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Conventional von Newmann-based computers face severe challenges in the processing
and storage of the large quantities of data being generated in the current era of “big data.”
One of the most promising solutions to this issue is the development of an artificial neural
network (ANN) that can process and store data in a manner similar to that of the human
brain. To extend the limits of Moore’s law, memristors, whose electrical and optical
behaviors closely match the biological response of the human brain, have been
implemented for ANNs in place of the traditional complementary metal-oxide-
semiconductor (CMOS) components. Based on their different operation modes, we
classify the memristor family into electronic, photonic, and optoelectronic memristors,
and review their respective physical principles and state-of-the-art technologies.
Subsequently, we discuss the design strategies, performance superiorities, and
technical drawbacks of various memristors in relation to ANN applications, as well as
the updated versions of ANN, such as deep neutral networks (DNNs) and spike neural
networks (SNNs). This paper concludes by envisioning the potential approaches for
overcoming the physical limitations of memristor-based neural networks and the
outlook of memristor applications on emerging neural networks.

Keywords: artificial neural network, electronic memristor, photonic memristor, optoelectronic memristor, emerging
neural networks

INTRODUCTION

Combining the age of 5G communication with the concept of the Internet of Everything (IoE) and the
rise of the Internet of Things, data will be dispersed, stored, calculated, and analyzed to obtain the most
efficient information. The most important aspect of technological evolution is the advancement of
process levels and system-end design. However, the development of silicon CMOS-based computing
hardware has largely limited progress, as Moore’s Law has become less applicable [1]. At the same time,
the rapid increase of data volume has gradually revealed the limitations of computers based on the
traditional Von Neumann architecture. Owing to the physical separation of storage and computation,
traditional computers waste large amounts of energy but fail to achieve further improvements in
computing power [2,3]. The development of edge computing, the Internet of Things, and artificial
intelligence (AI), has led to an increased demand for systems with reduced power consumption,
increased computing power, and algorithm versatility. In contrast to traditional computing systems, the
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information processing characteristics of the human brain and
nervous system allow for large-scale parallel distributed storage and
processing, self-organization, self-adaptation, and self-learning [4].
There is no clear boundary between data storage and processing in
the human brain, which exhibits extraordinary advantages in
dealing with unstructured data. In contrast, traditional
computer architectures cannot detect targets or engage in
emotional understanding. Compared to their biological
counterparts, artificial sensing systems exhibit low classification
accuracy, high power consumption, and low integration density.
There is an urgent need for new computing models to re-empower
human society’s ability to process big data. Options that have been
examined include using a nonvolatile memory device, breaking the
“storage wall,” simulating the human brain processing mechanism,
and building integrated computing architectures that combine
storage and computation hardware [5]. Hardware neural
networks based on memristor synaptic devices has proven to be
an important development for neuromorphic computing and a
strong candidate to replace traditional von Neumann computing
architecture in a post-Moorish era. The basic structure of a
memristor is a sandwich-like multilayered stack of substances
that include, in descending order, a top electrode, middle layers
with several resistive functions, and a bottom electrode.
Memristors have many ideal characteristics but a simple
structure. Any two-terminal electrical device with a resistance
switching property is a memristor [6,7]. For a bipolar
memristor, application of a positive voltage can convert the
device from a high-resistance state to a low-resistance state.
This is called the SET process. Conversely, application of a
negative voltage can convert the device from a low-resistance
state to a high-resistance state, which is called the RESET
process. As a result, the memristor – its device structure,
material, and other aspects - was widely studied early on as an
option for resistive switching memory and an optimized design
scheme has been proposed. Examining the resistive switching
mechanism of growth and the fracturing of the memristor’s
conductive wire, Professor Lu Wei’s team at the University of
Michigan verified in 2018 that the conductivity of a memristor can
gradually change under voltage pulse excitation. That is, the
conductive wire can gradually grow and break under external
excitation [8]. The changes in voltage and current observed in the
gradient conductance memristor are similar to the renewal of
synaptic weight in the biological nervous system; thus, a memristor
can simulate basic synaptic functions, including short-term
plasticity (STP), long-term Potentiation (LTP), long-term
depression (LTD), and spike time-dependent plasticity (STDP)
[9–11]. Similar electrical characteristics make it possible for a
memristor to fabricate neural networks that are more similar to
biological nervous systems. Since this discovery, memristive
synapse devices have become powerful candidates for new
electronic synapse devices in neural morphology calculations.
Given the outstanding properties of memristors, research and
review of their use in the development of neural networks is
particularly important to provide guidance for future
engagement in corresponding applications and research. In this
study, we discuss the categories of electronic, photonic, and
optoelectronic memristors and summarize the materials used,

the current state of memristor neural networks, and future
prospective research areas.

INVESTIGATION OF MEMRISTOR
STORAGE MATERIALS

Memristor are constructed of many materials that mainly consist
of thin films, nanowires, and nanoparticles. Even insulating
materials at the nanometer level are likely to have resistive
characteristics. As shown in Figure 1, memristor storage
media can be divided into two categories: organic and
inorganic materials. Organic materials, mainly biomimetic
organic materials (such as silk fibroin [12], protein [13],
nanocellulose [14], and bovine serum albumin [15]), and
polymer organic materials (such as PVPCz59 [16], PVDR [17],
PVK-C60 [18], and other materials [19–25]), have attracted the
attention of many researchers owing to their applications in
flexible and wearable storage and disposable health diagnosis
and monitoring equipment. However, the stability of organic
materials leads to high SET/RESET voltage, high power
consumption and dispersed SET/RESET voltage distribution,
so the device performance needs to be further strengthened. In
addition, the supply of materials is also an urgent problem to be
solved [20–25]. Solid electrolyte, oxide, and low-dimensional
inorganic memristive materials have attracted extensive
attention from researchers owing to their simple
manufacturing process, stable performance, and low cost.
Current memristor research focuses on clarifying the resistive
mechanism and stabilizing the resistive performance. Although
the RS mechanism may be different because of variations in
electrode and RS layer materials (such as oxygen vacancy
accumulation or silver ion redox reaction) [26–29], researchers
have proposed several solutions to improve memristor stability,
including the addition of an interface layer, doping, the addition
of nanocrystals, improving the preparation process, and
improving the operation mode. The electrodes of these devices
consist of mostly inert metals such as Pt, which can be replaced by
TiN electrodes to eliminate etching difficulty in mass production.
The long-term performance of these devices is promising. The
following chapter focuses on inorganic memristive materials,
including oxide materials, solid electrolyte materials,
ferroelectric materials, and two dimensional (2D) materials.

Conventional Oxides
Owing to their simple fabrication process and compatibility with
mature CMOS technology, binary oxides account for a large
proportion of many types of electronic memristors. Figure 2 lists
the elements that have been reported to have RS characteristics in
binary oxides. The reported binary oxide materials used in RS
layers such as silicon oxide (SiO2) [31], titanium oxide (TiO2)
[32], vanadium oxide (VO2) [33], zirconium oxide (ZrO2) [34],
nickel oxide (NiO) [35], zinc oxide (ZnO) [36], hafnium oxide
(HfO2) [37], tantalum oxide (Ta2O5) [38], and alumina (Al2O3)
[39] are WOx-based memristor materials [40] with good
switching characteristics. Some exhibit low variability and low
power operability. Moreover, by using different combinations of
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electrodes and dielectrics, memristors with mutation and
gradient abilities can be realized, making them suitable for
different simulation environments. For example, devices with a
mutation ability are suitable for binary memory, and devices with
a gradient ability are suitable for the multilevel storage of memory
or for biological synaptic simulation.

Since the HP team pioneered the solid memristor devices
based on TiO2 materials in 2008 [42], several research groups
have found memristive behaviors in different oxide materials.

Owing to their simple fabrication process and compatibility with
mature CMOS technology, binary oxides have become the
mainstream materials of the electronic memristors. Figure 2
lists the common oxides that have been reported to have RS
characteristics. The reported binary oxide materials used in RS
layers mainly include silicon oxide (SiO2) [31], titanium oxide
(TiO2) [32], vanadium oxide (VO2) [33], zirconium oxide (ZrO2)
[34], nickel oxide (NiO) [35], zinc oxide (ZnO) [36], hafnium
oxide (HfO2) [37], tantalum oxide (Ta2O5) [38], alumina (Al2O3)

FIGURE 1 | Memrisive material classification diagram [30].

