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Up to now, probing the quantum phase transition (QPT) and quantum critical (QC)
phenomena at finite temperatures in one-dimensional (1D) spin systems still lacks an
in-depth understanding. Herein, we study the QPT and thermodynamics of 1D spin-1/2
anisotropic Heisenberg antiferromagnetic chains by Green’s function theory. The quantum
phase diagram is renormalized by the anisotropy (Δ), which manifests a quantum critical
point (QCP) hc = 1 + Δ signaling the transition from gapless Tomonaga–Luttinger liquid
(TLL) to gapped ferromagnetic (FM) state, demonstrated by the magnetic entropy and
thermal Drude weight. At low temperatures, it is shown that two crossover temperatures
fan out a QC regime and capture the QCP via the linear extrapolation to zero temperature.
In addition, around QCP, the QC scaling is performed by analyzing the entropy and thermal
Drude weight to extract the critical exponents (α, δ, and β) that fulfill the Essamm–Fisher
scaling law, which provides a novel thermodynamic means to detect QPT for experiment.
Furthermore, scaling hypothesis equations with two rescaled manners are proposed to
testify the scaling analysis, for which all the data points fall on a universal curve or two
independent branches for the plot against rescaled field or temperature, implying the self-
consistency and reliability of the obtained critical exponents.
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INTRODUCTION

A quantum phase transition (QPT) takes place at zero temperature, as a result of the quantum
fluctuations arising from Heisenberg uncertainty relation [1]. Usually, it manifests that the ground
state of a quantum system changes upon tuning an external nonthermal parameter such as pressure
or magnetic field to a critical value, which is marked by a quantum critical point (QCP) for a
continuous transition. The QC fluctuations will result in an exotic behavior in stark contrast to the
conventional gapped or gapless low-lying excitations of materials. Near the QCP, a QC regime
emerges at finite temperatures in an extended parameter space attributed to the interplay between
quantum and thermal fluctuations [2]. This intriguing region is featured by the absence of energy
scales other than temperature as well as the corresponding critical properties of quantum correlations
or thermodynamic quantities, which culminate into scaling characteristic and universality [3–6]. In
this regard, one-dimensional (1D) quantum spin systems offer field tunability for probing QPT and
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critical phenomena. A variety of magnetic compounds have been
regarded as the 1D antiferromagnetic (AF) Heisenberg chain
model [3–9], whose ground state resides in a
Tomonaga–Luttinger liquid (TLL) characterized by spinon
quasiparticles with gapless elementary excitations [10, 11].
However, the magnetic anisotropy (Δ) would make a
significant impact on its properties. For Δ > 1, it turns into an
Ising-type model, which is realized in experiment for CoNb2O6

and BaCo2V2O8 [12–14]. A transverse field induces an Ising QPT
with gapless quantum criticality and self-duality of QCP [15].
Differently, for Δ < 1, it becomes an XY-type spin chain, the
experimental realization of which is Cs2CoCl4 [16, 17], whose
ground state lies in a TLL state. In a longitude magnetic field, it
induces a QPT without self-duality of QCP. Herein, we focus on
the AF Heisenberg chain for the anisotropy Δ ≤ 1, whose ground
state still resides in a TLL. Up to the critical field Bc = J (1+Δ)/gμB,
a QPT occurs from TLL to a spin polarized ferromagnetic (FM)
state with an excitation gap opened up by the field [14].

