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The chemical and physical characteristics of several flavonoid compounds such as
geraniol, thymoquinone, betaine, apigenin, N-acetylcysteine, catechin, L-carnosine,
epigallocatachin, and saponarin were examined in this work. Numerous molecular
properties of all flavonoid compounds used in this study were calculated using the
Calculate Molecular Properties module of Accelrys Discovery Studio v20.1.0.19295.0.
These properties included molecular polar surface area, total solvent accessible surface
area, and heat of formation. We used the MCNPX general-purpose Monte Carlo code in
combination with the Phy-X PSD software to determine gamma-ray interaction parameters
such as attenuation coefficients, effective atomic numbers, and buildup factors. The
findings indicate that the flavonoids’ elemental compositions have a direct effect on their
chemical and physical properties. Additionally, a synergistic interaction of chemical and
physical behaviors has been observed. Among the flavonoids studied, saporanin was
shown to have the highest polar surface area and solvent accessible surface area, as well
as the highest stability. Additionally, saporanin had the strongest gamma-ray attenuation
characteristics across a broad photon energy range. It may be inferred that saporanin’s
elemental structure enables a synergistic relationship between its chemical and physical
characteristics. The findings of this study may contribute to the evaluation of saporanin’s
hypoglycemic, antibacterial, and hepatoprotective effects.
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INTRODUCTION

Free radicals contain one or more un-shared electrons in their
outer orbits [1, 2]. They exist as both organic and inorganic
molecules. Free radicals react with unsaturated fatty acids, DNA
molecules, and sulfhydryl bonds in protein molecules and
damage cells and tissues [2, 3]. The active property of radicals
is related to the diffusion distance. Since hydroxyl radical is
extremely active, it reacts immediately where it is formed
without the need for diffusion farther from the cell part where
it occurs. Hydrogen peroxide (H2O2), on the other hand, diffuses
easily from mitochondrial membranes, peroxisomal membranes,
and plasma membranes and can show its toxic effect in cell
sections farther from the point where it is released [3]. Every cell
that makes up our body has a defense mechanism against radicals,
which we call a radical scavenging enzyme system consisting of
enzymes such as superoxide dismutase (SOD), catalase (CAT),
glutathione peroxidase (GSH-Px), and glutathione reductase
(GSSGR). In addition, there is an auxiliary defense mechanism
consisting of antioxidant vitamins A, E, C, and lipoic acid [4–6].

Flavonoids are polyphenolic compounds and are structures of
plant origin. Four thousand different flavonoids have been
described so far. Flavonoids are grouped as flavonols, flavones,
flavanones, anthocyanidins, and isoflavonoids [5, 6]. Flavonoids
have various biological effects in the cell system and have been
reported to have anti-antineoplastic, anti-mutagenic, anti-
inflammatory, antioxidant, and antiplatelet activities [5].
Flavonoids can inhibit reactive oxygen species (ROS) damage.
They can be used as a direct defender against free radicals [7–10].
Many in vitro and in vivo studies have reported that flavonoids
and phenolic compounds exert antioxidant effects [5, 10].
Normal and man-made ionizing radiation occurs in our
world. Exposure to elevated doses of radiation, such as in
radiation treatment for cancer, can lead to brain injury and
cognitive decline. Study results indicate that chronic exposure
to low doses of ionizing [e.g., repetitive x-rays and computed
tomography (CT) scans] and non-ionizing radiation (e.g., mobile
devices) can trigger severe brain neuropathological changes. As a
consequence, living biological tissues may be affected by exposure
to radiation [11–15]. Flavonoids are beneficial as antioxidants, are

TABLE 1 | Chemical compositions and density for studied materials samples.