FIGURE 2 | Summary of the materials that have been used for binary oxide memristor. Metals of the corresponding binary oxides used for the RS layer are in yellow.
Metals used for the electrodes are in blue [41].
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[39], and tungsten oxide (WOx) based materials [40], which
exhibit good switching characteristics, low variability and low
power operability. Moreover, by using different combinations of
electrodes and dielectrics, memristors with mutation and
gradient abilities can be realized, making them suitable for
various applications from binary or multilevel storage
memories to artificial synapses. In spite of vigorous
developments on memristive materials, their memristive
mechanisms still remain mysterious, which currently can be
categorized into the conduction boundary migration
mechanism, conduction filament regulation mechanism and
Schottky barrier modulation mechanism.

The conduction boundary migration mechanism, first
proposed by HP team, usually adapts to a tri-layer structure
having an intermediate insulating layer sandwiched between top
and bottom electrodes. As exemplified by a TiO2-based
memristor (Figure 3A), its insulation layer consists of a thin
undoped TiO2 film and a thin doped TiO2 film [42], which gives
rise to low conductivity (ROFF) and high conductivity (RON),
respectively, due to the increased oxygen vacancies. Such device
was equivalent to a series of resistors with high and low resistance
values. When an electric field is applied to the device, the oxygen
vacancy migrates between the two layers, compressing the width
of the undoped region and changing the device resistance. In
addition to the double-layer memristor, monolayer oxide
materials can also achieve memristive behavior. As shown in
Figure 3B, when positive and negative voltage scanning is
performed on the memristor [43] with Pd/WOx/W structure,
the gradual reduction and increase of resistance confirm the
memristor characteristics of the device. The regulation model

of the number of conductive filaments provides the
corresponding mechanism explanation: As shown in
Figure 3C, the migration of oxygen ions under the action of
applied voltage changes the number of oxygen vacancy
conductive channels or the effective cross-sectional area. Due
to the low resistance of oxygen vacancy conductive channels, the
device resistance decreases when the number of oxygen vacancy
conductive channels increases. As the number decreases, the
resistance of the device increases. In addition, for schottky
barrier modulation model, memristor devices based on a
single material system not only adjust the resistance of the
resistance layer itself, but also modulated the barrier between
electrode and insulation layer is an effective method to realize
memristor behavior. As shown in Figure 3D, in the metal-
insulator-metal memristor, the metal on the left is schottky
contact with the insulator, and the ohmic contact is on the
right. When the positive voltage is applied on the right side,
oxygen ions migrate to the right electrode, which increases the
oxygen vacancy in the barrier area and reduces the schottky
barrier height, thus reducing the resistance of the device. Guo
et al. constructed a barrier modulated memrisor with Pt/SrTiO3/
Nb-SrTiO3 structure [44]. As shown in Figure 3E, the
conductance value of the device can increase continuously
under positive pulse and decrease continuously under negative
pulse, showing stable memristive behavior.

At the same time, doping and the addition of a capping layer
can further improve the conductivity tuning linearity of the
memristor and adjust the electric field and temperature
adaptively [45]. In addition, some complex oxides generally
have high dielectric constants, such as PR0.7CA0.3MNO3 [46],

FIGURE 3 | (A) Thememristive model proposed by HP’s lab. (B) The I-V characteristic of Pd/WOx/Wmemristor. (C)memtistive mechanism diagram of modulating
conductive filaments [43]. (D) Schematic diagram of the memristive model by modulating Schottky barrier. (E) the potentiation and depression of Pt/SrTiO3/Nb-SrTiO3

memristor obtained under positive and negative pulses, respectively [44].
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SrTiO3 [47], BiFeO3 [48], LaAlO3 [49], and LiFePO4 [50], which
can improve the switching voltage, switching ratio, and other
parameters. Owing to their high durability, speed, and scalability,
and to their mature production technology, oxide memristors
have become the most widely used and mature memristor bar
array materials.

Two-Dimensional Materials (2DMs)
Compared with traditional materials, two-dimensional graphene
has shown excellent electrical, optical, thermal, and mechanical
working properties in recent years [51–54]. The development and
application of graphene has led to an upsurge of exploration in
the field of two-dimensional materials, which are usually crystal
materials composed of single layers. The 2D materials currently
studied range from conductors and semiconductors to insulators,
such as graphene, BN, black phosphorus, transition metal
dihalides, and group IV monosulfides [55]. At small sizes, they
exhibit excellent non-volatile performance and can be used as
excellent memristors. Yan et al. systematically studied the
performance of self-assembled low-dimensional PbS as a
memristor material (Figures 4A–C), and found that it can
effectively guide the penetrating etching path of conductive
filaments, improve the uniformity of RS parameters, and
improve device performance by reducing the threshold

voltage, uniformly distributing the position/reset voltage,
improve response time and lower power consumption
(Figures 4D–I) [56]. In addition, the two-way conductance
can be adjusted by using a graphene oxide device, which
proves that the low-energy pulse can realize almost linear
conductance regulation. The influence of pulses with different
parameters on conductance modulation has been studied,
revealing the potential relationship between the pulse
amplitude and energy [57–59].

Two dimensional materials also provide an excellent platform
for further research and development of photonic memristors.
Abundant material types cover a wide range of electromagnetic
spectra, from ultraviolet to infrared. Therefore, 2DMs-based
photonic memristors have shown wide applications, such as
image sensors for artificial vision [60], optical gating
memristors for logical operation [61], and photonic neural
networks for neural morphological systems [62]. To date,
researchers have widely studied two-terminal photonic
memristors and three-terminal floating gate photonic
memories based on MoS2 [63], WSe2 [64,65], and BP [66].
Table 1 summarizes the electrical performance and RS
mechanism of memristor with different kinds of 2D materials
as RS layers in recent years. Studies have shown that the switching
mechanism of two-dimensional material memristor can be

FIGURE 4 | Self-Assembled Networked PbS Distribution Quantum Dots for Resistive Switching and Artificial Synapse Performance Boost of Memristors [56].
(A–C) Cross-sectional TEM images of: (A) pure-Ga2O3 MDs, (B) IQD MDs, and (C) NQD MDs. (D–I) Current–voltage (I–V) curves and response time. (D–F)
Current–voltage (I–V) curves: (D) Pure-Ga2O3 MDs, (E) IQDMDs, and (F)NQDMDs. (G–I) SET response time for: (G) pure-Ga2O3MDs, (H) IQDMDs, and (I)NQDMDs.
The blue line denotes the input pulse, and the output conducting current in logarithmic scale is represented by red lines.
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divided into two categories. One is based on the whole electrode/
functional layer, including conductive wires and vacancy wires,
while the other is based on the functional layer itself, including
charge capture and release, atomic vacancy, etc.

The switching mechanism arising from the combinations of
the electrode and the functional layer attributes the resistance
transition of the memristor to the formation and rupture of the
conductive filament. Metal ion filaments are usually formed by
the electrochemical reaction of the active electrode under an
electric field and subsequent diffusion to the resistive layer, which
is named as the electrochemical metallization mechanism (ECM).
Figure 5A shows the growth process of the conductive wire in

Ag/h-BN/Cu [77]. Ag is oxidized to Ag+ under the forward bias,
and Ag+ migrates to the cathode under resulting electric field.
Due to the low cationic mobility of H-BN film, Ag+ can easily
capture free electrons injected by the cathode, transform to Ag
atoms after a short distance migration, and eventually form Ag
conductive filaments that show wider cross-sectional area near
the Ag electrode, but narrower cross-sectional area at the Cu
electrode. Vacancy filaments are formed by the accumulation of
original vacancy defects in the functional layer and vacancy
generated by ion migration under applied electric field. Hou
et al. prepared tubular Ti/H-BN/Cr devices by self-winding
technology [71], whose switching behavior was attributed to

TABLE 1 | Summary of electrical performance and RS mechanism of memristors with different with different kinds of 2D materials as RS layers.