As we know, the magnetic entropy shows anomaly close to the
QCP, where two ground states compete with each other and it
does not determine which state to be reside in [18]. Besides, the
thermal Drude weight Dth is a good indicator signaling gapped
(Dth = 0) or gapless (Dth>0) low-lying excitations [19]. In fact, due
to that the absolute zero temperature cannot be attained
experimentally, the field-induced quantum criticality has been
intensively investigated by using the field dependence of
magnetization measurement to determine the kink at finite
temperature [3, 6, 9, 13, 16], which becomes rounded such
that the QCP cannot be measured exactly. The nature of
quantum fluctuations near the QCP remains enigmatic. Thus,
it is urgent need to provide a new clue to capture QCP for
diagnosing QPT at finite temperatures such that the QC scaling
becomes rather important, which is one of the cornerstone
concepts in modern physics and plays a key role in
understanding quantum criticality, namely, the QPT. Near
QCP, the physical quantities such as magnetization, magnetic
susceptibility, and specific heat are featured by a set of critical
exponents and scaling functions [3, 4]. Note that the critical
behavior of entropy should be the same as the specific heat.
However, whether the thermal Drude weight can be done critical
scaling analysis instead of magnetization (ineffective in Ising
model) or not? What critical scaling forms to feature quantum
criticality? Although several thermodynamic quantities were
carried out to do critical scaling analysis for detecting the
QPT, it is still challenging to measure the thermal Drude
weight as an effective detector of quantum criticality.

To fully assess the universality of quantum criticality, we will
demonstrate the scaling behavior of entropy and thermal Drude
weight divided by temperature to extract the critical exponents and
capture the QCP. On the one hand, such scaling is a direct
consequence of the scaled temperature to a certain universal power
multiplied by the field that collapse onto a single curve for the plot
against a scaling transformation for thermodynamic quantity. On the
other hand, as the magnetic field is scaled to a certain universal power
multiplied by temperature, the data points of scaling transformation
for thermodynamic quantity will fall on two independent branches. In
the forthcoming section, we present the model Hamiltonian and

Green’s function theory. In Results and Discussion, the renormalized
quantum phase diagram and phase crossover behavior are explored,
and the field dependence of magnetization for different anisotropies
has been tested, which are compared to the experimental observations;
the QC scaling behavior is analyzed and discussed. Finally, a
conclusion is drawn in Conclusion.

MODEL HAMILTONIAN AND METHOD

The 1D anisotropic Heisenberg AF chain in an external magnetic
field is governed by the Hamiltonian [6, 14, 16, 20],

H � J∑
l

[Sxl Sxl+1 + Syl S
y
l+1 + ΔSzl Szl+1] − gμBB∑

l

Szl , (1)

where J > 0 denotes the AF coupling and Δ represents the
anisotropy. Hereafter, we define the reduced magnetic field h �
gμBB (Zeeman energy). By performing Jordan–Wigner (JW)
transformation [21],

Szj � c+j cj − 1/2, S
y
j � 2iSxj S

z
j , S

x
j �

1
2
∏
i< j

(1 − 2c+i ci)(c+j + cj), (2)

the Hamiltonian (1) becomes

H � J∑
l

[1
2
(c+l cl+1 +H.c.) + Δ(c+l cl − 1

2
)(c+l+1cl+1 − 1

2
)]

− h∑
l

(c+l cl − 1
2
),

(3)

where the operator c+l (cl) creates (annihilates) a spinless fermion
at site l, which describes a system of interacting spinless fermions
in a magnetic field.

The method that we employ is the two-time Green’s function
theory. The retarded Green’s function for JW fermions is defined
as [22]

Gij(t − t′) � < < ci(t); c+j (t′)> > � −iθ(t − t′)< cic+j + c+j ci > ,
(4)

where the subscripts i and j label lattice sites. After the time
Fourier transformation, the Green’s function is put into the
equation of motion,

ω≪ ci; c
+
j ≫ � < [ci, c+j ]+> + ≪ [ci, H]; c+j ≫ . (5)

It is clearly shown that a rigorous calculation is not available
as a result of the Ising interacting quartic terms. For the high-
order Green’s function ≪ [ci, H]; c+j ≫ , doing the equation of
motion analogous to Eq. 4, it will generate higher-order
Green’s function appearing on the right hand, resulting in
an infinite set of coupled equations. In terms of Wick’s
theorem, we adopt the decoupling scheme for the four-
operator Green’s function [23]

≪ c+i cicj; c
+
j ≫≈< c+i ci > ≪ cj; c

+
j ≫ − < c+i cj > ≪ ci; c

+
j ≫ . (6)

