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Understanding phases of matter is of both fundamental and practical importance. Prior to
the widespread appreciation and acceptance of topological order, the paradigm of
spontaneous symmetry breaking, formulated along the Landau–Ginzburg–Wilson
(LGW) dogma, is central to understanding phases associated with order parameters of
distinct symmetries and transitions between phases. This work proposes to identify
ground-state phases of the quantum many-body system in terms of time order, which
is operationally defined by the appearance of the non-trivial temporal structure in the two-
time auto-correlation function of a symmetry operator (order parameter) while the system
approaches thermodynamic limit. As a special case, the (symmetry protected) time
crystalline order phase detects continuous time crystal (CTC). We originally discover
the physical meaning of CTC’s characteristic period and amplitude. Time order phase
diagrams for spin-1 atomic Bose–Einstein condensate (BEC) and quantumRabi model are
fully worked out. In addition to time-crystalline order, the intriguing phase of time-functional
order is discussed in two non-Hermitian interacting spin models.

Keywords: time order, time crystal, quantum phase, Bose–Einstein condensate, non-Hermitian many-body physics,
fully connected model, exotic phase

1 INTRODUCTION

A consistent theme for studying the many-body system, particularly in condensed matter physics,
concerns the classification of phases and their associated phase transitions [20, 52, 68]. In the
celebrated Landau–Ginzburg–Wilson (LGW) paradigm [35, 70], spontaneous symmetry breaking
plays a central role with order parameters characterizing different phases of matter possessing
respective broken symmetries. Other schemes for classifying phases as well as their associated
transitions are, however, beyond the Landau–Ginzburg–Wilson paradigm, which are by now well
accepted since first established decades ago [53, 63, 64]. For example, topological order, which
classifies the gapped quantummany-body system, constitutes a topical research direction [63, 64, 66,
67]. Our current understanding categorizes gapped systems into gapped liquid phases [74] and
gapped non-liquid phases, with the former broadly including phases of topological order [63, 64],
symmetry-enriched topological order [9, 12, 25, 65], and symmetry-protected trivial order [10, 11,
23], while the recently discussed fracton phases [55, 56, 60] belong to the latter of gapped non-liquid
phases.

Temporal properties of phases are also worthy of investigations as exemplified by many recent
studies [41, 50, 69]. For instance, time crystal (TC) or perpetual temporal dependence in a many-
body ground state that breaks spontaneously time translation symmetry (TTS) constitutes an
exciting new phenomenon. First proposed by Wilczek [69] for quantum systems and followed by
Shapere and Wilczek [54] for classical systems in 2012, TC in their original sense is unfortunately
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ruled out by Bruno’s no-go theorem the following year [3, 42].
Watanabe and Oshikawa (WO) reformulate the idea of quantum
TC, and present a refined no-go theorem for many-body systems
without too long-range interactions [62]. Continued efforts are
directed at searching for continuous time crystal in open systems
[4, 5, 30] and classical driven-diffusive systems [28]. Most recent
efforts on this topic are directed toward non-equilibrium discrete/
Floquet TC breaking discrete TTS [16, 17, 31, 51, 61, 72],
particularly in systems with disorder that facilitate many-body
localizations [61, 72], in addition to clean systems [19, 27, 39, 49].
Ongoing studies are further extended to open systems with
Floquet driving in the presence of dissipation [14, 21, 22, 37,
46], with experimental investigations reported for a variety of
systems [2, 13, 43, 47, 48, 57, 75]. A recent study addresses TC and
its associated physics along the imaginary time axis [6].

We introduce time order in this work as the essential element
for a new perspective to identify and categorize quantum many-
body phases, based on different ground-state temporal patterns.
Each quantum many-body Hamiltonian Ĥ comes with its
evolution or time translation operator e−iĤt. When continuous
time translation symmetry is broken for operator e−iĤt, akin to
the breaking of continuous spatial translation symmetry for
operator e−i �k· �r, time crystals arise in direct analogy to spatial
crystals [69]. The message we hope to convey here in this study is
rooted on the dual between Ĥ and e−iĤt, which we argue quite
generally establishes a solid foundation for time order and
provides further information concerning ground-state
quantum phases based on time domain properties. Different
quantum many-body states with the same temporal patterns
are classified into the same time order phases, of which
continuous TC (CTC), a ground state with periodic time
dependence breaking continuous TTS as originally proposed
in Refs. [54, 69], belongs to one of them.

We will adopt the WO definition of CTC based on two-time
auto-correlation function of an operator. It was first outlined in
the now famous no-go theorem work [62], and it establishes a
general and rigorous subtype of CTC. Recently, Kozin and
Kyriienko claim to have realized such a genuine ground-state
CTC in a multi-spin model with long-range interaction [33],
buttressing much confidence to the search for exotic CTCs. The
operational definition that we introduced for time order
encompasses WO CTC as one type of time order phases. We
will also explore and elaborate a variety of possible exotic
phases.