References Structure OFF/ON Vset [V] Vreset [V] Endurance/Retention RS mechanism

[67] Al/GO/ITO 280 1.19 −1.31 102 SCLC
[68] MLG/Dy2O3/ITO 104 0.4 0.2 200 CFs
[69] Al/BCP-GO/ITO 104 — −6.7 — SCLC/PoolFrenkel
[70] Ag/h-BN/Pt 105 0.21 0.02 200 Ag CFs
[69] Au/Ti/h-BN/Pt 105 0.5 −0.6 — Ti CFs
[71] Cr/h-BN/Ti 103 7 −5 — B vacancy
[72] Au/MoS2-PVK/ITO 104 1.19 −1.31 102 SCLC
[73] Ag/MoOx/MoS2/Ag 106 0.2 −0.1 — Schottky
[74] Cu/MoS2/AlN/ITO 103 2.2 or 3.45 −2.61 or −1.5 103 Cu CFs
[75] Al/WS2/Pt 103 1.72 or 1.42 −1.44 or −1.60 104 CFs
[76] Ag/WS2/Ag 103 2.3 −2.3 1,500 SCLC

FIGURE 5 | (A) Switching mechanism of Ag/h-BN/Cu device [77]; (B) The formation process of the conductive filament in the rolled-up h-BN tube [71]. The internal
electrode is metal Cr, and the external is Ti. The red sphere represents the B vacancy; (C) Double Logarithmic I-V curve showing the slopes for HRS and LRS with
different values of slope [78].
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the formation and rupture of the vacancy wires. As shown in the
left portion of Figure 5B, a small number of B vacancies are
distributed in the h-BN film in the initial state without
external stimulus. When a positive voltage is applied to the
Ti electrode, B ions move first near the Ti electrode and leave
the B vacancy (middle portion of Figure 5B). Finally, as the
applied voltage increases, the B vacancy region grows towards
the Cr electrode and forms a conductive filament (right
portion of Figure 5B).

The switching mechanism stemming from the functional layer
only usually refers to space-charge-limited-current (SCLC)
mechanism. The memristor devices governed by SCLC
mechanism is usually related to the formed traps inside the
device. When the carrier is captured by the defect in the
medium, the trap energy level distribution in the band
experiences the change, and then leads to the resistance
transition. Figure 5C shows the I-V curve of Ag/MOS2-PVA/Ag/
PET memristor [78], indicating its SCLC-based electronic
characteristics [78]. The observed I-V curve is divided into three
parts, namely, ohmic conduction, current square and voltage square,
after which the current increases rapidly with the increase of voltage.
As depicted from Figure 5C, in the low bias region (0–0.4 V), ohmic
conduction behavior (slope ≈1) is observed. When the applied bias
enters a relatively high region (0.4–3 V), the internal defects in
MOS2-PVA composite begin to be filled with charge, thereby
increasing resulting conductivities (slope ≈ 3). As the voltage
continues to rise, all unoccupied levels or defects are completely
filledwith charge, whereby the current increases sharply (slope≈ 23),
changing the device resistance from HRS to LRS. Due to the large
band gap of the PVApolymer, it is difficult for the charge filled in the
defect to return to its original energy state without the help of an
external electric field, which makes the device a very high data
retention time (105 s).

In spite of its various merits, the two-dimensional
memristive materials are still facing severe challenges. Note
that the size of the low-dimensional materials is relatively
large, which implies a large memristor area using two-
dimensional materials. In addition, to realize their industrial
application, the large-area controllable preparation technology
of two-dimensional materials must be mastered and then
transferred to the available substrate. Therefore, the
performance reliability of low-dimensional memristors and

their material large-area preparation technology is an
anticipated area of growth for future research and design.

Ferroelectric Materials
Ferroelectrics are important dielectric materials with a wide range
of applications. Because the positive and negative charge centers
in ferroelectric materials do not overlap in the cell structure, the
electric dipole moment is spontaneously generated and the
orientation of spontaneous polarization can be controlled by
the external electric field. Because the polarization orientation
of ferroelectric materials is irregularly arranged in the initial state,
the external macro performance yields a polarization intensity
that is equal to zero. Figure 6 shows the relationship between the
macroscopic polarization (P) and electric field intensity (E) of
ferroelectric materials under the action of an alternating external
electric field where the polarization intensity of the ferroelectric
material was gradually enhanced. When the electric field is
sufficiently large, the polarization intensity reaches its
maximum value at saturation. When an electric field in the
opposite direction is applied, the polarization intensity
gradually decreases to zero. When the electric field is reduced
to zero, however, the polarization intensity of the ferroelectric
material will not decrease to zero and the polarization residual
value will be retained, reflecting nonvolatile behavior.

Studies have shown that the tunnel resistance effect in
ferroelectric tunnel junctions triggers a change in the potential
energy barrier associated with the polarization reversal of iron
[79]. Therefore, the bistable device system can be switched
between the open LRS and HRS states with an external bias.
In a tunnel junction with a ferroelectric barrier, the switching of
ferroelectric polarization will cause a change in the tunnel
resistance, and the resistance difference between the ON and
OFF states reaches 9, 13, 14, and 15 orders of magnitude. Owing
to these large OFF/ON ratios, ferroelectric materials have great
application potential in the field of non-volatile storage. In 2012,
Chanthbouala et al. proposed a ferroelectric memristor based on a
BTO/LSMO structure, which realizes a continuous change in
resistance by controlling the domain structure. The ferroelectric
domain can be continuously flipped under different voltages, so
the device will yield different resistances for different domain
structures (Figures 7A,B). Chanthbouala successfully realized the
continuous regulation of ferroelectric memristor resistance by
changing the amplitude, width, and number of pulse voltage
(Figure 7C), as well as the simulation of synaptic LTP and LTD
[80]. In 2017, Boyn, S. et al. used the same principle to simulate a
biological synapse STDP by using a ferroelectric memristor with a
BFO/CCMO structure. The continuous change in resistance was
achieved by controlling the domain structure, and the simulation
network was formed by using a ferroelectric memristor to build a
9 × 5 array structure to complete the unsupervised learning
process [81]. In addition to directly regulating the FTJ domain
structure to achieve the memristive behavior of the device, the
polarization field can be used to regulate the redistribution of
interface carriers, causing a continuous change in the interface
barrier height or width between the ferroelectric layer and the
electrode, thereby achieving a continuous change in device
resistance [82].

FIGURE 6 | Ferroelectric hysteresis cycle: evolution of the overall
polarization under an electric field sweep [79].
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Conductive filaments formed by oxygen vacancy migration or
metal cation migration are random and uneven, which causes
large fluctuations in resistance in different regions and affects the
accuracy of neural network calculations. Based on the
ferroelectric polarization mechanism, the memristor device
uses polarization reversal to shift between high- and low-
resistance states without heat dissipation and inhomogeneity.
Considering that the reversal of the ferroelectric domain will not
change abruptly under the action of a single external field, a
variety of different polarization states can be obtained with strong
controllability by changing the external field voltage. Therefore,
the ferroelectric memristor has great potential as a synaptic bionic
device, providing opportunities for further research.

Solid Electrolyte Materials
Solid electrolyte, considered as a fast ionic conductor, is usuallymade
of a sulfide electrolyte containing Ag and Cu atoms. Under the
applied electric field, the metal cations can migrate out of their
original positions and accumulate to form conductive wires
connecting the top and bottom electrodes to complete the
resistance transition. Such memristor is commonly referred to
figuratively as a Conductive Bridging RAM (CBRAM). Note that
solid electrolyte is simple in preparation and operation, and is easy to
control the formation of conductive wire to construct multilevel
resistive memory. However, the resistive memory based on solid
electrolyte has unique requirements for electrodes, which generally
adopt active electrodes, such as Ag, Cu, etc.

As early as 1976, Hirose et al. studied a memristor device with
Ag-As2S3 solid electrolyte material as the functional layer and
observed a single Ag conductive filament with an optical
microscope [83]. Memristors based on solid electrolytes are
usually paired with active metal top electrodes and inert metal
bottom electrodes. In these devices, the active electrode can be
directly oxidized and reduced by chemical redox reactions, and
the generated metal ions can be directly passed through the fast ion

conductor matrix by drift and diffusion. This leads to faster
switching and lower power consumption. At present, researchers
have used GeS2, Ag2Se, Ag-SbTe, Cu-GeTe, Ge2Sb2Te5, and other
electrolytes [84–88], and have achieved good experimental results.
Erokin’s research group used lithium ion-doped polyethylene oxide
as a solid electrolyte to systematically study the influence of
electrochemical redox on the electrical transport properties of the
store polymer. The group confirmed that metal ions generated by a
redox reaction can migrate reversibly between solid electrolyte and
polyaniline phases, which allows for non-volatility and for the device

FIGURE 7 | Tuning resistance and ferroelectric domain configuration with voltage amplitude. (A) Dependence of the junction resistance measured at Vread =
100 mV after the application of 20 ns voltage pulses (Vwrite) of different amplitudes. The different curves correspond to different consecutive measurements, with varying
maximum (positive or negative) Vwrite (B) Variation of a similar capacitor resistance with the relative fraction of down domains extracted from the PFM phase images. (C)
Tuning resistance by consecutive identical pulses. Evolution of the junction resistance as a function of the different voltage pulse sequences (plotted for Vwrite =
+2.9 V and −2.7 V and for Vwrite = +3 V and−3 V).