For further Fourier transformation into k-space, the Green’s
function can be expressed as
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Gij � 1
N

∑
k

g(k)eik·(i−j). (7)

The integral of the wavevector k extends over the first Brillouin
zone. Thus, the momentum space Green’s function g(k,ω) can
be described as a function of wavevector k and the elementary
excitation spectrum ω � ω(k). According to the standard spectral
theorem, the correlation function of the product of fermion
operators can be calculated through the corresponding Green’s
function

< c+j ci > � i

2πN
∑
k

eik·(i−j) ∫ dω

eβω + 1
[g(k,ω + i0+)

− g(k,ω − i0+)], (8)
where β � 1/kBT, kB is the Boltzman’s constant, and T is the
absolute temperature. Thus, it gives rise to a set of self-consistent
integral equations of correlation function that can be solved
numerically. In calculation, an initial value of correlation
functions is put into Eq. 7 to produce resultant values, the
iteration of which continues until convergence is reached.

Then, the average magnetization M per site, specific heat, and
thermal entropy are defined as

M � 1
N

∑
l

Szl �
1
N

∑
l

(c+l cl − 1
2
), (9)

CV � dE

dT
� d〈H〉

dT
, S � ∫T

0

CV

T′ dT′. (10)

Hence, the isothermal magnetic entropy change is expressed
as [24]

ΔS � S(T, h) − S(T, 0) � ∫h

0
(zM
zT

)
h

dh. (11)

In addition, within the Kubo linear response theory, the zero-
frequency weight of the thermal conductivity is called thermal
Drude weight Dth, which is defined as [25–29]

Dth � πβ2

ZN
∑

n,m
En�Em

e−βEn
∣∣∣∣〈n|jth|m〉

∣∣∣∣2, (12)

with jth � J2 ∑
l
S
.

l · ( S
.

l+1 × S
.

l+2) being the energy current. Dth =

0 and Dth > 0 denote the thermal insulator and ideal thermal
conductor, respectively [19]. Namely, Dth = 0 or Dth > 0 reflects
the gapped or gapless low-lying excitations.

RESULTS AND DISCUSSION

In what follows, kB = ħ = 1 and J = 1 is set as an energy unit;
hereafter, all other parameters are scaled by it. At first sight,
without loss of generality, the field dependence of magnetization
at low temperatures is calculated for different anisotropies and
done a comparison to the experimental results. For Δ = 0.25, the
system is an XY-like antiferromagnet with gapless TLL. The
magnetization increases gradually as the field ascends and

reaches its saturation at Bc = J (1 + Δ)/gμB = 2.07T for J =
0.23 meV and g = 2.4, as shown in Figure 1A, which is in
accordance with the experimental observation value Bc = 2.1T
on compound Cs2CoCl4 [16]. Nonetheless, it becomes an
isotropic case with Δ = 1, for which a series of compounds
have been identified as candidates in experiment [6–9]. For
example, a copper-containing coordination polymer CuPzN (a
good realization of a spin-1/2 AF chain) [6], whose magnetization
is fitted by J = 10.6 K and g = 2.27 at low temperatures in
Figure 1B, manifests a relatively sharp kink around Bc = 13.9T,
close to the experimental, Bethe–Ansatz and QTM results.
Beyond Bc, the magnetization reaches the saturation value
1.135 μB per Cu2+, in excellent agreement with 1.15 μB
obtained from the experimental observation [3]. As the
temperature ascends, the sharp critical signatures broaden
systematically due to the enhanced thermal fluctuations. As it
is well known, the absolute zero temperature cannot be attained
experimentally such that the critical field cannot be measured
exactly. How to feature the universality of quantum criticality and
phase crossover with gapped or gapless low-lying excitations?
How to capture the exact critical field at finite temperature to
diagnose the QPT? In addition to the abovementioned
magnetization characterization, on the one hand, the magnetic
entropy is a good quantity to characterize the quantum criticality
by its maximum value at the lowest temperature because two
quantum phases compete with each other at the QCP, where it is
not determined which ground state to be resided in. Herein, the
magnetic field is renormalized by the anisotropy λ = h/(1 + Δ).
Figure 1C presents the Δ-λ phase diagram by the contour plot of
entropy. It is clearly shown that the renormalized critical field λc =
1.0 associated with a sharp peak of entropy separates the TLL and
FM phases for any anisotropy. At finite temperature, the different
states are featured by the magnetic entropy change in Figure 1D,
in which the inverse magnetocaloric effect (IMCE) (−ΔS < 0)
predominates in TLL at low temperature for λ < λc, while only
conventional magnetocaloric effect (CMCE) (−ΔS > 0) persists in
FM state beyond λc. Furthermore, it has been pointed out that
|ΔS| follows a power–law dependence of the field: |ΔS|～λn with
n � d ln |ΔS|