2 RESULTS

2.1 Time Order
We argue that ground-state temporal properties of a quantum
many-body system can be used to characterize or classify its
phases. Hence, the concept of time order can be introduced
analogous to an order parameter by bestowing it in the non-
trivial temporal dependence. To exemplify the essence of the
associated physics, we shall present an operational definition for
time order and accordingly work out the exhaustive list of all
allowed phases. According to the WO proposal [62], a witness to

CTC is the following two-time (or unequal time) auto-correlation
function (with respect to the ground state):

lim
V→∞

〈Φ̂(t)Φ̂(0)〉/V2 ≡ f(t), (1)

for operator Φ̂(t) ≡ ∫
V
dDxϕ̂( �x, t) defined as an integrated order

parameter (over D-spatial-dimension), or analogously the
volume averaged one,

f(t) � lim
V→∞

〈ϕ̂(t)ϕ̂(0)〉, (2)

with ϕ̂( �x, t) the corresponding local order parameter density
operator ϕ̂ ≡ Φ̂/V.

If f(t) is time periodic in the thermodynamic limit, the system
is in a state of CTC. This can be reformulated into an explicit
operational protocol by introducing a twisted vector. For a
quantum many-body system with energy eigen-state |ψi〉, if
there exists a coarse-grained Hermitian order parameter ϕ̂,
ϕ̂|ψi〉 is called the eigen-state twisted vector; more generally, if
ϕ̂ is non-Hermitian, ϕ̂|ψi〉 (or ϕ̂

†|ψi〉) will be called the right (or
left) eigen-state twisted vector.

The orthonormal set of eigen-wavefunctions
|ψi〉 (i � 0, 1, 2,/ ) for a system described by Hamiltonian Ĥ
is arranged in increasing eigen-energies ϵi with i = 0 denoting the
ground state. When the coarse-grained order parameter ϕ̂ is
Hermitian, the ground-state twisted vector |v〉 can be expanded
|v〉 ≡ ϕ̂(0)|ψ0〉 � ∑∞

i�0ai|ψi〉 into the eigen-basis. With the help
of the Schrödinger equation iz|ψ(t)〉/zt � Ĥ|ψ(t)〉 (Z = 1
assumed throughout) for the system wave function |ψ(t)〉, we
obtain the following equation:

f(t) � lim
V→∞

〈ψ0|eiĤtϕ̂(0)e−iĤtϕ̂(0)|ψ0〉
� lim

V→∞
eiϵ0t〈v|e−iĤt|v〉

� lim
V→∞

∑∞
j�0

ηje
−i(ϵj−ϵ0)t,

(3)

where ηj ≡|aj|2 denotes weights of the ground-state twisted vector,
η0 the corresponding ground-state weight, and ηj (with j > 0) the
excited-state weight.

When the coarse-grained order parameter ϕ̂ is non-
Hermitian, we use |v(l)〉 and |v(r)〉 to denote, respectively, the
left and right ground-state twisted vectors and expand them
analogously in the eigen-basis to arrive at |v(l)〉 ≡ ϕ̂

†|ψ0〉 �∑∞
i�0bi|ψi〉 and |v(r)〉 ≡ ϕ̂|ψ0〉 � ∑∞

i�0ai|ψi〉. In this case, we
find the following equation:

f(t) � lim
V→∞

〈ψ0|eiĤtϕ̂(0)e−iĤtϕ̂(0)|ψ0〉
� lim

V→∞
eiϵ0t〈v(l)|e−iĤt|v(r)〉

� lim
V→∞

∑∞
j�0

ηje
−i(ϵj−ϵ0)t,

(4)

with ηj ≡ bpjaj weights of the ground-state twisted vector instead.
Similarly, η0 and ηj (j > 0) denote, respectively, ground- and
excited-state weights.

Given an order parameter ϕ̂, quite generally f(t) is a sum of
many harmonic functions with amplitudes ηj and characteristic
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frequencies ωj ≡ϵj − ϵ0. Non-trivial time dependence of the two-
time auto-correlation function is thus imbedded in the energy
spectra of H as well as in the weights of the ground-state twisted
vector. For CTC order to exist, one of the excited-state weights
must be non-vanishing in the thermodynamic limit, or in rare
cases, f(t) can include harmonic terms of commensurate
frequencies.

If f(t) is a constant, the time dependence will be trivial.
However, a subtlety appears when f(t) is vanishingly small
with respect to the system size. Since what we are after is the
system’s explicit temporal behavior or time dependence, it is
easily washed out to f(t) = 0 by a vanishing norm of the twisted
vector. Such a difficulty can be mitigated by multiplying system
volume V, that is, using the twisted vector |v〉→ V|v〉, to check if
the correlation for the bulk order parameter F(t) ≡ V2f(t) exhibits
temporal dependence, or vanishes as follows:

F(t) � lim
V→∞

〈Φ̂(t)Φ̂(0)〉. (5)

When f(t) = 0 but F(t) remains a periodic function, the system can
still be considered a CTC. Such a remedy surprisingly captures
the essence of generalized CTC of Ref. [40].