Code Materials Molecular
formula

H C N O S Density
(g/cm3)

S1 Geraniol C10H18O 0.117618 0.778659 — 0.103722 — 0.867
S2 Betaine C5H11NO2 0.094644 0.512643 0.119565 0.273149 — 1.000
S3 Thymoquinone C10H12O2 0.073660 0.731468 — 0.194872 — 1.065
S4 L-Carnosine C9H14N4O3 0.062374 0.477817 0.247649 0.212161 — 1.376
S5 N-Acetylcysteine C5H8NO3S 0.049717 0.370277 0.086360 0.295939 0.197707 1.480
S6 Apigenin C15H10O5 0.037298 0.666682 — 0.296021 — 1.548
S7 Catechin C15H14O6 0.048613 0.620675 — 0.330711 — 1.593
S8 Epigallocatachin C15H14O7 0.046074 0.588252 — 0.365674 — 1.695
S9 Saponarin C27H30O15 0.050861 0.545471 — 0.403668 — 1.800

FIGURE 1 |MCNPX setup. (I) 3-D view of gamma-ray transmission setup obtained fromMCNPX Visual Editor. (II) 2-D view of gamma-ray transmission setup with
dimensional information obtained from MCNPX Visual Editor.
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anti-inflammatory, and are radioprotective. Flavonoids and
metabolites will diffuse through the capillary endothelium, the
basement membrane, and the glial membrane, which will pass the
blood–brain barrier. Preliminary analyses have shown that

epigallocatechin (EGC) and the metabolites such as Flavin can
cross the blood–brain barrier and lead to neurogenesis [16–20].

The review of the literature revealed that several researchers
have conducted promising studies on the radioprotective

FIGURE 2 |Molecular structures of investigated flavonoids. (A) Geraniol. (B) Betaine. (C) Thymoquinone. (D) L-Carnosine. (E) N-Acetylcysteine. (F) Apigenin. (G)
Catechin. (H) Epigallocatachin. (I) Saponarin.
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properties of flavonoids [21]. However, no research has been
published on the chemical and gamma-ray attenuation
characteristics of the flavonoid samples such as geraniol,
betaine, thymoquinone L-carnosine, N-acetylcysteine, apigenin,

catechin, epigallocatechin, and saponarin [22–35]. As a result, we
used advanced Monte Carlo simulation techniques and
mathematical methods to evaluate the crucial molecular
characteristics and gamma-ray attenuation capabilities of the

FIGURE 3 | Variation of mass attenuation coefficient (µm) against photon energy for all studied materials.

FIGURE 4 | Variation of half value layer (T1/2) against photon energy for all studied materials.
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abovementioned flavonoids. Additionally, we expected a
synergistic impact of structural modifications on the chemical
and physical properties of the flavonoids investigated. The results
from this study may assist future research in areas such as the
attenuation characteristics of next-generation biomaterials,
pharmacology, food science, and food production.
Additionally, the results would be applicable to investigations
involving radiotherapy and radiology, as well as antioxidant
consumption undertaken before and after radiation treatment
applications.

MATERIALS AND METHODS

Monte Carlo Simulations
This study utilized the MCNPX [36] general-purpose Monte Carlo
code for gamma-ray transmission simulations of geraniol,
thymoquinone, betaine, apigenin, N-acetylcysteine, catechin,
L-carnosine, epigallocatachin, and saponarin samples. Accordingly,
mass attenuation coefficients (MAC) of the aforementioned samples
were determined at 0.015–10MeV photon energy range. At first,
INPUT files, cell cards, and surface cards were prepared using
elemental mass fractions (%wt.) and material densities (see
Table 1). The ideal states of these materials were specified during
the definition of the investigated flavonoid samples. The term “ideal”
refers to a reductionmaterial that is totally composed of themolecular
structure of the relevant sample and has no material deficiencies. Of
course, providing this condition for experimental investigations is
quite challenging. To begin, we defined the simulation equipment’s
CELL structures by specifying their covering surfaces and densities.
Additionally, the CELL card component has been developed for each

glass sample based on their elemental compositions, which are
specified in detail in the material IDs (Mn) section, taking their
elemental mass fractions into consideration. Following that, the
geometrical alignments of the glass attenuator material’s surfaces
were input, as well as the geometrical structures of the surfaces,
which may be flat, spherical, or cone shaped. We included
radioisotope energies (from 0.015 MeV to 15MeV, respectively) to
the DATA card area, as well as the source geometry as point isotropic.
The total geometry of the well-developed simulation system is shown
in Figure 1. Furthermore, we added a vital specification to the DATA
card, which is expressed as TALLY MESH, for the data collection
method. The modeled gamma-ray transmission setup’s outcome
function was created in this study using the MCNPX’s F4 TALLY
MESH. The F4 tally is used to determine the average flow through a
location. The flavonoid samples were determined considering their
material properties. In addition, a widely established variance
reduction strategy, called tracking-optimization, was also employed.
To preserve simulation performance, neutron and electron tracking is
disabled and photon tracking is enabled in parameter specification
(i.e., imp: p). It is worthmentioning that all the simulation studieswere
performed using Lenovo® ThinkStation-P620/30E0008QUS
Workstation-1X AMD-Ryzen, Threadripper PRO Hexadeca-core
(16 Core) 3955 W × 3.90 GHz - 32 GB DDR4 SDRAM RAM.