FIGURE 8 | Four basic double-ended circuit elements: resistance (R),
capacitance (C), inductance (L), and memristor (M) [42].
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to switch between its insulation and conductive states. The three-
dimensional network structure of the self-assembled memristor
simulates the brain learning abilities of adults and infants [89]. In
2005, Kaeriyama et al. proposed a CuSO4 solid electrolyte
nanoswitch, called a nanobridge, which can be used for
reconfigurable large-scale integrated circuits owing to its small
size and low on-resistance [90].

MANUSCRIPT FORMATTING

Electronic Memristors
The complete electrical concept of the memristor was first
proposed in 1971 by Leon Chua and consists of a passive two-
ended device whose resistance depends on the amount of charge

flowing through it and has a memory effect on the current.
Figure 8 shows the relationship between memristors, resistors,
inductors, and capacitors, which constitute four basic dual-end
passive devices in circuits [91]. It can be seen from the figure that
resistance, R, inductance, L, capacitance, C, and memristor, M,
can be expressed as the current, voltage, charge, and electric flux.
The memristor, M, is expressed by the charge and electric flux as
M � dφ

dq [42]. It can be seen from the formula that memristor, M,
has the same dimension as resistance, R; however, the two are
essentially different. The resistance, R, is determined by the
material itself, independent of external circuit variables,
whereas the memristor, M, changes with the variables of the
circuit where the memristor is located.

In 2008, theWilliams team of the Hewlett-Packard Laboratory
made the first memristor, which has a typical “top electrode/

FIGURE 9 |Memristor structure and its physical model and memristor resistance hysteresis curve [42] (A)memristor structure diagram. (B) Physical model of the
memristor. (C) Symmetrical scanning. (D) Asymmetric scanning.
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resistive layer/bottom electrode” sandwich structure and
proposed a corresponding physical model of the memristor.
As shown in Figures 9A,B, in addition to both ends of the
electrode, there is only one resistance layer and the resistive
switching material, TiO2, is divided into the doped area and the
undoped area. The resistance of the doped region is Ron and the
thickness is w. The resistance of the undoped region is Rof f and
the thickness is D − w. The memristor value, M, can be described
as M � Rof f (1 − μv · Ron · q(t)D2 ), where μv is the ion mobility and
q(t) is the charge quantity. The memristor value M changes
under the action of voltage, known as the memristor effect. As
shown in Figure 9C, the volt-ampere characteristic curve of the
memristor exhibits an I-V hysteresis curve under a symmetrical
AC voltage bias. As shown in Figure 9D, the memristor achieves
multiple continuous resistance states when applying the same
polarity bias scanning.

Photonic Memristors
Inspired by photogenetics, optical signals are included in the
category of simulating biological synaptic functions. Researchers
have proposed the concept of a photonic memristor, which is a
device that uses photonic signals as the excitation source. Under
optical excitation, the photonic memristor undergoes resistance
switching behavior [92]. Compared with traditional electrical and
chemical methods, photogenetics can manipulate biological
behaviors with a higher spatiotemporal resolution. Because the
beams do not interfere with each other in the three-bit space, the
photonic system can provide a higher bandwidth and
transmission speed than the electronic system. Moreover, with
the expansion of the scale of neural networks, a fully
interconnected network consisting of 104 neurons requires at
least 108 synapses, which is close to the limit of VLSI technology.
The optogenetic simulation of biological synapses provides the
advantages of parallel processing and large-scale interconnection
capabilities for the computer design of large-scale photonic
neural morphology.

In recent years, two-dimensional materials (2 dm) have
emerged as resistive switching materials, providing a feasible
method for preparing ultrathin memory synapses. Recent
studies have found that some two-dimensional materials and
their hybrid heterostructures, such as half-metallic graphene,
insulating hexagonal boron nitride, semiconductor transition
metal dihalides (TMD), black phosphorus (BP), and group IV
monosulfide compounds (such as SnS2, SnSe, GeSe, and GeS)
[93–97], are ideal platforms for non-volatile photonic memory.
Moreover, owing to its characteristics, the 2D material has a
strong light-matter interaction and its large surface area can
produce the trapping ability of obvious photogenerated
charges. The atomic thickness of 2D material can further
reduce device size and allow the entire column of high-density
cross to significantly expand the equipment size. Under the
excitation of light, the electronic structure of memristive
materials changes to varying degrees, resulting in different
resistive switching behaviors. Systems based on different
materials have different light-induced resistance switching
mechanisms. As shown in Figure 10, the resistance switching
mechanism of the photo-induced photonic memristor can be

divided into four primary types [92]: 1) photo-induced Schottky
barrier, 2) photo-induced conductive filament formation/
rupture, 3) photogating, and 4) photo-induced conformation
change. At present, photonic memristors are mostly used in
image sensors for artificial vision and optical gating devices for
logic operations. Photonic memristors are expected to be used to
build photonic neural networks for neural morphological
systems, which are also attracting more attention.

Optoelectronic Memristors
As mentioned above, electrical and optical pulses can regulate the
characteristics of the material, thus forming electrically and
optically stimulated memristors, and their differences from
purely photonic or electronic memristors are schematically
described in Figure 11.

Optical pulses can not only generate electron-hole pairs, but
also regulate the formation of holes or ions in certain materials. In
contrast, electrical pulses can induce the movement of carriers
and ions. Guo et al. grew ZnO thin films on Al substrates through
sputtering deposition. Since Al can capture oxygen in ZnO, a
AlOy layer was therefore formed at the interface between the two
substrates, and then ZnO1-x/AlOy heterojunction was obtained.
This triggered a birth of oxide heterojunction-based a
photoelectric synapse (Figure 12). Such device exhibits slow
memristive switching characteristics and persistent
photoconductivity, consequently mimicking the plasticity of
various synapses under external optical stimulus. The device
was found to exhibit a persistent photoconductivity under
310 nm UV light, which is ascribed to the accumulation and
trapping of optical carriers at the ZnO1-x/AlOy interface for a
built-in electric field. When UV light is irradiated, the
photogenerated electrons are excited to the conduction band
to increase the device conductance. Thanks to this, the
photogenerated holes accumulated continuously at the ZnO1-x/
AlOy interface are captured by the AlOy layer under the built-in
electric field. When the light is removed, the captured
photogenerated holes are difficult to be released in a short
time, which further obstructs the recombination with the
photogenerated electrons. The device conductance in this case
can be maintained for a long time, resulting in a persistent
photoconductivity. Figure 12B illustrates such photo-synaptic
enhancement and electrical inhibition processes. Under UV pulse
irradiation, the device conductance increases with time,
corresponding to the LTP behavior. With the application of
the electrical pulses, the device conductance decreases
continuously over time, corresponding to the LTD behavior.

When light regulation is introduced into the memristor as an
additional dimension of the control method to regulate the
evolution of the conductive filaments or interface barriers,
device conductance can be modified by the pure optical means
with different wavelengths and illumination intensities, thus
achieving a synergy between light and electric fields. Zhu et al.
prepared an Au/OD-IGZO/OR-IGZO/Pt all-optical memristor
by using IGZO, a four-element oxide semiconductor material
with relatively mature preparation technology, and successfully
simulated its synaptic function. The conductance regulation
mechanism of an all-optical memristor is derived from the
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reversible change of the barrier width at the interface of
photoinduced bilayer oxides. When the short wave light is
applied, the ionization of oxygen vacancy plays a dominant
role, which increases and narrows the concentration of ionized
oxygen vacancy and the interface barrier, respectively. Resulting
current and device conductance are subsequently increased. The
neutralization effect of oxygen vacancy is however stronger than
that of ionization when long wave light is applied. This oppositely
decreases the concentration of ionized oxygen vacancy, broadens
the interfacial barrier, and reduces the conduction current. The
working mode of all-optically controlled memristor is shown in
Figure 12C where reversible transitions from low conductance
states to high conductance states and vice versa are realized under
blue and near infrared light pulses, respectively. In Figure 12D,
the stable and reversible transformation process of the device
conductance by controlling the external optical stimulus is
shown, which increases the conductance under the 420 nm
light pulse and decreases the conductance under the 800 nm
light pulse. Besides, the device has good non-volatile property and
its different conductance states can clearly be distinguished from
each other after 104 s (Figure 12E).