The analysis presented above can be directly extended to
excited states [59]. It is also straightforwardly applicable to
non-Hermitian systems, as long as a plausible “ground state”
can be identified, for example, by requiring its eigen-energy to
possess the largest imaginary part or the smallest norm.
Denoting the imaginary part of energy eigen-value Ei as
Im(Ei), a prefactor ∝ eIm(Ei)t then arises in the auto-
correlation function, leading to unusual time functional
order in the classification of time order.

Therefore, quantum many-body phases can be classified
according to time order. The two-time auto-correlation
function-based complete operational procedure for classifying
time order thus extends the definition of WO CTC as provided in
Ref. [62]. Our central results can be simply stated as follows: if f(t)
exhibits non-trivial time dependence, then time order exists. If f(t)
= 0 but F(t) displays non-trivial time dependence instead, then
generalized time order exists.

More specifically, if f(t) = const. is non-zero, the system
exhibits time trivial order. The same applies when f(t) = 0 and
F(t) = const. For all other situations, non-trivial time order
prevails. A complete classification for all time order ground-
state phases is shown in Table 1, according to the temporal

behaviors of their auto-correlation functions f(t) or F(t). As
discussed in Section 4, the above discussion and classification
on time order can be extended to finite temperature systems
as well.

The operational procedure outlined previously presents a
straightforward approach for detecting time order, albeit with
reference to an order parameter operator. Hence, more
appropriately, this approach should be called order parameter
assisted time order or symmetry-based (or -protected) time order to
emphasize its reference to symmetry order parameter of a
quantum many-body system. The twisted vector facilitates
easy calculations to distinguish between different time order
phases from time trivial ones, as we illustrate in the following
text in terms of a few concrete examples. It is reasonable to expect
that transitions between different time order phases can occur,
reminiscent of phase transitions in the LGW spontaneous
symmetry breaking paradigm.

2.2 Time Order Phase in a Spin-1 Atomic
Condensate
A spin-1 atomic Bose–Einstein condensate (BEC) under single
spatial mode approximation (SMA) [36, 44, 73] is described by
the following Hamiltonian:

Ĥ � c2
2N

2N̂0 − 1( ) N̂ − N̂0( ) + 2 â†1â
†
−1â0â0 + h.c.( )[ ]

− p N̂1 − N̂−1( ) + q N̂1 + N̂−1( ), (6)
where âmF(mF � 0,± 1) (â†mF

) denotes the annihilation
(creation) operator for atom in the ground-state Zeeman
manifold |F = 1, mF〉 with corresponding number operator
N̂mF � â†mF

âmF. The total atom number N̂ � N̂1 + N̂0 + N̂−1 is
conserved. p and q are linear and quadratic Zeeman shifts that can
be tuned independently [38], while c2 describes the strength of
spin exchange interaction.

The validity of this model is well established based on
extensive theoretical [8, 24, 71, 76] and experimental [1, 7, 38,
45] studies of spinor BEC over the years. The fractional
population in spin states |1, 1〉 and |1, − 1〉, n̂sum ≡ Nsum/N,
with Nsum � N̂1 + N̂−1 � N −N0, is often chosen as an order
parameter [1, 15, 34, 71] with N assuming the role of system size.
The ground state twisted vector then becomes
|v〉 ≡ n̂sum|ψ0〉, and

TABLE 1 | Classification of the ground-state phases for a quantum many-body system.

Phase Property of two-time
auto-correlator

Time trivial order f(t) = const. ≠ 0 or f(t) = 0, F(t) = const.

Time order Time crystalline order f(t) is periodic and non-vanishing
Time quasi-crystalline order f(t) is quasiperiodic with beats from two incommensurate frequencies
Time functional order f(t) is aperiodic
Generalized time crystalline order f(t) = 0, F(t) is periodic and non-vanishing
Generalized time quasi-crystalline order f(t) = 0, F(t) is quasiperiodic with beats from two incommensurate frequencies
Generalized time functional order f(t) = 0, F(t) is aperiodic
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f(t) � lim
N→∞

〈n̂sum(t)n̂sum(0)〉, (7)
F(t) � lim

N→∞
〈N̂sum(t)N̂sum(0)〉. (8)

We will concentrate on the zero magnetization Fz = 0
subspace and employ exact diagonalization (ED) to
calculate eigen-states. p = 0 is assumed since Fz is
conserved. Figure 1 illustrates the system’s complete time
order phase diagram. For ferromagnetic interaction c2 < 0
as with 87Rb atoms, the critical quadratic Zeeman shift q/|c2| =
2 splits the whole region into the time trivial order (TT) phase
for smaller q that observes TTS and the generalized time
crystalline (gTC) order phase for q/|c2| > 2, where TTS is
spontaneously broken. The latter (gTC phase) is found to
coincide with the polar phase [71]. Limited by available
computation resources, the system sizes we explored with
ED remain moderate which prevent us from mapping out
the finer details in the immediate neighborhood of q = 2|c2|.
Further elaboration of time order properties in this region is
therefore needed. On the other hand, for antiferromagnetic
interaction c2 > 0 with 23Na atoms, we find q = 0 separates TT
phase from gTC order. We note here that q = 2|c2| is the
second-order quantum phase transition (QPT) critical point
between the polar phase and the broken-axisymmetry phase of
the ferromagnetic spin-1 BEC, while q = 0 corresponds to the
first-order QPT critical point for antiferromagnetic
interaction.