d ln λ the local exponent, which is available for both IMCE
and CMCE [30, 31]. Figure 1E shows n～2 power–law curve that
is performed by the same slope of linear ln|ΔS | versus lnλ
plots for different temperatures (see the inset in Figure 1E),
which is demonstrated in the AF materials La1-xGaxMnO3

with IMCE experimentally rather than the FM one showing
CMCE with n dependent of temperature and magnetic field
[30, 31]. On the other hand, the thermal Drude weight is a good
signature of gapped or gapless low-lying excitation, as shown in
Figure 1F. It manifests finite values in the TLL signaling gapless
behavior, which drops to zero at λc = 1.0, denoting the gapped low-
lying excitation in FM state. Meanwhile, its QC scaling will provide a
new clue to detect QPT. Similar to the performance of magnetization,
nearby but below the critical field, one can find that

Dth/T∝ (λc − λ)1/δ, (13)
demonstrated by the linear double logarithm with δ = 2.009 (see
the inset in Figure 1F), which agrees well with the experimental
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value 1.98 obtained from the critical scaling of magnetization on
CuPzN [3].

However, at finite temperatures, the QPT disappears, and it
only shows a phase crossover behavior. Proceeding the same way
as that observed in Sr3Ru2O7 [18], the field derivative of the
entropy divided by temperature is employed to characterize the
landscape of temperature–field phase diagram, as shown in
Figure 2A. A peak-valley structure marks two crossover
temperatures fanning out a QC regime, which constitute two
branches of the phase crossover boundaries. In the QC regime, it
is well known that the correlation length ξ diverges as
ξ∝ |λ − λc|−v, whereas the correlation time τc diverges as
τc ∝ ξz ∝ |λ − λc|−zv [1], and the energy gap Eg is inversely
proportional to the correlation length Eg ∝ ξ−z ∝ |λ − λc|zv [32,
33], wherein v and z are defined as the correlation length and
dynamic critical exponents, respectively. It presents a linear
relation of crossover temperature Tp ∝ |λ − λc|zv with zv = 1.
From the high-temperature extrapolation to zero temperature,
the T-linear relations intersect at a point located on the field axis,
so that one can get the QCP λc = 1.0. It is worth noting that, at λc,
the dispersion presents ω|λ�λc ∝ |k − kc|z with the dynamic
critical exponent z = 2 for d = 1 [33, 34]. Thus, one can
obtain ] = 1/2. It is different from the TLL low-energy
property that satisfies a linear dispersion relation ω � υs|k| (υs
the sound velocity) with ] = 1 and z = 1 [4, 32]. Under different
fields, the temperature dependence of entropy behaves

differently. At high temperature, the entropy approaches its
saturation value ln (2S + 1) = ln2, as shown in Figure 2B.
Upon cooling down to zero temperature, one can find that the
entropy displays a T-linear relation, implying a gapless behavior,
while it decays exponentially S∝ e−Eg/kBT, suggesting the gapped
low-lying excitation with the gap Eg manifested by the linear lnS-
1/T curve, the negative slope of which is equal to Eg � λ − λc (see
the inset in Figure 2B). However, at λc, it is incurved. After a
transformation, S/T diverges as T→0, as shown in Figure 2C,
which indicates a power–law temperature dependence

S/T∝T−α, (14)
with α = 0.497 demonstrated by the slope of linear lnS/T–lnT
curve in the inset, which turns out to be a T1/2 behavior of the
entropy. In fact, one can obtain α = 1/2 from the scaling relation
α = 2-(d + z)/z with dynamic exponent z = 2 and spatial
dimension d = 1 [3, 4, 34].

