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Learning physical properties of a quantum system is essential for the developments of
quantum technologies. However, Heisenberg’s uncertainty principle constrains the potential
knowledge one can simultaneously have about a system in quantum theory. Aside from its
fundamental significance, the mathematical characterization of this restriction, known as
‘uncertainty relation’, plays important roles in a wide range of applications, stimulating the
formation of tighter uncertainty relations. In this work, we investigate the fundamental
limitations of variance-based uncertainty relations, and introduce several ‘near optimal’
bounds for incompatible observables. Our results consist of two morphologically distinct
phases: lower bounds that illustrate the uncertainties about measurement outcomes, and
the upper bound that indicates the potential knowledge we can gain. Combining them
together leads to an uncertainty interval, which captures the essence of uncertainties in
quantum theory. Finally, we have detailed how to formulate lower bounds for product-form
variance-based uncertainty relations by employing entropic uncertainty relations, and hence
built a link between different forms of uncertainty relations.
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1 INTRODUCTION

Uncertainty principle, originally introduced by Heisenberg [1], clearly sets quantum theory apart from our
classical world. Formally, it states that it is impossible to predict the outcomes of incompatiblemeasurements
simultaneously, such as the position and momentum of a particle. The corresponding mathematical
formulation for position andmomentum are given by Kennard in Ref. [2] (see also Ref. [3]). Later, a general
form of uncertainty relation has been established by Robertson [4], and has been further improved by
Schrödinger in Ref. [5], which is expressed in terms of commutator and anticommutator of obserables:

V A( )V B( )≥ |1
2
〈 A, B[ ]〉|2 + |1

2
〈 �A, �B{ }〉|2, (1)

where the quantity V(A) � 〈 �A2〉 (resp. V(B)) stands for the variance of observable A (resp. B), the
operator �A is defined as A− 〈A〉, and the expectation value 〈 〉 is over the quantum state |Ψ〉.
Another way to demonstrate the joint uncertainty associated with incompatible observables is
through the summation, namely V(A) + V(B) [6–9], which highlights an advantage in the parameter
estimation of quantum system [10–13].

Riding the waves of information theory, entropies have been used to quantify the uncertainties
associated with quantum measurements [14]. For instance, the entropies of probability distributions of
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canonically conjugate variables obey Białynicki-Birula-Mycielski
uncertainty relation [15]. It is noteworthy that Heisenberg’s
uncertainty relation follows from Ref. [15] as a special case. The
entropic uncertainty relation for any pair of bounded observables is
established by Deutsch in Ref. [16]. An improved expression was
subsequently conjectured by Kraus [17] and then had been proved by
Maassen and Uffink [18]. With access to a memory system, the
conventional entropic uncertainty relations have been further
generalized to entanglement-assisted formalism [19]. Soon
afterwards, several improvements and extensions, including the
cases of multiple measurements, universal uncertainty regions and
quantum processes, have been proposed in Refs. [20–25]. Recently,
beyond inertial frames, the uncertainty trade-off occurred near the
event horizon of a Schwarzschild black hole [26] and the relativistic
protocol of an uncertainty game in the presence of localized fermionic
quantum fields inside cavities [27] have also been demonstrated.

Aside from their theoretical significance [28], these uncertainty
relations support a variety of applications and have been widely used
in current quantum technologies, such as analyzing the security of
quantum key distribution protocols [19], witnessing quantum
correlations [29–32], and even inferring causality from quantum
dynamics [33]. Thus, pushing the boundary of uncertainty relation
will not only deepen our understanding of quantum foundations,
but also has impact on practical applications.

In this work, we focus on the case of variance-based
uncertainty relations, with the forms of both product and
summation, and introduce the concept of uncertainty interval.
The formulation of such an interval can of course be subdivided
into two, namely finding the lower bound and upper bounds for
joint uncertainties. To do so, we establish the partial Cauchy-
Schwarz inequality, which generalizes the standard Cauchy-
Schwarz inequality, and use this toolkit to construct near-
optimal bounds for variance-based uncertainty relations.
Numerical results highlight the advantages of our framework.

