-uniform nonlinear
modulation is simulated numerically under the framework of Eq. 1,
and is verified by the above-mentioned linear stability analysis. As
shown in Figures 2C, D we can see that the localized state can stably

FIGURE 2
(Color online) First-gap localized modes under propagation
constant β � −1.8. (A) Intensity profiles of stable localized mode in non-
uniform nonlinearity. (B) Profiles of localized modes supported by one-
dimensional photonic lattices and different constant nonlinear
types (the red dotted line and blue dash line are uniform non-linearities
with nonlinear coefficients of 1 and 20 respectively). (C) Evolution of the
localizedmodewith the transmission distance of z � 400. (D) Eigenvalue
spectrum of linear stability analysis for the localized mode in (A).

FIGURE 3
(Color online) Second-gap localized modes under propagation
constant β � −3.5. (A) Intensity profiles of unstable localized mode in
non-uniform nonlinearity. (B) Profiles of localized modes supported by
one-dimensional photonic lattices and different constant nonlinear
types (the red dotted line and blue dash line are uniform nonlinearities
with nonlinear coefficients of 1 and 20 respectively). (C) Evolution of the
localizedmodewith the transmission distance of z � 400. (D) Eigenvalue
spectrum of linear stability analysis for the localized mode in (A).

FIGURE 4
(Color online) Power of localized modes versus the associated
propagation constant (A) and nonlinear coefficient ratio (B). (A)
Nonlinear coefficient ratio m � 20. (B) Propagation constant β � −4.0.
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transmit over 400 unit lengths, and there are no other real eigenvalues
in its linear stability spectrum except for their imaginary counterparts,
we thus can safely say that the localized state is stable under certain
perturbations.Then we consider an unstable situation in the second
band gap, the profile of such unstable localized state at β � −3.5 is
shown in Figure 3A. As comparison, the profiles of the symmetrical
counterparts under two constant non-linear strengths are shown in
Figure 3B. Comparing both figures, we can see that the localized state
under value-changing Kerr non-linear modulation shares the
properties of stable one in Figure 2, such as takes a position shift
toward its geometric center (x � 0), and its profile (and thus the
module and intensity) lies in between the two symmetric modes. For
the unstable localized state in Figure 3A, we have also presented its
transmission in Figure 3C and linear-stability eigenvalue in Figure 3D.
It is observed from the former that the nonperiodic oscillation occurs
in the process of transmission, demonstrating the unstable situation,
which is confirmed by its instability eigenvalue spectrum with a pair of
quadrupole eigenvalues for the latter. The dependence between the
power of localized states and propagation constant is a well-known
important property for soliton study. It is discussed fully here, as
collected in Figure 4A for the particular case of nonlinear coefficient
ratio g=20, where shows the selected propagation constant interval
within the first and second finite gaps, −4.5≤ β≤ − 1.5. We can find
that as the propagation constant gradually reduces, i.e., from the first
finite gap to the second gap, the power of these localized states presents
a general trend of increase. We stress that the unstable localized states
are only excited near the edges of the first and second band gaps.
Moreover, we also discuss the effect of non-linear coefficient ratios on
the power of asymmetric modes. At the fixed propagation constant
β � −4.0, changing the non-linear coefficient ratios from 1 to 100, we
obtain such relationship in Figure 4B, showing the decrease of the
power of localized states with an increase of non-linear coefficient
ratio, reaching a critical power around g=80, such critical power
equates P � 1.56.

4 Conclusion

In the framework of the NLFSE, we studied numerically the
dynamics of asymmetric modes in one-dimensional photonic
lattices with the domain wall-like Kerr nonlinearity, in the first and
second gaps of the underlying linear spectrum. We analyzed the
properties of these localized states and studied their stability

through direct numerical simulation and linear stability analysis. A
significant feature is that the power of the asymmetric modes gradually
decreases with increasing propagation constant and nonlinear
coefficient ratio respectively. Our findings provide a controllable
way to generate and manipulate localized states in physical systems
with fractional diffraction and inhomogeneous non-linearity.
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