Calculation of Molecular Properties
Theoretical calculations were carried out for the compounds
using density functional theory (DFT), which provides
reasonably high accuracy at an adequate computational cost.
First, optimization of compounds in the gas phase was performed
using B3LYP/6–31+G (d). The B3LYP hybrid density functional
is a common general-purpose method used for ground-state

FIGURE 5 | Variation of mean free path (λ) against photon energy for all studied materials.
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geometry optimization. After the optimization process,
compounds were then subjected to compute a number of
molecular properties. Various molecular properties, including
molecular polar surface area, total solvent accessible surface area

(SASA), and heat of formation of all flavonoid compounds used
in this study, were calculated using the Calculate Molecular
Properties module of Accelrys Discovery Studio (DS)
v20.1.0.19295.0. Next, VAMP tool was employed to calculate

FIGURE 7 | Variation of effective atomic number (Zeff) against photon energy for all studied materials.

FIGURE 6 | Variation of 10th value layer (TVL) against photon energy for all studied materials.
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the heat of formation for all compounds at the AM1/RHF level
[37]. The VAMP tool utilized the single optimized, lowest energy
conformation of each compound to compute molecular
properties. VAMP is a semi-empirical molecular orbital
method, which uses Slater-type atomic orbitals by evaluating
the two-electron integrals through a multipole approximation.
This method determines a molecular wave function according to
the LCAO (Linear Combination of Atomic Orbital) that can then
be used to derive various molecular properties.

Flavonoids are neither massive material structures nor
physically thick materials in determining their gamma-ray
attenuation properties experimentally. This is because
experimental gamma-ray studies require the least material
thickness to attenuate the incident gamma-rays. In our study,
we modeled those flavonoids considering their elemental mass
fractions as well as material densities. In this case, it is physically
impossible to use them as a solid attenuator material. Therefore,

we performed our simulation studies on a micro-scale by
establishing a pure utopic attenuator composed of each
flavonoid, respectively. Molecule structures of the investigated
flavonoids are also presented in Figure 2.

RESULTS AND DISCUSSION

Radiation Attenuation Properties
Researchers are particularly interested in the gamma-ray
attenuation characteristics of chemicals and pharmaceuticals to
better understand their interactions with ionizing radiation
[38–42]. In this study, gamma-ray attenuation properties of
studied flavonoids were also calculated in addition to chemical
properties. First, mass attenuation coefficients of investigated
flavonoid samples were determined via MCNPX general-purpose
Monte Carlo code. Figure 1 depicts the two-dimensional and

FIGURE 8 | (A–I) Variation of exposure buildup factor (EBF) against photon energy for all studied materials.
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three-dimensional simulation configurations employed, as well as the
distances and lengths used for gamma-ray transmission investigations,
as acquired using the MCNPX Visual Editor (visedX22S). As seen, a
point isotropic gamma-ray source has been embedded in a lead (Pb)
block. Primary gamma-rays have been targeted onto an attenuator
sample using a collimator. A collimator comparable to that used on the
front side of the attenuator was also constructed to avoid backscattered
radiation. Finally, near the collimator’s end, a detection field employing
F4 Tally Mesh (average photon flux at a point or cell) was created to
record the intensity of secondary gamma-rays. All equipment was
positioned on the z axis in the simulation setup. The variation of mass
attenuation coefficients as a function of incident photon energy is
represented in Figure 3. Clearly, all the investigated flavonoid samples
have a similar attenuation behavior in different energy regions. The
highest attenuation can be seen for N-acetylcysteine due to the
existence of S element in the chemical composition of this sample

(see Table 1). This interesting observation supports the fundamental
concepts of gamma interactions with matter [43, 44].