2 PRODUCT-FORM VARIANCE-BASED
UNCERTAINTY RELATIONS

Throughout this paper, we consider quantum systems acting on
finite-dimensional Hilbert space. Let us start with a pair of
incompatible observables A and B, and denote their spectral
decompositions as A = ∑iai|ai〉〈ai| and B = ∑ibi|bi〉〈bi|
respectively. On the other hand, assume the alternative
observable �A and �B have the following spectral decompositions;
that are �A � ∑iai′|ai〉〈ai| and �B � ∑ibi′|bi〉〈bi|. Remark that, here
all the eigenvalues are real numbers, i.e. ai, ai′, bi, bi′ ∈ R. Now for
any given orthonormal basis {|ψi〉}, we can re-express �A|Ψ〉 and
�B|Ψ〉 as ∑iαi|ψi〉 and ∑iβi|ψi〉 respectively. It is worth mentioning
that in general both �A|Ψ〉 and �B|Ψ〉 are unnormalized, and hence
the vectors (αi) and (βi) do not forms probability distributions.
Then, by defining the absolute value of αi and βi as xi and yi
respectively, the variance of observablesA and B can be rewritten as

V A( ) � | �x|2, V B( ) � | �y|2, (2)
and thus we have

V A( )V B( ) � | �x|2 · | �y|2. (3)
It now follows from Cauchy-Schwarz inequality immediately that

V A( )V B( )≥ ∑
i

xiyi
⎛⎝ ⎞⎠2

. (4)

We note that such a choice of xi and yi leads directly to the main
results presented in a recent formulation of strong uncertainty
relation [34]. Clearly, this is not the only choice of xi and yi. By
setting xi as |ai′|













〈Ψ|ai〉〈ai|Ψ〉

√
and yi as |bi′|













〈Ψ|bi〉〈bi|Ψ〉

√
, we

re-obtain another part of results constructed in Ref. [34]. Here, for
simplicity, we further denote the Uhlmann’s fidelity between |Ψ〉
and |ai〉 (|bi〉) as Fa

i (Fb
i ), which are

Fa
i � 〈Ψ|ai〉〈ai|Ψ〉, Fb

i � 〈Ψ|bi〉〈bi|Ψ〉. (5)
A key observation in this work is that any improvement over

the well-known Cauchy-Schwarz inequality will give us a better
bound of variance-based uncertainty relation, with the same
amount of information required in Eq. (4). To this end, we
investigate the intrinsic connection between the arithmetic-
geometric mean (AM-GM) inequality and the Cauchy-
Schwarz inequality. We start by writing down the product of
| �α|2 and | �β|2,

| �α|2| �β|2 � ∑
ij

x2
i y

2
j � ∑

i<j
x2
i y

2
j + x2

jy
2
i( ) +∑

i

x2
i y

2
i

≥ ∑
i<j

2xixjyjyi( ) +∑
i

x2
i y

2
i

� ∑
i

xiyi
⎛⎝ ⎞⎠2

.

(6)

Above inequality is a result of n (n − 1)/2 rounds of AM-GM
inequalities for x2

i y
2
j + x2

jy
2
i ≥ 2xiyjxjyi with different indexes.

Therefore, the equality condition holds if and only if xiyj = xjyi for
all i ≠ j. By defining the quantity Ik as

∑
1≤i<j≤k

2xixjyjyi( ) + ∑
1≤i<j≤n
k<j

x2
i y

2
j + x2

jy
2
i( ) + ∑

1≤i≤n
x2
i y

2
i , (7)

we can write the left-hand-side of Eq. 4 as

I0 � | �x|2| �y|2 � V A( )V B( ), (8)
which is precisely the product-form joint uncertainty. On the
other hand, the previous known bound in Ref. [34], i.e. right-
hand-side quantity of Eq. 4, can be reformatted as

In � ∑
i

xiyi
⎛⎝ ⎞⎠2

. (9)

Now we introduce a chain of inequalities that outperform
Cauchy-Schwarz inequality. More precisely, we have.

Theorem 1. For any n-dimensional real vectors �x, �y with non-
negative components, and Ik defined in Eq. 7, we have
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I0 ≥ I2 ≥ . . . , ≥ In−1 ≥ In. (10)
Actually, for any index k it follow from the AM-GM inequality

that

Ik+1 � Ik +∑k
i�1

2xixk+1yiyk+1 − x2
i y

2
k+1 − x2

k+1y
2
i( )≤ Ik, (11)

as required. Algebraically, the inequality | �x|2| �y|2 ≥ Ik is obtained by
applying AM-GM inequality to the first k components of both �x and
�y, and hence can be viewed as a partial Cauchy-Schwarz inequality.
More importantly, such a partial Cauchy-Schwarz inequality, see Eq.
10, provides n− 2 tighter lower bounds forV(A)V(B) comparedwith
the main result of [34], namely I0 = V(A)V(B) ≥ In. In particular, we
can insert more terms in the above descending chain by selecting
arbitrary x2

i y
2
j + x2

jy
2
i (i < j). For example, the inequality I0 ≥ In−1

obtained from our Thm. One immediately leads to a tighter bound.
More precisely, Eq. 4 can be improved to

