
Physics in the Machine: Integrating
Physical Knowledge in Autonomous
Phase-Mapping
A. Gilad Kusne1,2*, Austin McDannald1, Brian DeCost1, Corey Oses3, Cormac Toher3,
Stefano Curtarolo3, Apurva Mehta4 and Ichiro Takeuchi 2,5

1Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD, United States,
2Materials Science and Engineering Department, University of Maryland, College Park, MD, United States, 3Mechanical
Engineering and Materials Science Department and Center for Autonomous Materials Design, Duke University, Durham, NC,
United States, 4Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA,
United States, 5Maryland Quantum Materials Center, University of Maryland, College Park, MD, United States

Application of artificial intelligence (AI), and more specifically machine learning, to the
physical sciences has expanded significantly over the past decades. In particular, science-
informed AI, also known as scientific AI or inductive bias AI, has grown from a focus on data
analysis to now controlling experiment design, simulation, execution and analysis in
closed-loop autonomous systems. The CAMEO (closed-loop autonomous materials
exploration and optimization) algorithm employs scientific AI to address two tasks:
learning a material system’s composition-structure relationship and identifying materials
compositions with optimal functional properties. By integrating these, accelerated
materials screening across compositional phase diagrams was demonstrated, resulting
in the discovery of a best-in-class phase change memory material. Key to this success is
the ability to guide subsequent measurements to maximize knowledge of the composition-
structure relationship, or phase map. In this work we investigate the benefits of
incorporating varying levels of prior physical knowledge into CAMEO’s autonomous
phase-mapping. This includes the use of ab-initio phase boundary data from the
AFLOW repositories, which has been shown to optimize CAMEO’s search when used
as a prior.
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INTRODUCTION

Machine learning (ML) application into the physical sciences poses interesting challenges of data
sparsity, high data collection cost, high data complexity, and learning intricate functional
relationships. Regarding data cost and sparsity, obtaining new data involves performing very
complex, resource-intensive, and time-consuming experiments in the lab or in silico. Performing
a successful experiment requires hours to months of expert time using equipment often costing
hundreds of thousands to millions of dollars (e.g., microdiffraction at synchrotron beamlines).
Additionally, the expertise needed is measured in years past doctorate graduation. As a result, many
physical science ML challenges must learn from a small number of observations. Furthermore,
obtaining the target information such as the stoichiometric composition of a material with optimal
properties, may require mapping the relationship between numerous input parameters and target
variables; i.e., the relationship between elemental composition and functional properties. With each
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new input parameter, the number of potential experiments grows
exponentially. Consequently, the data obtained from costly
experiments only sparsely represent a vast space of all possible
experiments.

Confounding factors also include data complexity and the
complexity of target relationships to be learned. Physical science data is
often information rich. For instance, a Laue diffraction image from a
material specimen contains information not only about crystal
structures present in the sample, but also about their distribution,
orientations, grain sizes, and crystallinity. Poor signal to noise and
measurement setup-based signals, such as peaks due to the Cu K-β
spectral profile which may vary from instrument to instrument, can
overwhelm features of interest. As a result, combining data from
multiple instruments and studies can be highly involved. Furthermore,
the relationships investigatedwith this data tend to be complex. This is
particularly true of many technologically relevant materials; for
example, the relationship between a ferroelectric material’s
microstructure and its piezoelectric response.

These challenges are often not shared by non-science
application domains in which common ML methods arose,
such as deep learning. For these domains, semi-uniform data
and labels can be collected rapidly and cheaply. For instance,
labels for text and object images are freely provided by internet
service users seeking to prove that they are not bots [1]. No
specialized expertise or equipment is needed, and data collection
occurs in seconds. As a result, big data velocities and volumes are
possible. The range of possible data for these domains is also
bounded; for example, text images are bound by language and
handwriting, car navigation is bound to roads, and chess moves
are bound by the rules of the game. Typically, the goal is to
optimize safely within these bounds, while scientific studies seek
to explore edge cases.

Despite the additional challenges, science has a key advantage
relative to common application domains—there are hundreds of years
of literature containing theory and heuristics for guiding research.
Scientific artificial intelligence (AI) focuses on encoding these rules
(i.e., inductive bias) into AI frameworks to ensure that analysis results
and predictions obey the scientific rules, and are therefore physically
meaningful [2]. Restricting the solution space may offer an additional
benefit of increasing data analysis speed. Probabilistic scientific AI
incorporates uncertainty quantification and propagation into the
analysis to better inform scientific decision making.