More detailed discussions including the dependence of time
order phases on system size, possible approaches to detect
them, and extension to thermal state phases can be found in
Section 4.

2.3 Time Order Phase Diagram for Quantum
Rabi Model
As a second example, we consider time order phases of the
quantum Rabi model described by the Hamiltonian as
follows:

ĤRabi � ω0â
†â + Ω

2
σ̂z − λ(â + â†)σ̂x, (9)

where σ̂x,z is the Pauli matrix of a two-level system (transition
frequency Ω), â(â†) is the annihilation (creation) operator for a
single bosonic field mode (of frequency ω0), and λ is their
coupling strength.

It is known that the aforementioned model exhibits a QPT to a
superradiant state, despite its simplicity [29]. The transition
occurs at the critical point gc ≡ 1, with the dimensionless
parameter g ≡ 2λ/

����
ω0Ω

√
. The equivalent thermodynamic limit

is approached by taking Ω/ω0 → ∞. Though the system only has
finite components, the QPT herein is well established. According
to the studies in Ref. [29], an almost exact effective low-energy
Hamiltonian for the normal phase (g < 1) is given by the following
equation:

Ĥnp � ω0â
†â − ω0g2

4
(â + â†)2 − Ω

2
, (10)

whose low-energy eigen-states are |ϕmnp(g)〉 � Ŝ[rnp(g)]|m〉|↓〉
for g ≤ 1, with Ŝ[x] � exp[x(â†2 − â2)/2] and rnp(g) = − [ln(1 −
g2)]/4, and the energy eigen-values are
Em
np(g) � mϵnp(g) + EG,np(g), with ϵnp(g) � ω0

�����
1 − g2

√
and

EG,np(g) = [ϵnp(g) − ω0]/2 − Ω/2. For the superradiant phase
(g > 1), the effective low energy Hamiltonian becomes

Ĥsp � ω0â
†â − ω0

4g4
(â + â†)2 − Ω

4
(g2 + g−2), (11)

whose eigen-states are given by

|ϕmsp(g)〉± � D̂[± αg]Ŝ[rsp(g)]|m〉|↓±〉, with rsp(g) = − [ln(1 −

g−4)]/4, αg � ����������������(Ω/4g2ω0)(g4 − 1)√
, and D̂[α] � eα(â

†−â). The
displacement-dependent spin states are |↓±〉 � ∓ ����������(1 − g−2)/2√ |↑〉
+ ����������(1 + g−2)/2√ |↓〉, while the energy eigen-values take the form
Em
sp(g) � mϵsp(g) + EG,sp(g), with ϵsp(g) � ω0

������
1 − g−4√

and

EG,sp(g) � [ϵsp(g) − ω0]/2 −Ω(g2 + g−2)/4. More details can be
found in the supplementary material of Ref. [29].

For this model, the scaled average cavity photon number n̂c �
ω0â

†â/Ω is a suitable order parameter with Ω/ω0 assuming the
role of system size. The corresponding bulk order parameter then
becomes N̂c � â†â or the average cavity photon number, and

f(t) � lim
Ω/ω0→∞

〈n̂c(t)n̂c(0)〉,
F(t) � lim

Ω/ω0→∞
〈N̂c(t)N̂c(0)〉. (12)

For g < 1, we find

FIGURE 1 | Time order phase diagram for spin-1 atomic BEC, where TT
and gTC, respectively, denote time trivial and generalized time crystalline
order. The region of (hashed) line segments surrounding c2 = 0 for the non-
interacting system is to be excluded.

FIGURE 2 | Time order phase diagram for the quantum Rabi model,
where TT and gTC, respectively, denote time trivial and generalized time
crystalline order.
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f(t) � 0,
F(t) � η0 + η2e

−i(2ϵnp)t, (13)

respectively, where η0 = sinh4(rnp) and η2 = cosh2(rnp) sinh
2(rnp).

For g > 1, we obtain the following equation:

f(t) � (g2 − g−2)2
16

. (14)

The time order phase diagram is shown in Figure 2. When g < 1,
the system ground state corresponds to a generalized time
crystalline order phase, while the system exhibits time trivial
order when g > 1. Despites such a simple model composed of a
two-level system and a bosonic field mode, the ground state of the
quantum Rabi model displays an intriguing temporal phase
structure accompanied by a finite-component quantum phase
transition.