V A( )V B( )≥ 1
4

∑n−1
i�1

〈 �A, �Bn[ ]〉 + 〈 �A, �Bn{ }〉∣∣∣∣ ∣∣∣∣⎛⎝ ⎞⎠2

+ 〈Ψ| �A|ψn〉
∣∣∣∣ ∣∣∣∣2 ∑n

i�1
〈Ψ|�B|ψn〉
∣∣∣∣ ∣∣∣∣2⎛⎝ ⎞⎠

+ 〈Ψ|�B|ψn〉
∣∣∣∣ ∣∣∣∣2 ∑n

i�1
〈Ψ| �A|ψn〉
∣∣∣∣ ∣∣∣∣2⎛⎝ ⎞⎠

− 〈Ψ| �A|ψn〉
∣∣∣∣ ∣∣∣∣2 〈Ψ|�B|ψn〉

∣∣∣∣ ∣∣∣∣2 ≔ L1,

(12)

which offers a stronger bound than that of

L1 ≥
1
4

∑n
i�1

〈 �A, �Bn[ ]〉 + 〈 �A, �Bn{ }〉∣∣∣∣ ∣∣∣∣⎛⎝ ⎞⎠2

≥ 〈 �A�B〉
∣∣∣∣ ∣∣∣∣2. (13)

Note that the method of constructing bounds presented here
for variance-based uncertainty relations requires the same
amount of information, i.e. the fidelity between quantum state
and the eigenvector of observables, needed in previous works,
such as the one considered in Ref. [34], but provable tighter.

We now move on to further strengthening the bounds of
uncertainty relations by considering the action of symmetric
group Sn. For any two permutations π1, π2 ∈ Sn, we define

π1, π2( )Ik � ∑
1≤π1 i( )< π2 j( )≤ k

2xπ1 i( )xπ2 j( )yπ2 j( )yπ1 i( )( )
+ ∑

1≤π1 i( )< π2 j( )≤ n
k< π2 j( )

x2
π1 i( )y

2
π2 j( ) + x2

π2 j( )y2
π1 i( )( )

+ ∑
π1 i( )�π2 j( )

x2
π1 i( )y

2
π2 j( ).

(14)

It is straightforward to check that the quantity I0 is stable under
the action of Sn × Sn. Writing everything out explicitly, we have.

Theorem 2. For any permutations π1, π2 ∈ Sn, we have

I0 ≥ π1, π2( )I2 ≥ . . . , ≥ π1, π2( )In−1 ≥ π1, π2( )In. (15)

Optimizing over the symmetric group Sn, a stronger version
of the variance-based uncertainty relations is obtained.

Theorem 3. For any permutations π1, π2 ∈ Sn, we have

I0 ≥ max
π1 ,π2∈Sn

π1, π2( )I2 ≥ . . . , ≥ max
π1 ,π2∈Sn

π1, π2( )In. (16)

Mathematically, above inequalities are tighter than the result
in Thm. 1, since max

π1 ,π2∈Sn

(π1, π2)Ik ≥ Ik holds for any

permutations. Physically, the action of symmetric group works
well since the overlaps between quantum state and the
eigenvectors of observables are not uniformly distributed.

3 SUM-FORM VARIANCE-BASED
UNCERTAINTY RELATIONS

In this section we turn our attention to the sum-form variance-
based uncertainty relations. Before doing so, let us recall the
rearrangement inequality first. Let (xi) and (yi) be two n-tuple
of real positive numbers arranged in non-increasing order,
namely xi ≥ xi+1 and yi ≥ yi+1, with their direct sum,
random sum and reverse sum between xi and yi being
defined as

Di ≔ x1y1 + x2y2 +/ + xnyn,
Ra ≔ x1yπ 1( ) + x2yπ 2( ) +/ + xnyπ n( ), π ∈ Sn

Re ≔ x1yn + x2yn−1 +/ + xny1.
(17)

Then the following lemma characterizes the relationship
among these quantities; that is.