Both optical and electrical pulses can enable the phase
transformation of the well-known phase-change materials
(i.e., chalcogenide alloy). In addition, electric pulses can
induce the polarization of the ferroelectric materials, and
light pulses can generate the photocurrent responses owing
to the photovoltaic effect of the ferroelectric materials [99].

These conditions promote the development of optoelectronic
devices using the synergistic effect of light pulses and
electrical pulses to control the electrical properties of the
device. Optoelectronic memristors are considered to be
promising candidates for multi-functional neural
morphology computing (especially artificial vision systems)
because of their ultra-fast operating speed, almost unlimited
bandwidth, avoidance of crosstalk interference, elimination of
Joule heating, and the potential for functional integration
involving optical signal sensing, processing, and storage in a
single unit [100,101].

MEMRISTOR NEURAL NETWORKS (MNNS)

Based on the physical characteristics of the memristor itself, if
it can be directly used as the weight of the neural network
circuit through physical law, then efficient large-scale
memory calculations can be carried out by learning
algorithms. This will improve the system’s computational,
parallel, and adaptive ability and allow the weight value to be
retained within the system for a long period after a power
outage. Although the energy efficiency and calculation speed
of the recently realized MNNs are satisfactory, there are few
applicable examples of MNNs. The difficulty lies in
discovering how a memristor can understand learning rules

FIGURE 10 | Classification of optical memristors, including Schottky barrier (top left), conductive filament (top right), conformation change (bottom left), and
photogating (bottom right).
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other than STDP. Achieving implementation of a memristor-
based neural network circuit requires more time.

Artificial Neural Networks (ANNs)
An artificial neural network (ANN) is a network widely
interconnected by many processing units (neurons) that
mirrors a biological neural network allowing researchers to
better understand and imitate human capabilities by
replicating the basic characteristics of the human brain
through abstraction, simplification, and simulation. It is a
computational model based on the structure and function of a
biological neural network, which has information processing,
learning, and storage functions similar to the human brain
and exhibits the natural characteristics of storing and applying
experiential knowledge. ANN and the human brain are similar in
two primary ways: they acquire knowledge from the external
environment through the learning process and then use their
internal neurons (synaptic weights) to store the acquired
knowledge.

The mathematical model for the first generation of ANNs was
first proposed by Warren McCulloch and Walter Pitt in 1940.
Known as Perceptron, it is one of the simplest neural networks
[102]. In 1957, Frank Rosenblatt proposed a computer-based
programmable method to simulate human perception [103].
Perceptrons are based on biological neural networks and

strictly correspond to many concepts in biology. Perceptron
inputs can be a series of integers, mathematical vectors,
voltages, or currents. Signal transmission and processing of
axon function in the neurons of neural networks are achieved
by the weighted summation of inputs. The output is generally a
number or vector depending on the needs of different networks
and bionic environments.

After Perceptron was first used to implement the algorithm on
transistor-based computers, Rosenblatt et al. first implemented
the algorithm on an IBM 704 computer in 1957 to identify
multiple image sets composed of 400 pixels. The weight was
expressed by potentiometers and motors [104]. Although the
described calculation is still based on the immature computer
technology of that time, the use of variable resistors as weights is
very close to the essence of the memristor rod structure. Neurons
preserve information in neurosynapses. This preserved
information, specifically, the weight, affects the connection
strength of neurons before and after. In traditional computer
information storage, the weights of neural networks are stored in
the form of an N-bit binary. In contrast, only a single memristor
can represent a weight in neural network design, which uses the
memristor’s simulation characteristics of learning and memory
functions to achieve network computing. The main principle for
realizing the inductor in the circuit is shown in Figure 13. The
input signal is represented by the voltage, and each input

FIGURE 11 | Classification of memristors, including (A) photonic memristor, (B) electronic memristor, and (C) optoelectronic memristor.
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voltage corresponds to multiple memristors. For short and
stable relative voltage, the resistance value of the memristor
remains unchanged. According to Kirchhoff’s current law and
Ohm’s law, each output multiple corresponds to the memristor
column, and the outflow current is superimposed onto the
output port to achieve the weighted sum. The memristor
achieves the weighted value through changes in

conductance, which is aligned with the final activation
function. The output current is processed to obtain the
required output using analog equipment.

Training learning is also an important part of artificial neural
network research. The adaptability of the neural network is
realized through training. The main learning method is to
construct reverse propagation and constantly change the

FIGURE 12 | (A) Structural illustration of memristive device based on ITO/ZnO1-x/AlOy/Al, and the corresponding transmission electron microscope (TEM). (B)
Photonic potentiation and electrical depression of stimulated pulses-dependent EPSC [98]. (C)Working mode of all-optically controlled memristor based on IGZO; (D)
Reversible regulation characteristics of conductance (upper) and cycle stability (down); (E)Retention characteristics of memconductance states after optical SET (upper)
and optical RESET (down) operations [99].

FIGURE 13 | Mathematic model and memristor realization of single-layer perceptron. (A) mathematic model of single-layer perceptron. (B) schematic of SLP
memristor realization.
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weight to improve the accuracy of the ANN. According to the
different learning environments, ANN learning methods are
divided into supervised and unsupervised learning.

In supervised learning, the sample data are input into the network,
and the expected value of the network output is given. The network
output results are continuously compared with the expected output.
After the training, each neuron converges to aweight, and the optimal
solution for the neural network calculation is realized.

Unlike supervised learning, unsupervised learning networks
do not know whether their classification results are correct or not.
Only input examples are provided to the network, which
automatically finds potential category rules based on these
examples. When learning is over and tested, the results are
used for new cases.

Perceptron is the origin algorithm of neural networks and uses
supervised learning. Prezioso et al. (2015) constructed a nine-
input, one-way bias and three-output perceptron network using a
Pt/Ta/Ti/TiO2-x/Al2O3/SiO2/Si structure to construct a 12 × 12

transistor-free memristor crossbar neural network (Figure 14).
The network was identified and trained to recognize a 3 × 3 pixel
image of the letters ZVN, then the training dataset was classified.
The training of the sub-dataset became a cycle, and the synaptic
weight was updated directly after the end of the training cycle,
that is, memristor conductance. After training, the output
corresponding to the three letters was discrete [105]. The
simulation or actual preparation of circuit network training as
described above is usually completed before recognition or is re-
trained after completing a certain recognition task. Yan et al.
(2017) constructed a complete closed-loop-layer film by using a
memristor of Pt/Ta/Ti/TiO2-x/Al2O3/SiO2/Si. The perceptron
neural network enables the training of weights in real time,
improving the stability of output results [106].

Deep Neural Networks (DNNs)
DNNs, also known as deep learning, are algorithms used in
machine learning, which are based on data representation. The

FIGURE 14 | A 12 × 12 transistor-free memristor crossbar neural network [105] (A) Integrated 12 × 12 crossbar with an Al2O3/TiO2-x memristor at each
crosspoint. (B) The single-layer perceptron for classification of 333 binary images and used input pattern set. (C) Convergence of network outputs during the training
process to the perfect value (zero) for six training runs from different initial states. (D) The evolution of output signals, averaged over all patterns of a specific class.
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depth of deep learning is achieved through several hidden layers
with more complex selection problems requiring more hidden
layers. Primary perceptrons can only solve simple recognition
and classification problems based on existing features – using
them to solve complex problems is still a challenge. To address
this problem, a deep-learning algorithm was developed for the
perceptron based on a deep neural network (DNN). Deep-
learning frameworks comprise a large group and include
systems that have been applied in computer vision, speech
recognition, natural language processing, audio recognition,
and bioinformatics to achieve excellent results [107–111]. A
primary sensor memristor can also be used in a DNN, which
updates the synaptic weight by continuously renewing the
conductance value of the memristor through supervised
learning to achieve different algorithms. This chapter
introduces three types of deep neural network models
implemented with memristors: the multi-layer perceptron
(MLP), the convolutional neural network (CNN), and the
recursive neural network (RNN).