Scientific AI offers significant benefits for autonomous physical
research systems [3], whereAI controls experiment design, simulation,
execution, and analysis. For these systems, scientificAI can ensure that
prior physical knowledge informs the selection of subsequent
experiments, and that each experiment is selected to obtain
maximal information. While scientific knowledge can be encoded
at multiple levels of the autonomous AI pipeline—from data
representation through the performance measure used to update
model parameters—much of the reported successes use off-the-
shelf machine learning methods. This includes active learning [4]
algorithms—machine learning algorithms dedicated to optimal
experiment design, which are used to determine each subsequent
experiment to be performed. Applications of off-the-shelf active
learning algorithms include the use of genetic optimization for
carbon nanotube process optimization [5], Gaussian process upper

confidence bounds to optimize molecular mixtures for photocatalysis
[6], and estimate optimization for CO2 electrocatalysis [7]. These
successes of easily integrable, off-the-shelf active learning create
opportunities and physical platforms where scientific AI may
provide even greater research acceleration.

Recent work by Kusne and coworkers [8] demonstrates an
autonomous physical research system for accelerating composition-
phase-mapping and materials optimization, specifically the
identification of optimal compositions that maximize some desired
properties within a targeted search space. The autonomous system is
driven by CAMEO (closed-loop autonomous materials exploration
and optimization). This scientific AI algorithm was placed in control
of the Stanford Synchrotron Radiation Lightsource high-throughput
diffraction system, guiding each subsequent x-ray diffraction
experiment, resulting in the discovery of a best-in-class phase
change memory material. CAMEO was shown to accelerate
materials optimization compared to standard methods by
exploiting the materials composition-structure-property relationship
to guide subsequent experiments. Toward this goal, CAMEO
performs active phase-mapping—investigating subsequent
compositions that provide maximal knowledge of the composition-
structure relationship as represented by the composition-phase map.
The structural phase map is fundamental to materials optimization as
functional property extrema tend to occur within specific phase
regions (e.g., magnetism and superconductivity) or along phase
boundaries (e.g., martensitic transformation and morphotropic
phase-boundary piezoelectrics). Knowledge of the phase map is
used to guide materials optimization toward more promising
regions of the search space.

Active phase-mapping can be thought of as an exploratory task to
learn the composition-structure relationship. The composition space
is segmented into regions based on which phases are present. To
improve the performance of active phase-mapping, multiple levels of
scientific knowledge can be incorporated, including density functional
theory (DFT) data from the AFLOW.org repositories [9, 10]. This
work investigates the impact of varying levels of incorporated physical
knowledge on active phase-mapping performance. A full list of the
algorithms studied, their varying levels of incorporated physical
knowledge, and how the physical knowledge is encoded is
provided in the Methods Table 1. Performance is explored for the
benchmark ternary materials system of Fe-Ga-Pd [11].

DISCUSSION

For this study, the level of scientific information in the active phase-
mapping algorithm is varied by two factors—the first being the
phase-mapping method. The structural phase-mapping method
consists of 1) identifying the composition-phase map for samples
with measured composition and x-ray diffraction patterns and then
2) extrapolating to samples withoutmeasured diffraction. Two phase-
mapping methods are investigated. The first method uses go-to, off-
the-shelf MLmethods for clustering and classification: agglomerative
hierarchical cluster analysis (HCA) with a cosine dissimilarity
measure applied to the diffraction patterns [12] and a first-nearest
neighbor algorithm for extrapolating phase region labels across the
composition space. The alternative method uses the scientific AI
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phase-mapping method of CAMEO. The CAMEO phase-
mapping method employs a Bayesian graph-based
algorithm to identify the probability of each composition
sample belonging to each structural phase region. As a result,
this method can generate a list of structural phase diagrams
and their likelihoods. The method selects the most likely
phase diagram based on the given data.

The optimal experiment design (OED) algorithm is the second
factor varied, determining the sequence of samples to measure for
diffraction data. Four methods are employed, as list in the column
“Active Learning Sampling Method” in Table 2. The first method
measures samples sequentially by their composition spread index
[see Supplementary Figure 4(b) of Ref. [8]]. The next method
selects samples randomly using a uniform distribution over

TABLE 1 | Scientific AI physical knowledge and encoding method.