Figure 4 describes the attenuation properties of the
investigated flavonoid samples in terms of half value layer (T1/

2) as a function of energy up to 15 MeV. The lowest T1/2 and then
the highest attenuation occurred at the low energy level (15 keV)
with values of 0.926, 0.631, 0.667, 0.456, 0.116, 0.409, 0.386, 0.351,
and 0.321 cm for geraniol, betaine, thymoquinone, L-carnosine,
N-acetylcysteine, apigenin, catechin, epigallocatachin, and
saponarin, respectively. Such observation can be explained
according to the photoelectric effect that dominates all the
attenuation processes at the low energy levels. Figure 5
describes the attenuation properties of the investigated
flavonoid samples in terms of mean free path (λ) as a function
of energy up to 15 MeV. The highest λ and then the lowest
attenuation occurred at the high energy level (15 MeV) with

FIGURE 9 | (A–I) Variation of energy absorption buildup factor (EABF) against photon energy for all studied materials.
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values of 63.563, 54.535, 52.372, 40.216, 34.496, 36.307, 34.980,
32.807, and 30.716 cm for geraniol, betaine, thymoquinone,
L-carnosine, N-acetylcysteine, apigenin, catechin,
epigallocatachin, and saponarin, respectively. Such observation
can be explained according to the pair production (electron and
positron production) that dominates all the attenuation processes
at the high energy levels [45, 46].

Figure 6 describes the attenuation properties of the
investigated flavonoid samples in terms of 10th value layer
(TVL) as a function of energy up to 15 MeV. The behavior of
TVL curve is similar to that of T1/2 and λ at the whole considered
energy level [47, 48]. This supports the general variations of the
transmission factors with the photon energy, such that all the

transmission factors (TVL, T1/2, and λ) have minimum values at
low energies and then they increase as the photon energy
increases, reaching their maximum values at the high energy
level [49]. Figure 7 describes the attenuation properties of the
investigated flavonoid samples in terms of effective atomic
number (Zeff) as a function of energy up to 15 MeV. Unlike
the transmission factors, the highest Zeff values indicate that the
highest attenuation occurred in the investigated flavonoid
samples [50–52]. Therefore, the highest Zeff and then the
highest attenuation occurred at the high energy level (15 keV)
with values of 4.99, 5.83, 5.71, 6.13, 11.75, 6.38, 6.34, 6.45, and

FIGURE 10 | Variation of exposure buildup factor (EBF) against studied
materials compositions.

FIGURE 11 | Variation of energy absorption buildup factor (EABF)
against studied materials compositions.

FIGURE 12 | Variation of energy absorption buildup factor (EABF) and
exposure buildup factor (EBF) against effective atomic number (Zeff) for all
studied materials.

FIGURE 13 | Effective removal cross-sections for fast neutrons (ΣR) for
all studied materials.
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6.48 for geraniol, betaine, thymoquinone, L-carnosine,
N-acetylcysteine, apigenin, catechin, epigallocatachin, and
saponarin, respectively. In radiation studies, the photon
attenuation can be fully understood by determining two basic
terms: attenuation factors (e.g., LAC, MAC, and TVL) and the
buildup factors. In the previous section, we discuss in detail all
the concepts related to the attenuation factors of the
investigated flavonoid samples. Now, we shall throw light
on the buildup factors of the investigated flavonoid samples.
The buildup factors, namely, exposure buildup factor (EBF)
and energy absorption buildup factor (EABF), were evaluated
in the present research via the G-P fitting method based on
Phy-X software. The fitting parameters and the required data
for the calculations of EBF and EABF are summarized in
Supplementary Table S1, Supplementary Table S2,
Supplementary Table S3, Supplementary Table S4,
Supplementary Table S5, Supplementary Table S6,
Supplementary Table S7, Supplementary Table S8, and
Supplementary Table S9 for the investigated samples of
geraniol, betaine, thymoquinone, L-carnosine,
N-acetylcysteine, apigenin, catechin, epigallocatachin, and
saponarin, respectively.