2.4 Non-Hermitian Many-Body Interaction
Model
Finally, we consider two effective models with many-body
spin–spin interaction and non-Hermitian effects. The first is
described by the Hamiltonian:

Ĥ � − 1
N(N − 1) ∑

1≤i<j≤N
(λ + iγ)σx

1σ
x
2/σy(i)/σy(j)/σxN, (15)

with two σy operators at sites i and j in a string of otherwise σx N-
body spin interaction. 1/[N(N − 1)] is the normalization factor, λ
is the spin interaction strength, and γ represents an effective
dissipation rate. λ > 0 and γ ≥ 0 are both real numbers.

We observe that the Greenberger–Horne–Zeilinger (GHZ)
states

|G±〉 � 1�
2

√ |0〉⊗N ±|1〉⊗N( ), (16)

correspond to two non-degenerate system eigen-states with
eigen-energies ± (λ + iγ)/2. The spectra of this model system
are bounded inside the circle of radius

������
λ2 + γ2

√
/2 in the complex

plane. The eigen-state whose eigen-value has the largest
imaginary part is taken as the ground state, or |GS〉 = |G+〉
with eigen-energy ϵ0 = (λ + iγ)/2. The highest excited state is |G−〉,
whose corresponding eigen-energy is ϵ2N−1 � −(λ + iγ)/2.

An appropriate order parameter operator in this case becomes
the average magnetization m̂ � ∑N

i�1σzi /N. The twisted vector
becomes |v〉 � m̂|GS〉 � |G−〉, and the auto-correlator can be
easily worked out to be f(t) � limN→∞〈m̂(t)m̂(0)〉 � e−iλteγt.
When γ = 0, the system ground state exists time-crystalline order
phase and corresponds to a continuous time crystal [33]. When γ
≠ 0, the system exhibits time functional order, with an exploding
f(t) as time evolves.

A second non-Hermitian model Hamiltonian is given by

Ĥ � (λ + iγ) σx1σ
x
2/σx

[N/2] − σx[N/2]+1/σx
N( ) −∑N

j�1
σzjσ

z
j+1, (17)

where [·] denotes the integer part, σN+1 ≡σ1 corresponds to the
periodic boundary condition, and λ and γ are spin-string

interaction strength and dissipation strength, respectively, as in
the previous model, and are real numbers. This Hamiltonian
contains [(N + 1)/2]-body interaction terms and supports GHZ
state |G+〉 as a non-degenerate excited state [18] with eigen-
energy ϵ+ = − N. The other two eigen-states of concern are
|Ψ(±)〉 ≡ (α1|G−〉 + α2| ~G−,I〉)/

����������
|α1|2 + |α2|2

√
with α1 = 1 and α2 =

− (N + ϵ(±))/2(λ + iγ), where

| ~G−,I〉 � 1�
2

√ (|0〉1/|0〉[N/2]|1〉[N/2]+1/|1〉N
− |1〉1/|1〉[N/2]|0〉[N/2]+1/|0〉N). (18)

The eigen-energies for |Ψ(±)〉 are given by

ϵ(±) � −N + 2 ± 2
����������
1 + (λ + iγ)2

√
, with more details of the

derivation given in Section 4. For the same order parameter

operator m̂, we find m̂|Ψ0〉 �→N → ∞
α1|G+〉/

����������
|α1|2 + |α2|2

√
.

At γ = 0, the above non-Hermitian Hamiltonian Eq. 17
reduces to a Hermitian one, whose ground state |Ψ0〉
corresponds to the one with smaller ϵ from |Ψ(−)〉 and
|Ψ(+)〉, or ϵ0 � −N − 2(

�����
1 + λ2

√
− 1). The ground state |Ψ0〉

for this non-Hermitian system is therefore chosen from |Ψ(−)〉
or |Ψ(+)〉 to be the one that deforms into the right Hermitian
case one when γ approaches zero. However, the criteria for the
ground state energy ϵ0 correspond to choosing the smaller one
from ϵ(±) when ϵ is real and choosing the one with the larger
imaginary part when ϵ is complex.

Therefore, we directly obtain the following equation:

f(t) � lim
N→∞

〈m̂(t)m̂(0)〉 � |α1|2
|α1|2 + |α2|2 e

−i(ϵ+−ϵ0)t. (19)

When λ ≠ 0 and γ ≠ 0, the system exists in time functional
order phase and again results from the non-Hermitian
Hamiltonian. When λ ≠ 0 but γ = 0, the auto-correlation
function reduces to

f(t) � 1
2

1 + 1�����
1 + λ2

√( )e−2i( ���
1+λ2

√
−1)t, (20)

as for a genuine time crystal of the WO type exhibiting time
crystalline order. When λ = 0 and 0 < |γ| ≤ 1, we find

f(t) � 1
2
(1 +

�����
1 − γ2

√
)e−2i(

���
1−γ2

√
−1)t. (21)

The system ground state again exhibits time-crystalline order.
When λ = 0 and |γ| > 1, we obtain

f(t) � 1
2
e2ite−2

���
γ2−1

√
t, (22)

by choosing ϵ0 � −N + 2 + 2i
�����
γ2 − 1

√
as the ground state eigen-

energy from the two eigen-values −N + 2 ± 2i
�����
γ2 − 1

√
. The

system ground state now exhibits time functional order phase,
with a decaying f(t) as time evolves. When λ = γ = 0,

f(t) � 1, (23)
the ground state reduces to the time trivial order phase.