Algorithm Physical knowledge Encoding method

Data Analysis

HCA Diffraction similarity identified by peak location rather than intensity. Use of Cosine dissimilarity measure [12]
CAMEO Phase-
mapping [8]

Phase regions are contiguous and phase boundaries are continuous 1. If two or more sets of vertices share the same phase region label but are
not connected by vertex neighbors, differing labels are assigned to the
disconnected sets. 2. The Markov Random Field smoothness
constraint [15]

Materials of similar synthesis and processing parameters have similar
properties

1. Markov Random Field smoothness constraint [15] 2. Harmonic Energy
Minimization for label propagation [16]

Abundances of phases is non-negative Karush–Kuhn–Tucker conditions [17]
X-ray diffraction intensity is non-negative Karush–KuhnTucker conditions [17]
Soft Gibbs Phase Rule—Upper bound limit on number of constituent
phases

Upper limit on number of endmember limits allowed in each phase region

Identified endmembers should be physically realizable Volume constraint on identified/predicted endmembers
Phase-mapping
Prior

DFT phase map is predictive of bulk phase diagram. Structure is a
good predictor of functional property and vice versa

Bayesian prior through similarity kernel For more information see Refs [8,
13] M1c Phase Mapping: Phase mapping prior.

Knowledge Propagation

1-NN Samples of similar composition are likely to have similar phase. As more samples are measured, the distance between samples in
composition space gets smaller, so neighbors are more likely to have
similar structure.

HEM Phase regions are cohesive. Quantified likelihood for each sample
belonging to each phase region due proximity in composition

Graph representation of composition space. Label propagation through
graph. Labels uncertainty propagation.

Active Learning

Sequence None
10 % Sampling Samples chosen to be well distributed in composition space Samples evenly distributed across composition space.
Uniform Random
Sampling

Sampling uniformly will give general coverage of the composition
space.

Risk Minimization Each sample quantified for its potential impact on improving total
phase map performance. Targets phase boundaries.

Minimize total phase region misclassification probability for the entire
phase map.

TABLE 2 | Phase-mapping methods in order of performance (descending) at iteration 27.

Algorithm index Phase-mapping method Prior Active learning sampling
method

Mean FMI performance
for iteration 27

(%)

8, “CAMEO” CAMEO Phase-mapping Y Risk Minimization 85
7, “CAMEO” CAMEO Phase-mapping N Risk Minimization 80
6 CAMEO Phase-mapping N 10% 74
5 HCA + 1NN N 10% 74
4 CAMEO Phase-mapping N Random 72
3 HCA + 1NN N Random 71
2 CAMEO Phase-mapping N Sequence 64
1 HCA + 1NN N Sequence 45

HCA, hierarchical cluster analysis.
1NN, 1-Nearest Neighbor.
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composition—a common exploratory active learning benchmark
when the goal is gaining global knowledge of a search space. The
third method selects each subsequent sample so that it minimizes
total expected phase region misclassification error, here described
as risk minimization [8]. This method was shown to target
subsequent measurements along uncertain portions of the
structural phase boundaries. The used risk minimization
method requires a graph-based data representation and as
such can only be combined with the graph-based CAMEO
phase-mapping method. The sequential, random, and risk
minimization methods are also compared to the performance
of selecting 10% of the composition spread samples that provide
good composition space coverage [see Supplementary Figure 4(a)
of Ref. [8]]. The 10% coverage method is expected to provide
good exploratory sampling and provide similar performance to
the uniform random sampling as averaged over many runs.

As an additional modality for introducing prior physical
knowledge, a Bayesian probabilistic prior over the phase map
is implemented. The prior is derived from DFT calculations for
the bulk Fe-Ga-Pd phase diagram as calculated by AFLOW [9,
10], with phase boundary data resolved by the AFLOW-CHULL
[13] module (see Supplementary Figure 2 of Ref. [8]). The
probabilistic prior is graph-based, defining the probability of
materials belonging to the same phase region, and as such is
demonstrated only in combination with the graph-based
CAMEO phase-mapping method and the risk minimization
OED method.

Autonomous phase-mapping performance is shown in Figure 1A
using the modified Fowlkes-Mallow Index (FMI) performance
measure [8], comparing the machine learning based phase-
mapping results with expert labeled results. Here performance is
averaged over 100 runs with the plot indicating the average
performance with 95% confidence intervals (except for the 10%
coverage OED method). Each autonomous phase-mapping method

is indexed and described in Table 2. The index number corresponds
to a rank of performance at iteration 27, where 10% of the samples
have beenmeasured, allowing for comparisonwith the 10% sampling
method. This is also the earliest iteration at which CAMEOMethod 8
achieves an average performance of 85%.