Multi-Layer Perceptron (MLP)
The primary perceptron is essentially a single-layer system with
limited functionality. To transcend these limitations, we
developed a deep learning neural network model based on the
primary perceptron referred to as a multi-layer perceptron
(MLP). The MLP is a neural network with a forward structure
that maps a set of input vectors to a set of output vectors. As
shown in Figure 15, an MLP can be seen as a directed graph
composed of multi-layer nodes, with each layer node fully
connected to the next layer. The MLP can be understood as
the superposition of multiple single-layer perceptrons, with the
output of each layer acting as the input of the next layer. Apart
from the input node, each node is a neuron (or processing unit)
with a nonlinear activation function. The network structure,
shown in Figure 15, is divided into input, hidden, and output
layers. Learning is a two-step process that includes identification
and training. Identification consists of the forward propagation

process and training includes the error back-propagation
process combined with the output results of forward
propagation at each layer. When the network is trained to be
stable and possesses the required identification accuracy the
network ceases to update for identification, which is referred to
as offline identification. However, MLPs are not strictly
perceptrons. A real perceptron is a special case of artificial
neurons using a threshold activation function, such as a step
function, while an MLP can use any activation function. A true
sensor performs binary classification, whereas an MLP neuron
can freely perform classification or regression according to its
activation function [112–114].

The memristors in MLPs have multi-order characteristics that
are analogous to synapses in neural networks that store the
synapses’ weights. Conversely, memristor arrays, which are
used for MLP acceleration, are based on multi-order
characteristics and can execute parallel weighted summation
operations (matrix vector multiplication), which are the most
time-consuming steps in most neural network algorithms. Large-
scale parallel matrix vector multiplication can be achieved by
mapping the neural network weight matrix to the conductance in
the memristor array. Thus, parallel write-by-line or write-by-
column operations (weight update) can be performed in
memristor arrays, whereas the synaptic arrays constructed by
traditional SRAM devices can only write serially. The
introduction of a memristor greatly improves the training
speed of the neural network algorithm. Based on the
memristor of a ferroelectric material, Djaafar Chabi et al.
(2015) constructed a three-dimensional architecture of the
memristor computational model to achieve the three-layer
perceptron algorithm, which was successfully implemented
using a simulation for nonlinear differentiable functions. After
simulation testing, real devices were fabricated and used to
implement the corresponding multilayer perceptron algorithm
[115]. Farnood Merrikh Bayat et al. (2017) constructed 20 × 20
crossbar structures based on the Pt/Al2O3/TiO2-x/Ti/Pt structure
of the memristor (Figures 16A,B). They trained the weights using

FIGURE 15 | Mathematic model and memristor realization of a multilayer perceptron [107]. (A) mathematic model of MLP (B) schematic of MLP memristor
realization.
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a back propagation algorithm to build an MLP that achieves
recognition of four letters for 4 × 4 pixels. The network has three
perceptron layers, including 16 input, 10 intermediate, and four
output layers, and achieves high-speed recognition and 80%
accuracy. It also proposes a high-speed computational
architecture for MLPs and implements the simplest model
of this architecture in its own circuit [116]. Using the ta HfO2

and metal-bottom electrode structure of a memristor to build a
128 × 64 memristor crossbar architecture, Can et al. (2018)
established a 3-layer perceptron network for mmsit
handwritten digit set recognition to achieve a 93%
recognition accuracy [107]. Cai et al. (2019) implemented

SLP and MLP algorithms using WOx-based memory
blockers in an RISC architecture computing environment
(Figures 16C,D) where the three-layer perceptron achieved
99% accuracy for the analysis and classification of collected
cancer data with clinical outcomes [117]. Velasquez et al.
(2019) reported that the reduction in the number of CMOS
driver circuits between the memristor arrays of a two-layer
perceptron (Figures 16E,F) increased the operational
efficiency of the circuit [118].

The MLP is a general neural network. In addition to research
on the classification and design of linear differentiable problems,
most of the multi-layer neural networks derived from the

FIGURE 16 | Memristor realization of a multilayer perceptron and its applications. (A) Architecture of a multilayer neural crossbar for ultra-high-density on-chip
learning using analog FTMs as synapses and binary FTMs to implement the learning cell. (B) Electrical simulation results of a multilayer compact neural crossbar
demonstrating the learning of a 2-input XOR-function [116]. (C) Cross-section schematic of the integrated chip, showing connections of the memristor array with the
CMOS circuitry through extension lines and internal CMOS wiring. Inset, cross-section of the WOx device. (D) Classification results experimentally obtained from
the memristor chip for the training and testing data. Blue and red dots represent the predicted benign and malignant data, respectively. The incorrectly classified results
are marked as open circles. Classification rates of 94 and 94.6% are obtained for the training and testing data, respectively [117]. (E) 3T DW-MTJ synapses arranged in a
crossbar architecture. (F) Test set classification on theMNIST dataset is given as a function of datapoints presented to the system learning with clustered weights (green);
as is visible, this approach converges quickly and outpaces the constant weights system (red) not benefiting from this operation [118].

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 83924316

Ye et al. Overview of Mem-Neural Network

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


perceptron are dedicated neural networks, such as CNNs
and RNNs.

Convolutional Neural Network (CNN)
When faced with complex image problems, the MLP neural
network has the disadvantages of slow calculation speed and
large consumption. As a result, convolutional neural networks,
CNNs, are commonly used to deal with computer vision
problems such as image classification and recognition and,
owing to their weight sharing and local connections, are
preferred for processing images. As shown in Figure 17, the
CNN consists of one or more convolution layers and a vertex fully
connected layer (corresponding to the classical neural network),
which also includes relevant weights and a pooling layer. This
structure allows the CNN to utilize the two-dimensional structure
of the input data. The CNN first extracts the features of the input
image through several convolution and pooling layers, and then
outputs the network processing results through the full
connection layer for classification.

The convolution layer is the most critical component of the
CNN and is defined by the number and size of the convolution
kernels, convolution step size, input image size, and other
parameters. In image recognition, convolution is two-
dimensional. The convolution kernel covers the same size area
as the image and performs the inner product operation using the
pixels within the area. Different convolution kernels can obtain
the same number of feature maps to extract multiple feature
maps. Sharing weights through a convolution kernel reduces the
number of parameters that the network needs to train.

Second, to reduce the size of themodel and improve the operation
speed, the pooling layer downsamples the featuremap extracted from
the convolution layer to obtain a new feature map. Pooling is divided
into mean pooling, which averages the values in the calculation area
of the input image, and maximum pooling, which takes the
maximum value in the area to obtain a new feature map.

The input image is extracted twice by the convolution and
pooling layers, and finally by the fully connected layer. The
connection mode of the fully connected layer is the same as
that of the perceptron neural network. Each neuron is connected
to the neurons in the upper layer and has its own weight
parameter, w, which plays a classification function.

Finally, the output of the fully connected layer is processed
through the output layer. The output layer is generally an
activation function for classification problems, including the
radial basis function (RBF), sigmoid function, and softmax
function. The sigmoid function is mostly used for binary
classification problems, while the softmax function can
perform multi-classification processing. The output of the full
connection layer is processed by the activation function in the
output layer, and the identification results of the network are
finally output.

In CNN, the memristor is used as the storage medium via its
simulation characteristics, with a single memristor used to
represent a weight. The memristor primarily plays the role of a
nerve synapse, and the realization method is the same as that of
a single-layer perceptron. For example, Nourazar et al. (2018)
constructed a model based on the general-purpose Hewlett-
Packard memory. A CNN with a resistor model was simulated
using an x86 processor and open-source C++ code. The
network implemented the multiplication of 64 × 64 matrices
and the key feature extraction and identification of a MNIST
handwritten digit set, which was 10 times faster than the
existing software and exhibited 95.51% accuracy and energy
savings. Based on the simulation, real circuits were constructed
from non-ideal models. To assist the network processing, most
of these circuits were based on pre-existing external circuit
networks found in other basic devices [120]. Li et al. (2017)
constructed a 128 × 64 crossbar array network structure based
on a Ta/HfO2/Pd memristor (Figure 18), which was first
proven to perform matrix vector multiplication operations,
followed by CNN testing to test the extraction and recognition
of characters in the graph [121]. In 2018, Z. Dong et al. used an
AlOx/HfOy-based memory blocker to construct a crossbar
array for MNIST and then randomly acquired images for
feature recognition, obtaining a 95% recognition accuracy
[122]. Some studies have shown that reducing the number
of digital devices at the input end of a CNN does not affect the
accuracy of the CNN operation [123,124]. The memristor can
greatly reduce the power consumption of the CNN and the size
occupied by the original circuit to improve the processing
efficiency of the neural network, making it an excellent device
for accelerated calculation.