The above two non-Hermitian models represent direct
generalizations of the Hermitian system as considered in
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Refs. [18, 33]. While slightly more complicated, they remain
sufficiently simple for compact analytical treatment, thus
helping to reveal interesting and clear physical meanings of
the underlying time order.

2.5 Some Remarks About Continuous Time
Crystal
According to the WO no-go theorem [62], f(t) for the ground
state or the Gibbs ensemble of a general many-body
Hamiltonian whose interactions are not-too-long ranged
exhibits no temporal dependence; hence, it belongs to time
trivial order according to our classification scheme. At first
sight, this seems to sweep many important models of
condensed matter physics into the same boring class of the
time trivial order phase. However, it remains to explore, for
instance, many-body systems with more than two-body (or k-
body) interactions, or non-Hermitian systems, which might
support the existence of CTC. Inspired by the recent results on
CTC [33], we believe more time crystalline phases will be
uncovered and further understanding will be gained in the
future.

The two-time auto-correlation function f(t) measures the
CTC phase as in earlier studies [33, 62], while both auto-
correlation functions f(t) and F(t) together define different
time-order phases we propose in this work. The absence of the
local temporal behavior f(t) = 0 does not imply the absence of
any temporal property in the bulk, when F(t) could have
various temporal behaviors. Based on this, our operational
definitions of time order are developed. We also extend the
scope of CTC to include both TC order and gTC order phases.
This distinction between f(t) and F(t) gives more insights into
quantum many-body phases.

As emphasized earlier, continuous time crystal results from
spontaneously breaking continuous time translation
symmetry. Due to the genuine time periodicity contained in
CTC, it might be possible to explore and design new types of
clocks based on macroscopic many-body systems, as the time
period is directly related to energy spectra, and whose physical
meaning is clearly the same as for atomic clock states.
Furthermore, they are not affected by finite size effect in
contrast to periodicity in DTC.

3 DISCUSSION AND CONCLUSION

While ground-state phases of a quantum many-body system
are mostly classified with their Hamiltonian based on the
following two paradigms: LGW symmetry breaking order
parameter or topological order, this work proposes to study
phases from time dimension using time order or more
specifically with the proposed symmetry-based time order.
Compared to the recent progress and understanding gained
for topological order [66, 67], one could try to develop a
framework for entanglement-based time order instead of the
symmetry-based time order we employ here in this study.
Quantum entanglement in a many-body system is

responsible for topological order, whose origin lies at the
tensor product structure of the quantum many-body Hilbert
spaceHtot � ⊗iHi withHi the finite-dimensional Hilbert space
for site-i. An entanglement-based time order therefore calls for
a combined investigation to exploit quantum entanglement
and temporal properties of a quantum many-body system.

Through time order, one focuses on temporal structure of the
evolution operator e−iĤt. The symmetry-based time order
therefore unifies the LGW paradigm with the concept of time
order, while an entanglement-based time order could amalgamate
the topological order paradigm (or entanglement beyond that)
with time order. For this to happen, a more basic definition for
time order will be required, which will likely expand into further
in-depth investigations.

In conclusion, understanding the phases of matter constitutes
a cornerstone of contemporary physics. Capitalizing on the
concept of CTC for the many-body ground state with
perpetual time dependence, this study argues that information
from time domain can be employed to classify the quantum phase
as well, which provides a new perspective toward the
understanding of ground-state time dependence, significantly
beyond existing studies on CTC. We introduce time order,
provide its operational definition in terms of two-time auto-
correlation function of an appropriate symmetry order operator,
bestow physical meaning to characteristic frequencies and
amplitudes of the correlation function, and present a complete
classification of time order phases. Time order phase diagrams for
a spin-1 BEC system and the quantum Rabi model are fully
worked out. Interesting time order phases in non-Hermitian spin
models with multi-body interaction are presented. In addition to
the time crystalline order which already attracts broad attention
from its studies in terms of CTC, other phases we identify, for
example, time quasi-crystalline order and time functional order,
represent exciting new possibilities.

4 METHODS AND CALCULATION DETAILS

Here, in this section, we provide more supporting material for our
main results and related details for the aforementioned
presentation. It is organized as follows: in Section 4.1, we
extend the discussion of time order to finite temperature; in
Section 4.2, we present calculation details related to the spin-1
atomic BEC example considered and give intriguing results for
finite temperature scenario in spin-1 BEC; in Section 4.3,as a
more straightforward approach to understand numerical results,
we present a variational approach for treating the polar ground
state of a spin-1 BEC. Finally, we give the details about ground
state and eigen-energy calculation in the non-Hermitian
quantum many-body model with multi-body interaction in
Section 4.4.