Lemma. (Rearrangement inequality) For any two non-increasing
n-tuples x and y of nonnegative numbers, we have

Di≥Ra≥Re. (18)
From the parallelogram law, the summation of variances can

be re-expressed as

V A( ) + V B( ) � 1
2
∑
i

xi + yi( )2 + 1
2
∑
i

xi − yi( )2. (19)

Combining with the rearrangement inequality we obtain the
following result.

Theorem 4. For any two permutations π1, π2 ∈ Sn, we have

V A( ) + V B( )≥ 1
2
∑
i

xi + yi( ) xπ1 i( ) + yπ1 i( )( )
+ 1
2
∑
i

xi − yi

∣∣∣∣ ∣∣∣∣ xπ2 i( ) − yπ2 i( )
∣∣∣∣ ∣∣∣∣. (20)

Remark that, by setting π1 = (1), our newly constructed
uncertainty relation outperforms similar results of sum-form
variance-based uncertainty relation considered in Ref. [34].
We denote by L2 the bound of Thm. Four corresponding to
the choice of π1 = (1), π2 = (1 2 . . . n), xi � |αi|, yi � |βi|, which
will be used in Sec. V.
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4 UNCERTAINTY INTERVALS

Quantum theory does not only impose restrictions on the lower
bounds of uncertainties, but also sets limitations on the upper bounds
of uncertainties [34], which are known as reverse uncertainty
relations in the literature. In this section, we investigate the
reverse uncertainty relations for both the product-form and sum-
form uncertainty relations, and introduce several tighter bounds.
Consequently, our lower bounds presented in previous sections
together with the results obtained in this section lead to intervals
for joint uncertainty, which are referred as uncertainty intervals.

For index 1 ≤ i ≤ n, we define

X � max
i

xi{ }, x � min
i

xi{ },
Y � max

i
yi{ }, y � min

i
yi{ }. (21)

Using the rearrangement inequality, we thus see that

xy +XY( )2
4xyXY

∑
i

xiyi
⎛⎝ ⎞⎠2

≥
xy +XY( )2
4xyXY

∑
i

xiyπ i( )⎛⎝ ⎞⎠2

≥V A( )V B( ).
(22)

By taking minimum over all permutations π ∈ Sn, we obtain a
tighter upper bound for V(A)V(B):

V A( )V B( )≤ min
π∈Sn

xy +XY( )2
4xyXY

∑
i

xiyπ i( )⎛⎝ ⎞⎠2

≔ U1, (23)

which proves that the joint uncertainty of incompatible
observables A and B (for the product-form) is restricted
within the interval [L1,U1], i.e. V(A)V(B) ∈ [L1,U1]. In
other words, [L1,U1] is an uncertainty interval for V(A)V(B).

On the other hand, using the fact V(A) � | �α|2 and
V(B) � | �β|2, one derive an upper bound on the sum of
variances of incompatible observables A and B as

FIGURE 1 | Lower bounds of V(A)V(B) for a family of spin-1 particles
|Ψ(θ)〉: the product-form uncertainty relation V(A)V(B), the bound L1 of Eq. 12,
the bound of Ref. [34], and the bound of Schrödinger uncertainty relation [5]
are depicted in red, blue, green, and orange respectively.

FIGURE 2 | Lower bounds of V(A) + V(B) for a family of spin-1 particles
|Ψ(θ)〉: the sum-form uncertainty relation V(A) + V(B), our bound L2 of Eq. 20,
and the bound of Ref. [34] are depicted in blue, green, and yellow respectively.

FIGURE 3 | Upper bounds of V(A)V(B) for a family of spin-1/2 particles
ρ(θ): the product-form uncertainty relation V(A)V(B), our bound U1 of Eq. 23,
and the bound of Ref. [34] are depicted in red, blue, and orange respectively.

FIGURE 4 | Upper bounds of V(A) + V(B) for a family of spin-1/2 particles
ρ(θ): the sum-form uncertainty relation V(A)V(B), our bound U2 of Eq. 25, and
the bound of Ref. [34] are depicted in red, blue, and orange respectively.
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V A( ) + V B( ) � ∑
i

x2
i + y2

i( )≤ ∑
i

xi + yi( )2. (24)

Recalling the definitions xi � |αi| and yi � |βi|, we have that

V A( ) + V B( )≤ ∑
i

〈ψn| �A|Ψ〉
∣∣∣∣ ∣∣∣∣ + 〈ψn|�B|Ψ〉

∣∣∣∣ ∣∣∣∣( )2. (25)

Denote the right-hand (RHS) of (25) by U2. Thus we have
obtained a uncertainty interval for V(A) + V(B): [L2,U2]. We
remark that U2 is not always better than the bound obtained by
[34], but it provides a complementary one. The comparison will
be discussed by examples in the next section.