FIGURE 17 | Mathematic model of CNN [119].
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Recursive Neural Network (RNN)
A recursive neural network (RNN) consists of fixed weights,
external inputs, and internal states, which can be regarded as the
behavioral dynamics of internal states with weights and external
inputs as parameters. RNNs are classified as time RNNs, which
have inputs that consist of a time-related sequence and with
connections between neurons that constitute a directed graph,
and structural RNNs, which are neural networks designed in a
structure. A similar neural network was recursively structured to
construct a complex network. Most connections between neurons
constitute an undirected graph and the neural network is
independent of the input. The structural RNN can be
developed into a time RNN through effective improvement.
Hopfield neural networks and BAM neural networks are
common structural RNNs. For the time RNN, the traditional
RNN structure diagram shows the input of the neurons in layer i
at time t, which includes not only the output of the neurons in
layer (i − 1) at time t, but also the output of the neurons
themselves at t − 1 time. Thus, the output of the neurons in

the current timestep can directly affect themselves at the next
timestep. In practice, RNNs have shown success in natural
language processing, including such tasks as text classification,
parts of speech tagging, and news clustering.

Based on the HP memristor-based model and Chua’s
development of memristor theory, Wu et al. (2012) simulated
a hybrid Lotka Volterra RNN with conditions sufficient for
nondivergence and global attractivity. The results are
applicable to memristive dynamic memory [125]. Gang Bao
et al. (2014) designed an RNN based on the HP memory
block model of the back-to-back structure of memory block
networks, which can be adapted to the desired neural network
based on the requirements of the application. By constructing
appropriate Lyapunov-Krasovskii functionals and using the
characteristic function technique, the structure presents new
theoretical results on the passivity and passification of a class
of memristor-based RNNs (MRNNs) with time-varying delays
where passivity conditions are cast in the form of linear matrix
inequalities (LMIs) that can be verified numerically using an LMI

FIGURE 18 | Experimental 2D DCT demonstration using differential conductance pairs for image compression and processing [121]. (A) The original image for
compression was input into the crossbar block by block for the 2D DCT. (B) The image block was converted to voltages that were applied to the row wires of the
crossbar (left), with neighboring wires having a voltage pair with the same amplitude, representing image pixel intensity, but opposite polarity. To the right, a differential
DCT written into the 128 × 64 array, with the small number of stuck “on” or “off”memristors evident as disruptions in the pattern. (C) Images decoded from the 2D
DCT by software (left) and experimentally (right). Before decoding, only the frequencies representing the top 15% of the spectral intensity were preserved (a 20:
3 compression ratio).
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toolbox [126]. These theoretical studies laid the foundation for
real memristor implementation of RNNs.

A real RNN based on a memristor consists of two cross
structures. One is used to extract the main features of the
subject from multiple continuous images or short videos, and
the other is used to classify the subjects according to the features
extracted from videos or photos. Li et al. (2019) implemented
long short-termmemory memristor RNNs based on the Ta/HfO2

crossbar array architecture, where one was used to implement a
recurrent network and another was used to recognize the number
of features extracted from the RNN, as shown in Figures 20A–C.
This network was used to identify people’s occupation based on
their biometric features, including their height and waist
circumference, and based on their behavior, such as walking
or standing still. The information was extracted from videos
based on a sequence of picture [127]. When used for image
recognition, purely cyclic neural networks exhibit limitations
related to the accuracy of feature extraction and stability of
operation; thus, a hybrid CNN for cyclic neural networks has
been creatively implemented in memory blocker-based neural
networks. To classify the MNIST dataset, Zhongrui Wang et al.
(2019) built the in situ training of a five-level CNN with non-
idealities of a one-transistor one-memristor (1T1R) array
(Figures 20D,E) and achieved similar accuracy to the
memristor-based multilayer perceptron [128]. These principles
proved that a hybrid CNN can combine the structural advantages
of weight sharing and the area/energy efficiency improvements of
memristors, paving the way for the future of edge AI.

Spiking Neural Networks (SNNs)
According to neuroscience research, many biological nervous
systems, such as vision and hearing, are encoded in the form of
pulse duration. Based on this background, a more biologically

authentic pulse neural network (third-generation artificial neural
network model) has been developed. To achieve efficient
information processing, SNNs transmit and process
information through time coding; thus, modeling a biological
nervous system more accurately than first and second generation
ANNs. SNNs use biologically oriented pulses (action potentials)
to transmit information between synapse-connected neurons.
Recently, influenced by the success of DNNs, people have
become increasingly interested in using SNNs to complete
specific tasks [129]. SNN simulation is usually divided into
two stages - neuron calculation and pulse propagation - and
each stage is defined by the neuron/synapse model. The
membrane potential accumulates after the neurons receive the
pulse sequence. When the membrane potential of the neurons
exceeds the threshold voltage, a pulse is emitted, the membrane
potential is reset, and the pulse signal is transmitted to the next
neuron through the axon. In SNN, to simulate the behavior of real
neurons, several spike neuron models with biological
characteristics of STDP learning rules have been proposed.
The commonly used neuron models are–the Hodgkin Huxley
(HH) model [130], the Integrate and Fire (IF) model, the Leaky
Integrate and Fire (LIF) model [131], and the Izhikevich model
[132]. The physiological model represented by HH is closer to
biological action characteristics and is more aligned with
electrophysiological characteristics of neurons. The model,
however, is complex and requires significant computation,
making it difficult to apply to large-scale circuits. LIF and IF
models are behavior-level models that do not accurately describe
the biological characteristics of neurons, but simulate their action
characteristics. Thus, reduced accuracy yields a model with fewer
computational requirements, making LIF and IF models more
common in SNN. The current state of the neuron is defined in
SNN as its activation level (modeled as a differential equation).

FIGURE 19 | Mathematic model of two kinds of RNN. (A) Jordan Recurrent Neural Network (B) Elman Recurrent Neural Network.
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FIGURE 20 | Classification experiment for human identification by gait [127] (A) Two-layer RNN configuration for classification and Partition of the 128 × 64 1T1R
memristor crossbar array, in which a 128 × 56 sub-array is used for the LSTM layer and a 28 × 8 sub-array for the fully connected layer. (B) Elman Recurrent Neural
Network. (C) Width profiles of the human silhouettes are extracted from a video as the inputs for the RNN. In situ training of the 1t1R-based five-level CNN [128]. (D)
Schematic of the hybrid analogue–digital training of the CNN. (E) The smoothed experimental in-batch accuracy increased and loss decreased over the course of in
situ training. The experimental curves are indistinguishable from the simulation that includes programming noise, closely following the defect-free simulation with a ~4%
gap in accuracy during the second epoch of the training.

FIGURE 21 | (A) A LIF spiking neuron model. (B) Example of 3T-FeMEM based synapse and LIF neuron circuit [133].
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The input pulse causes the activation level in a neuron to rise
over a period of time and then gradually decline. Considering
the pulse frequency and interval, a coding scheme can be
constructed to interpret these output pulse sequences as
numbers, indicating that it is possible to establish an
accurate neural network model based on the starting time
of the pulse. With an accurate pulse starting time, a neural
network that adopts peak coding can access more information
to provide more powerful computing.

At present, research based on pulse neural networks in
China and abroad is more extensive than research based on
other types of ANNs. For example, Nishitani et al. proposed a
supervised learning model that allows error back propagation
for a pulse neural network and used a memristor as an
electronic synapse to store simulated synaptic weights. An
online supervised learning algorithm was applied to a pulse
neural network based on a memristor and managed
classification tasks well. There are two types of bio-inspired
FDCs that are based on the memristor and the
BSIM3V3.2.2 transistor model (Figure 21B), which can
simulate the behavior of the synapse and neuron discharge,
and can detect faults when the measured element is damaged
[133]. Errui et al. proposed a highly integrated hardware
implementation of memristor-based SNNs with pulses that
are simplified as step signals [134].