In investigating the relative performance, it is interesting to note
that the methods first group by OED method and then by phase-
mappingmethod. For eachOEDmethod, themore physics-informed
CAMEO phase-mapping method out-performs the off-the-shelf
alternative. A complicating factor is that the off-the-shelf method
is limited to phase-mapping with 5 structural phase regions, while the
CAMEO phase map method allows the number of phase regions to
vary and converge to an optimal. To ensure that the increase in
performance is not due to an increase in the number of phase regions,
i.e., model complexity, the average number of phase regions over the
100 runs is provided in Figure 1B.

OED performance also increases with greater prior physical
knowledge. While sequential OED (Methods 1 and 2) simply
contains information of sample location on the wafer, the use of
the random and 10% sampling OED (Methods 3 through 6)
assume that greater coverage of the composition space will
provide more phase map knowledge. Finally, risk
minimization (Methods 7 and 8) provides the best
performance, building on the assumption that the most
informative samples lie along phase boundaries.

Of particular interest is the fact that introducing prior
information from AFLOW of the Fe-Ga-Pd bulk DFT phase
diagram calculation (Method 8) achieves superior performance at
lower iterations and then converges to a performance beneath
those achieved by other methods including the CAMEO Method
7. Initially, when few diffraction patterns have beenmeasured, the
strong prior provides a correcting bias. However, as more data is
obtained, the DFT-based bias pulls away from the correct answer
for the thin film composition phase map.

FIGURE 1 | Fowlkes Mallow Index (FMI) phase-mapping performance for Fe-Ga-Pd material system. (A) FMI performance for the set of methods listed in Table 2.
The average performance is indicated with 95% confidence intervals for methods 5 through 8 which were run 100 times with uniform randomly selected initial sample
composition, (B) the average number of phase regions (over the 100 iterations) used in phase-mapping for the CAMEO phase-mappingmethods. If the method does not
appear here, the number of phase regions was fixed at 5.
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For active phase-mapping, an increasing amount of physics
information incorporated in the scientific ML provides better
performance. While this improvement is demonstrated for a 2-
dimensional composition space (3-simplex), it is expected that
improvements will be more significant when searching higher
dimensional spaces, as structural phase boundaries become
exponentially sparser with increasing number of dimensions
[13, 14]. Similarly, the search for optimal materials becomes
increasingly difficult. As a result, the use of physics-informed
active phase-mapping — through a combination of experiments
and ab-initio calculations — is expected to become ever more
important in guiding the search for novel, advanced materials.

METHODS

M1: Scientific AI

M2 Statistics and Performance Metrics
Confidence Interval
The 95% confidence interval was computed for the variable of
interest over 100 experiments at the given iteration with:

CI95 � ( σ�
n

√ )F−1(p, ]) (1)

Where F−1 is the inverse of the Student’s t cumulative distribution
function, σ is the standard deviation, n � 100 is the number of
experiments, p � {2.5 %, 97.5 %}, and ] � 99 is the degrees of
freedom.

Phase-Mapping Performance
Phase-mapping performance is evaluated by comparing phase
region labels determined by experts with those estimated by
CAMEO for the entire phase map (after the knowledge
propagation step). To evaluate system performance, the
Fowlkes-Mallows Index (FMI) is used, which compares two
sets of cluster labels. The equations are presented below for
the expert labels l ∈ L and the ML estimated labels l̂ ∈ L̂,
where the labels are enumerated L → N and L̂ → N.

If the number of phase regions is taken to be too large by either
the user or the ML algorithm while the phase-mapping is correct,
some phase regions will be segmented into sub-regions with the
dominant phase boundaries preserved. For example, peak shifting
can induce phase region segmentation44. To ensure that the
performance measures ignore such sub-region segmentation,
each estimated phase region is assigned to the expert labeled

phase region that shares the greatest number of samples. The
number of phase regions is monitored to ensure that increases in
model accuracy are not driven by increases in model complexity.

Fowlkes-Mallows Index:

FMI � TP/
������������������(TP + FP)(TP + FN)√

(2)
TP � 1

2
∑

i
∑

j
(li � lj& l̂i � l̂j) (3)

FP � 1
2
∑

i
∑

j
(li ≠ lj& l̂i � l̂j) (4)

FN � 1
2
∑

i
∑

j
(li � lj& l̂i ≠ l̂j) (5)

M3. Implementation
The methods were implemented in MATLAB*. Built-in functions
were used for agglomerative hierarchical cluster analysis and 1-
nearest neighbors.

NISTDisclaimer: Certain commercial equipment, instruments, or
materials are identified in this report in order to specify the
experimental procedure adequately. Such identification is not
intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended
to imply that thematerials or equipment identified are necessarily the
best available for the purpose.
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