For a comparison, the field derivative of thermal Drude weight
divided by temperature is also employed to characterize the
landscape of temperature–field phase diagram, as shown in
Figure 2D, which shows the similar behavior as the entropy
plotted in Figure 2A. A double-valley structure marks two
crossover temperatures fanning out a QC regime, which also
feature the phase crossover boundaries. Under different fields, the
thermal Drude weight as a function of temperature behaves

FIGURE 1 | At low temperatures, the field dependence of magnetization for Δ = 0.25 in (A) (J, g) = (0.23 meV, 2.4) and for Δ = 1.0 in (B) (J, g) = (10.6 K, 2.27). (C)
The renormalized quantum phase diagram by the contour plot of entropy at T = 0.005 with Tomonaga–Luttinger liquid (TLL) and spin polarized ferromagnetic (FM) phase
being unveiled. For Δ = 0.25, (D) the temperature dependence of magnetic entropy change under different fields. (E) The field dependence of magnetic entropy change;
the inset is its log-log scale under different temperatures. (F) The thermal Drude weight landscape of renormalized quantum phase diagram; the inset is its scaling
around the quantum critical point.
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differently, as shown in Figure 2E. As T→0, one can find that the
thermal Drude weight displays a T-linear relation for λ < λc,
implying a gapless behavior, while it is exponentially activated:
Dth ∝ e−Eg/kBT for λ > λc, suggesting the gapped low-lying
excitation with the gap Eg manifested by the slope of linear
lnDth against 1/T curve in the inset of Figure 2E. However, at
λc, it is necked out. After a transformation, Dth/T is incurved, as
shown in Figure 2F, which implies a power–law temperature
dependence

Dth/T∝Tβ, (15)
with β = 0.489 demonstrated by the slope of linear lnDth/T–lnT
curve in the inset of Figure 2F, which turns out to be a T3/2

behavior of the thermal Drude weight [28].
Thus, one can find that α+β(1+δ) = 1.968 fulfills the

Essam–Fisher relation [35]

α + β(1 + δ) � 2. (16)
In addition, we propose some scaling hypothesis equations

to confirm the reliability and self-consistency of the obtained
critical exponents. From the above analysis, it is clearly shown
that the critical exponents δ and β describe the field and

temperature dependence of thermal Drude weight
Dth(T → 0, λc − λ)/T∝ (λc − λ)1/δ and Dth(λ � λc, T)/T∝Tβ,
respectively, whereas α features the temperature dependence of
entropy S(λ � λc, T)/T∝T−α. Although three critical exponents
are found, indeed, only two are mutually independent as a result
of the Essam–Fisher relation, so that one can select arbitrary two
exponents as scaling checking benchmark. In general, β and δ are
selected to testify the critical scaling laws. Herein, two scaling
hypothesis checking manners are adopted. One is the magnetic
field rescaled, i.e., the magnetic field multiplied by a scaled
temperature. The entropy hypothesis equation on the
temperature scaling is assumed as

S(λ − λc, T)/T � T−αR((λ − λc)/Tβδ) (17)
withR(x) being a scaling function. At λ = λc, it allows one to get
the critical exponent β from S(λ � λc, T)/T � T−αR(0). In
Figure 3A, the scaling transformation of isothermal entropy
collapses into a universal curve, indicating the critical
exponents consistent with the scaling hypothesis. We further
give the critical scaling behavior of thermal Drude weight as

Dth(λ − λc, T)/T∝TβΦ((λ − λc)/Tβδ) (18)