Figure 8 and Figure 9 depict the variation of EBF and EABF
against photon energy for all studied flavonoid samples.
Obviously, both EBF and EABF have a similar behavior
(according to the dominant processes) against photon energy
for various energy levels. Such that the highest buildup factors
were observed in the middle energy levels, where the Compton
scattering is the dominant process, while the lowest buildup

factors can be seen in the low and high energy levels where
the photon absorption mechanism is a dominating process
[53–56]. Figure 10 and Figure 11 demonstrate the variation
of EBF and EABF against all studied flavonoid samples for photon
energy of 0.4 MeV at various penetration depths (10, 20, 30, and
40 mfp). These figures show the extraordinary behavior of the
buildup factors for the present flavonoid sample of
N-acetylcysteine due to the existence of S element in the
chemical composition of this sample. Such interesting
observation supports the fundamental concepts of gamma
interactions with matter. Figure 12 shows a comparison
between EBF and EABF and their variations with the effective
atomic number and energy of 1 MeV and depth of 5 mfp. Clearly,
EBF values are bigger than EABF values for all the effective atomic
number less than 4.5 for all the investigated samples. However,
there is a swift decrease for the effective atomic number higher than
4.5, for example, the present flavonoid sample of N-acetylcysteine.
Finally, we shall briefly discuss the neutron attenuation features of
the investigated flavonoid samples in terms of removal cross-
section for fast neutron. Figure 13 describes the neutron
attenuation properties of the investigated flavonoid samples in
terms of the removal cross section for fast neutron. One can see
that the fast neutrons interact with the present sample with the
cross-section values of 0.099, 0.099, 0.094, 0.111, 0.103, 0.105,
0.117, 0.122, and 0.133 cm−1 for geraniol, betaine, thymoquinone,
L-carnosine, N-acetylcysteine, apigenin, catechin, epigallocatachin,
and saponarin, respectively. Therefore, the saponarin sample
possesses the highest neutron cross-section among all the
present samples.

FIGURE 14 | Molecular properties including (A) polar surface area, (B) SASA, and (C) heat of formation for all studied materials.
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Molecular Properties
Molecular properties, including polar surface area, SASA, and
heat of formation, were determined and compared with each
other for all nine flavonoid compounds used in this study, as
depicted in Figure 14. The molecular polar surface area is defined
as the sum of the molecular surface overall polar atoms, including
nitrogen and oxygen atoms with their attached hydrogen atoms.
Evaluation of polar surface area of flavonoids clearly indicated
that saponarin flavonoid has the largest polar surface area as
compared to any other flavonoid used in this study with values of
20.23, 34.14, 40.12, 86.99,105.19,110.38,121.1, 130.61, and 256.28
Å2 for geraniol, thymoquinone, betaine, apigenin,
N-acetylcysteine, catechin, L-carnosine, epigallocatachin, and
saponarin, respectively, as shown in Figure 14A. This greater
polar surface area of saponarin can be attributed to the presence
of a higher number of oxygen atoms present in the chemical
structure of saponarin compared to other flavonoids. At the same
time, geraniol exhibited the least polar surface owing to the
presence of only one polar atom in its chemical composition.
Similarly, SASA of saponarin was also the largest with a more
rigid structure due to the presence of a relatively higher number
of aromatic rings than other flavonoids, as displayed in
Figure 14B. The heat of formation for flavonoids was also
compared, indicating that saponarin was the most stable one
with a more negative heat of formation value of −565.71 kcal/mol
(Figure 14C). All these above-mentioned molecular properties
clearly indicate that saponarin has the largest polar surface area
and SASA, with more stability than other flavonoids.

CONCLUSION

This study aimed to investigate a potential behavioral relation
between chemical and physical properties of different types of
flavonoids in terms of extending the information for the scientific
community. Accordingly, geraniol, thymoquinone, betaine,
apigenin, N-acetylcysteine, catechin, L-carnosine,
epigallocatachin, and saponarin were extensively analyzed in
terms of chemical and physical attitudes. The results showed
that elemental compositions of the flavonoids have a direct
impact on chemical and physical behaviors. Moreover, a
synergistic effect was also reported between chemical and
physical behaviors. Among the investigated flavonoids,
saporanin was reported with the largest polar surface area and
SASA, with more stability than other flavonoids. In addition,
saporanin has the highest gamma-ray attenuation properties in
large-scale photon energy. It can be concluded that the elemental
structure of saporanin can provide a synergistic link between the
chemical and physical properties. Considering the importance of
such materials for the pharmaceutical and food industry, it can be
suggested that the results obtained from this study can be useful

for the research and development activities of the industries in
advanced applications. Therefore, the attributable properties of
saporanin such as chemical composition, number of certain
elements in its structure, and material density should always
be considered.
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