In principle, SNNs can be applied to the same applications
as traditional artificial DNNs and beyond, including the
central nervous system of biological organisms. However,
owing to the lack of an effective SNN training mechanism,
SNNs are not conducive to some applications. Using image
processing as an example, the traditional DNN converts the
image into a voltage signal according to the color and

brightness of the image, while the SNN converts the image
into a time-span pulse signal. This presents a very complex
problem when using SNNs to process a photograph taken with
a camera, but SNN can easily process a picture taken by a
closed-circuit television. Moreover, a lack of further
understanding of SNNs means that pure SNN is currently
difficult to implement through memristor-based circuits.

While the hardware implementation of SNNs currently
presents challenges, the implementation of some ANNs is
relatively easy. Recently, Rivu et al. designed an ANN-SNN
converter (Figure 22 by using diffusion memristors and shunt
capacitors. This is equivalent to the value of neurons in a
traditional ANN, which is used to encode the peak frequency,
and is the method available at this stage to build an SNN using
memristors [135].

Photonics-Based Neural Networks
It is necessary to point out that most of the neuromorphic
devices are driven by the electrical stimulus. In comparison
with the electrical stimulus, light has the advantages of ultra-
high speed, wide band width and low crosstalk. Optogenetics
studies show that light can also effectively regulate brain
behavior [137], which also lays a biological foundation for
the construction of the photoelectric neuromorphic system.
For the photon and photoelectric memristors, the adjustable
conductance of the memristor is used as the synaptic weight,
and the photon or electrical stimulus is used as the synaptic
peak. Photonic memristor can directly sense the external light
stimulus and complete information processing in the
photoelectric conversion process. This integrated mode of
information perception and processing is very similar to the
human visual system. Therefore, the applications of the

FIGURE 22 | ANN–SNN conversion scheme [136]. (A) An ordinary two-layer ANN and a third-layer oscillatory neuron. (B) SEM image of ANN. (C) The I–V curve of a
memristor used to create an oscillating neuron. (D) SEM image of diffused memristor.
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photoelectric neuromorphic devices are mainly focused on the
artificial vision systems. Compared with the artificial vision
systems using electronic memory elements, artificial vision
systems with photonic memristors have great potential in
constructing artificial vision systems. The human visual
system consists mainly of the eyes, the lateral geniculate
nucleus (LGN) and the visual cortex. The retina first
captures light, preprocesses and prepares the information,
and the extracted information is then transmitted through
the optic nerve to the visual cortex for processing. The cone in
the human eye provides color vision by absorbing spectral
radiation based on wavelength (red, green, blue). Similar to the
human visual system, the photonic synapses not only respond
directly to light stimuli, but also have data storage and visual
information processing capabilities. For the development of
the artificial vision systems, photonic neural networks show
great potential in image perception, image memory, color
discrimination and real-time preprocessing, which further
lower the hardware and power consumption. Seo et al.
[138] fabricated an optoelectronic synergistic synaptic
device by integrating the synaptic devices and light sensors
on the same h-BN/WSe2 heterostructure (Figure 23A). Such
device responds differently to the wavelength of red (R), green
(G) and blue (B) light. The team utilized O2 processing to
capture and release electrons in the weight control layer
(WCL) formed on h-BN to achieve synaptic structure.

Figure 23 shows the synaptic weights of the optical neural
network after the 12th and 600th training epochs, indicating
the influence of the calendar element on the recognition effect.
The optical neural network successfully realized the
recognition task of the color and color mixed number
(1 and 4), and the recognition rate reached 90%. It has
important application potential in color mixed number
recognition based on the photoelectric synapse devices. In
addition, Wang et al. designed an artificial vision neuron
which was connected in series by IGZO4 UV sensor and
NbOx oscillating neuron, and successfully constructed a
Spiking neural network [139]. Such device structure is
shown in Figure 23C. The proposed device can not only
sense the UV light but also encode the light information
into electrical pulses. The IGZO4 device has good UV
response, and the resistance value decreases with the
decrease of the UV wavelength. Figure 23D shows the
circuit structure of the artificial visual neuron. The device
can display four stable peak frequencies when stimulated by
the UV light at different wavelengths, as shown in Figure 23E.
Based on the artificial neuron, complex background images
can be segmented according to different oscillation
frequencies, and the information encoding function of the
artificial vision system is demonstrated.

In addition to the visual system, the human body also has
sensory functions such as touch, hearing and smell. In recent

FIGURE 23 |Optoelectronic neuron devices. (A) A optic-neural synaptic device based on the h-BN/WSe2 heterostructure. (B) Synaptic values change versus the
increase of the training number [138]. (C) Structural illustration for artificial visual neuron composed of IGZO4-based UV sensor and NbOx-based oscillator. (D)Working
mode of artificial visual neuron under different light illumination. (E) Four different firing behaviors of artificial visual neuron in dark and upon stimulation with different
wavelengths UV light [139].
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years, optoelectronic neuromorphic devices have also received
extensive attention in these sensing systems [140–143].

SUMMARY AND OUTLOOK

The birth of memristors has vigorously pushed forward the
development of AI technologies. Its analogous characteristics
to the biological brain mean that it will likely bring to fruition
in the near future the dream of machines that think and behave
like humans. As photonic memristors are in their infancy,
electronic memristors, primarily represented by resistive
random-access memory, are the key components of
memristor-based neural networks. It is clear that the
advantages of the electronic memristor, such as high
integration density, low power consumption, and fast
switching speed, allow for an excellent imitation of biological
neurons and synapses. However, electronic memristors are
currently facing some stringent challenges, particularly at the
system level. Despite the great endurance that usually
accompanies an electronic memristor, its resistance state varies
over cycles, which results in well-known cycle-to-cycle variations.
In addition to cycle variations, a myriad of memristor cells is
required to construct an entire neural network. Challenges in
maintaining experimental conditions consistently results in
performance variations among different cells, namely, device-
to-device variation. The cycle-to-cycle and device-to-device
variations undoubtedly make it difficult to precisely adjust the
weight of each memristor cell to the desired value, thus
deteriorating the calculation accuracy. Several innovative
approaches have been proposed to address these drawbacks,
such as doping and dislocation [144], using two series
memristors and a minimum size transistor to encode the
resistance ratio of a memristor [145], and a closed-loop
peripheral circuit with a write-verify function [146]. Another
issue of electronic memristor-based neural networks arises from
their non-linear memristive responses with respect to the
stimulating signals, while linear and symmetric weights are
preferable for enhancing the training efficiency of the
networks. One possible method to solve this problem is to use
two series memristors with opposite weights to mitigate
symmetry [147]. Additionally, adopting novel programming
pulses and weight-change strategies can alleviate the adverse
effects of non-linear memristance on the calculation accuracy
[136,148]. The limited number of resistance states and parasitic
line resistance also contribute negatively to the operational
performance of the designed neural networks.

In contrast to electronic memristors, photonic memristors
exhibit several inherent merits for neural network applications.
The most significant advantage of photonic memristors can be
readily ascribed to their ability to store and process data in an
optical manner. This undoubtedly endows photonic memristors
with much larger bandwidths and speeds than electronic
memristors. Additionally, electric wires previously deployed to
link different components inside electronic memristors are
replaced by on-chip optical interconnections for photonic

memristor applications. The massless and uncharged nature of
photons can effectively suppress the charge-based wiring issue
and allow efficient communication. Moreover, photonic
memristors enable a non-destructive scenario to tailor the
synaptic weight of the conductive channel via a spatially
separated excitation, and its broadband response can
significantly lower energy consumption, rendering photonic
memristor-based neural networks similar to the biological
brain. Most importantly, using a wavelength-division
multiplexing technique associated with multichannel sources
leads to massive parallel data transfer, which makes matrix-
vector multiplication achievable. Despite these positive traits,
the physical performance of the photonic memristor still
suffers from several limitations. As the operation of the
photonic memristor involves photovoltaic and photogating
effects, its resistive switching mechanism remains unclear and
requires a more comprehensive interpretation. The conventional
CMOS process is not compatible with numerous photonic
memristive materials, hampering the production of large-scale
devices with reliable quality. More advanced techniques that
allow the integration of on-chip light sources are highly
desired. In addition to the above drawbacks, the weight of the
photonic memristor is usually modulated by photothermal-based
approaches, which require multiple complex pulses or a single-
structured pulse paradigm. Such complexity can be considerably
attenuated by the design of optoelectronic memristors that adopt
electronic programming and photonic readout. These devices are
exemplified by a recently reported phase-change-integrated
nanophotonic device with an in situ heater [149,150].
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