FIGURE 2 | Temperature–field phase diagram based on the contour plot of the field derivative of (A) entropy and (D) thermal Drude weight divided by temperature,
fanning out a quantum critical (QC) regime. The temperature dependence of (B) entropy and (E) thermal Drude weight under different fields; the insets are the logarithm
as a function of 1/T, revealing the spin excitation gap by the magnitude of slope. (C) S/T and (F) Dth/T as a function of temperature at the critical field; the insets are the
corresponding double logarithm plot, unveiling the critical exponents.
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with Φ(x) being a scaling function, which allows an unequivocal
determination of β from the critical field thermal Drude weight
Dth(λ � λc, T)/T∝TβΦ(0). The scaling transformation also
collapses onto a universal curve, as shown in Figure 3B.

The other is the temperature rescaled, i.e., the temperature
multiplied by a scaled magnetic field. Differently, in the
asymptotic QC region, the thermal Drude weight equation is
proposed as

Dth(T, λ − λc)/T �
∣∣∣∣∣λ − λc

∣∣∣∣1/δf(T/|λ − λc|βδ), (19)
in which f(x) is a regular function that behaves differently for
λ < λc and λ > λc, respectively. Thus, as T→0, it allows an
unambiguous determination of the critical exponent δ from the
thermal Drude weight Dth(T → 0, λ − λc)/T � |λ − λc|1/δf(0),
which is explicitly demonstrated in the inset of Figure 1F.
Nevertheless, at finite temperature, the transformation of Dth/
T×|λ-λc|−1/δ versus T/|λ-λc|βδ will form two universal curves for λ
< λc and λ > λc, respectively. Figure 3D shows the double
logarithm scale of thermal Drude weight around λc, wherein
all the data points fall on two independent branches. Proceeding
the same way, the data of scaling transformation for
entropy around λc as a function of T/|λ-λc|βδ plotted in
Figure 3C also fall on two independent branches, which
explicitly confirm the self-consistency of the critical exponents.
Therefore, it is clearly shown that the normalized variables obey
the scaling hypothesis equations, which not only testify the
quantum criticality but also verify the reliability and self-
consistency of the obtained critical exponents that meet the
critical scaling law.

CONCLUSION

In conclusion, the QPT and low-temperature properties of
1D spin-1/2 anisotropic Heisenberg AF chains are
investigated by means of Green’s function theory. For
different anisotropies, the field dependence of
magnetization is calculated at low temperatures, which
are in good agreement with the experimental results. We
further renormalize the quantum phase diagram by the
anisotropy that manifests a gapless TLL transition into
gapped FM state at hc = 1 + Δ, which is demonstrated by
the drops to zero from a finite value of thermal Drude
weight. At low temperature, two crossover temperatures
fan out a QC regime and capture the QCP from linear
high-temperature extrapolation to zero temperature. The
T-linear dependence of entropy and thermal Drude weight
signals the gapless low-lying excitation in TLL, while it
decays exponentially upon cooling down to zero
temperature, suggesting the gapped behavior in FM state.
At the QCP, it takes on a T1/2 or T3/2 behavior. Furthermore,
we demonstrate the QC scaling via analyzing the entropy
and thermal Drude weight around QCP to extract the
critical exponents (α, δ, and β) that fulfill the
Essamm–Fisher relation α+β(1+δ) = 2, which provides a
novel thermodynamic means to detect QPT for experiment.
Meanwhile, scaling hypothesis equations with two scaling
transformation manners are proposed to check the scaling
analysis. One is the plot against the rescaled magnetic field,
for which all the data points collapse onto a universal single
curve, whereas the other is the rescaled temperature such

FIGURE 3 | Scaling transformation of (A) entropy and (B) thermal Drude weight as a function of rescaled field at different temperatures, while they are plotted as a
function of rescaled temperature around the critical field in (C) and (D), respectively. All the data points collapse onto a universal curve or two independent branches,
indicating the self-consistency and reliability of the obtained critical exponents.
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that the data points fall on two independent branches,
indicating the self-consistency and reliability of the
obtained critical exponents, which provide an explicit
physical picture for understanding QC phenomena at
finite temperatures.
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