4.1 Time Order at Finite Temperature
At finite temperature T, excited states will be populated, which
can be taken into account with the Gibbs ensemble ρ̂ ≡ e−βĤ/Z,
whereZ ≡ Tr e−βĤ denotes the partition function and β ≡ 1/T the
inverse temperature. We then find
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f(t) → lim
V→∞

Tr eiĤtϕ̂(0)e−iĤtϕ̂(0)ρ̂( )
� lim

V→∞
∑∞
k�0

〈ψk|eiĤtϕ̂(0)e−iĤtϕ̂(0) e
−βĤ

Z
|ψk〉

� lim
V→∞

∑∞
k�0

1
Z
eiϵkt−βϵk〈vk|e−iĤt|vk〉

� lim
V→∞

∑∞
k�0

∑∞
j�0

1
Z
cjke

−βϵk e−i(ϵj−ϵk)t,

(24)

where |vk〉 is the eigen-state twisted vector for |ψk〉 and cjk is its
associated weight. Analogously, for the non-Hermitian case,
we find

f(t) � lim
V→∞

∑∞
k�0

1
Z
eiϵkt−βϵk〈v(l)k |e−iĤt|v(r)k 〉

� lim
V→∞

∑∞
k�0

∑∞
j�0

1
Z
cjke

−βϵk e−i(ϵj−ϵk)t,
(25)

where |v(l)k 〉 and |v(r)k 〉 are the left and right twisted vectors for
eigen-state |ψk〉, respectively, and cjk is the corresponding weight.

It is easily noted that f(t) at finite temperature contains
contributions from all eigen-states of the quantum many-body
system Ĥ, with a temperature-dependent weight factor for
different energy levels, but f(t) remains to include
contributions from different periodic functions. Hence, the
quantum phase classification task essentially remains the same
(including its possible reference to F(t)) as is shown in Table 1 for
the ground state. At finite temperature, due to thermal excitations
to the ground state, the temporal behavior will be more complex,
thus opening up for more interesting possibilities, for example, to
control time order phases and to study crossover or driven phase
transitions between different time order phases.

4.2 Time Order in a Spin-1 Atomic BEC
For typical interaction parameters of a spin-1 BEC (e.g., of
ground state 87Rb or 23Na atoms) in a tight trap, spin domain
formation is energetically suppressed when the atom number is
not too large as spin-dependent interaction strength is much
weaker than spin-independent interaction [26, 32, 36, 58]. This
facilitates a single-spatial-mode approximation (SMA) by
assuming all spin states share the same spatial wave function
ϕ(r), which effectively decouples the spatial degrees of freedom
from the spin and results in the Hamiltonian [36, 44] in Eq. 6 for
the model many-body system, where âmF(mF � 0,± 1) is the
annihilation operator of the ground manifold state |F = 1, mF〉
with corresponding number operator N̂mF � â†mF

âmF. p and q are
linear and quadratic Zeeman shifts which could be tuned
independently in experiments [38], while c2 denotes the spin
exchange interaction strength. Unless otherwise noted, we will
take |c2| = 1 as unit of energy in this work. The total particle
number operator N̂ � N̂1 + N̂0 + N̂−1 and the longitudinal
magnetization operator F̂z � N̂1 − N̂−1 are both conserved.
Thus, linear Zeeman shift can be set to p = 0 effectively.

As discussed in the main text, a suitable order parameter for
this model system is n̂sum ≡ N̂sum/N
(N̂sum � N̂1 + N̂−1 � N − N̂0), which measures the fractional

atomic population in the states |1, 1〉 and |1, − 1〉, and N
assumes the role of system size. Following our formulation
and denoting the system energy eigen-state by |ψi〉 (i = 0, 1, 2,
/) with increasing eigen-energy ϵi, the ground-state twisted
vector becomes |v〉 ≡ n̂sum|ψ0〉 � ∑∞

i�0ai|ψi〉, with ai = 〈ψi|v〉
its expansion coefficient on the eigen-state |ψi〉. We find

f(t) � lim
N→∞

〈n̂sum(t)n̂sum(0)〉 � lim
N→∞

∑∞
j�0

bje
−i(ϵj−ϵ0)t, (26)

where bj ≡|aj|2 is the weight of the ground-state twisted vector,
b ≡ ∑∞

j�0bj the total weight, and

F(t) � lim
N→∞

〈N̂sum(t)N̂sum(0)〉 � lim
N→∞

∑∞
j�0

Bje
−i(ϵj−ϵ0)t, (27)

where Ai = N〈ψi|v〉, Bj ≡|Aj|
2 is the weight of the enlarged ground

state twisted vector, and B ≡ ∑∞
j�0Bj the total weight.

Our study below is for the zero magnetization Fz = 0 subspace
and employs exact diagonalization (ED) to calculate eigen-states
as well as eigen-energies. The overall time order phase diagram
for spin-1 BEC is shown in Figure 1. For ferromagnetic
interaction c2 < 0, the critical quadratic Zeeman energy q/|c2|
= 2 splits the whole region into the time trivial order (TT) phase
for smaller q that observes TTS, and the generalized time
crystalline (gTC) order phase for q/|c2| > 2 where TTS is
spontaneously broken. The latter (gTC phase) is found to
coincide with the ground-state polar phase. The available
computation resource limits the calculation to a finite system
size, which prevents us from mapping out the exact details in the
immediate neighborhood of q = 2, where further elaboration is
needed for its time order properties. On the other hand, for
antiferromagnetic interactions, we find q = 0 separates TT phase
from gTC order.