5 NUMERICAL EXAMPLES AND
CONCLUSION

In this section we provide numerical examples to show how the
bounds obtained in this work outperform previous strong results
[34]. First of all, let us consider the spin-1 particle with the state
|Ψ(θ)〉 = cos θ|1〉 − sin θ|0〉, where the state |0〉 and |1〉 are
eigenstates of the angular momentum Lz. We investigate the
uncertainty associated with angular momentum operators for
spin-1 particle, namely A = Lx and B = Ly. To formulate
bounds for uncertainty relations, we choose xi � |αi| and yi �
|βi| (similar for xi � |ai′|



















〈Ψ(θ)|ai〉〈ai|Ψ(θ)〉

√
and yi � |bi′|



















〈Ψ(θ)|bi〉〈bi|Ψ(θ)〉

√
).

In Figure 1, our boundL1 has been compared with that of [34]
in the product-form for the family of spin-1 particles |Ψ(θ)〉. As
shown in our numerical results, the bound L1 (in blue) provides
the best estimation and is almost optimal. As a supplement, we
also compare our result with Schrödinger’s uncertainty relation
(in orange). In Figure 2, we plot lower bounds for the sum-form
variance-based uncertainty relation for the family of the spin-1
particles |Ψ(θ)〉, which highlights the advantage of our method.

Let us move on to considering the spin-12 particle with the
following density matrix

ρ θ( ) � 1
2

Id + cos
θ

2
σx +



3

√
2

sin
θ

2
σy + 1

2
sin

θ

2
σz( ), (26)

where the two incompatible observables are taken as A = σx and
B = σz. In Figure 3, it has been shown that our upper bound U1

provides the best estimation for the product of two variances
and typically outperforms the upper bound from Ref. [34].
Note that our bound is almost optimal, as it is almost identical
to the optimal value. However, our upper bound U2 for the sum
of variances V(A) + V(B) for states ρ(θ) is not always tighter
than that of Ref. [34]. Nevertheless, it still provides an
improvements for most of the time. See Figure 4 for an
illustration.

Apart from constructing stronger uncertainty relations, our
method introduced in Sec. II also helps to fill up the gap between
product-form variance-based uncertainty relations and entropic
uncertainty relations. Following Ref. [35], we have

V A( ) + V B( )≥H A( ) +H B( ) + c, (27)

where H (·) stands for the Shannon entropy and c is a state-
independent constant. Using Thm. 1, it is straightforward to
check that

V A( )V B( )≥ 1
4

∑n−1
i�1

xiyi
⎛⎝ ⎞⎠2

+ x2
nV B( ) + y2

nV A( ) − x2
ny

2
n. (28)

On the one hand, the term x2
nV(B) + y2

nV(A) appeared above
forms a so-calledweighted uncertainty relation [7]. Notice that we
can always assume x2

n � y2
n in the numerical calculation, since V

(rA)V(B) = r2V(A)V(B). Thus, Eq. 28 can be bounded as

V A( )V B( )≥ 1
4

∑n−1
i�1

xiyi
⎛⎝ ⎞⎠2

+ x2
n H A( ) +H B( ) + c( ) − x4

n. (29)

Therefore both the incompatibility between observables and
mixness of the quantum state will affect the variance-based
uncertainty relations. Moreover, any entropic uncertainty
relation can be employed to construct a lower bound for
product-form variance-based uncertainty relation.

To summarize, we have introduced several variance-based
uncertainty relations both in the sum and product forms. Our
results contain both the lower bounds and the upper bounds,
which leads to the concept of uncertainty intervals. Numerical
experiments illustrate the advantages of our bounds, and in
some cases our bounds are near optimal. Quite remarkable, our
method in deriving stronger variance-based uncertainty
relations also fills the gap between the product-form
variance-based uncertainty relations and the entropic
uncertainty relations. Beside the results present here, our
framework can also be used in formulating unitary
uncertainty relations. For more details, see our follow-up
work [36].
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