In Figure 3, the weights for the ground state as well as for the
low-lying excited states are shown as functions of q for a typical
system size ofN = 10 000. Only the ground-state weight b0 is non-
vanishing in the q < 2 (q < 0) region for ferromagnetic
(antiferromagnetic) interactions, but total weight b is zero in
the q > 2 (q > 0) region for ferromagnetic (antiferromagnetic)
interaction, which prompts us to examine further the enlarged
weights Bi corresponding to the bulk order parameter. For ground
and the first excited states, the volume enlarged weights B0,1 are
found to be non-vanishing, although both decrease as q increases
and grow with N as q approaches q = 2 (q = 0) for ferromagnetic
(antiferromagnetic) interaction. However, as mentioned above,
limited to a system size of N = 10 000 by computation resource in
the ED calculation, we cannot exactly map out the behavior near
q = 2 (q = 0) for ferromagnetic (antiferromagnetic) interaction.
This consequently leaves empty for q in region [2.0, 2.02] ([0,
0.01]) for ferromagnetic (antiferromagnetic) interaction.

The dependence on system size N is clearly revealed by
Figure 4, with the enlarged weights in the gTC regime
attaining fixed values as the system approaches
thermodynamic limit (N → ∞). In regions away from q = 2
(q = 0) for ferromagnetic (antiferromagnetic) interaction, ED
numerics can always approach thermodynamic limit, except for
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the immediate neighborhood near q = 2 (q = 0), where we infer
with confidence the tendencies to divergence of the weights B0,1 as
q approaches q = 2 (q = 0).

The time evolution of two-time auto-correlation function F(t)
is plotted in Figures 5A,C for ferromagnetic and for
antiferromagnetic interactions, while Figures 5B,D display
energy gaps between ground and the first excited states as a
function of q for ferromagnetic and antiferromagnetic
interactions, respectively, at a system size of N = 5000. The
behavior of F(t) is quantitatively consistent with that of the
weights Bi(q) (i = 0, 1) shown in Figure 3 and the energy gap
ϵ1 − ϵ0 shown in Figures 5B,D.

At finite temperature, excited states come into play by also
contributing to the correlation function. We find the gTC order
hosted in the polar phase persists for both ferromagnetic and
antiferromagnetic interactions. The corresponding time evolution
and Fourier transform of F(t) are shown in Figure 6, calculated for
N = 500 at a temperature of β ≡ 1/T = 1. The Fourier transform is
performed for Re(F) over t = [0, 1000] with the zero frequency (DC)
component subtracted or for Im(F). The upper (lower) panel
corresponds to ferromagnetic (antiferromagnetic) interaction at
q = 3 (q = 2). For ferromagnetic interaction, two distinct
frequency components are clearly identified for q = 3, associated
with the two different energy level gaps. The beautiful beat pattern for

FIGURE 3 |Weights of ground-state twisted vector in the ground and low-lying excited states as functions of q at system size N = 10 000. The upper panel is for
ferromagnetic interaction, where weights bi for q < 2 are shown in (A), while weights Bi for q > 2 are shown in (B). The lower panel is for antiferromagnetic interaction,
where weights bi for q < 0 are shown in (C), while weights Bi for q > 0 are shown in (D).

FIGURE 4 |Weights of ground-state twisted vector in the ground and low-lying excited states as functions of system size N at q = 2.1 for ferromagnetic interaction
(A) and at q = 0.2 for antiferromagnetic interaction (B).
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F(t) would appear, while we only show the short time behavior in
Figure 6 (a). Thus, the gTC phase remains at a finite temperature.
Moreover, we also find a generalized time quasi-crystalline order

phase assuming the two frequencies are incommensurate, by fine-
tuning their corresponding energy gaps such that the relationΔ1/Δ2 =
m1/m2 with m1 and m2 being co-primes is not satisfied. The gTC

FIGURE 5 | F(t) for different q as a function of time t. The solid and dotted lines correspond to Re(F) and Im(F), respectively. The red, green, and blue lines
correspond to q = 2.5, q = 3, and q = 5, respectively, for ferromagnetic interaction (A). The red, green, and blue lines correspond to q = 0.7, q = 1, and q = 3, respectively
for antiferromagnetic interaction (C). The energy gap between ground and the first excited state ϵ1 − ϵ0 as a function of q for ferromagnetic (B) and antiferromagnetic
interactions (D), at system size N = 5000.

FIGURE 6 | F(t) as a function of time t at q = 3 for ferromagnetic interaction (A) and q = 2 for antiferromagnetic interaction (C). The red and blue solid lines,
respectively, correspond to Re(F) and Im(F). The Fourier transform spectrum ~F(]) of Re(F) or Im(F) with ] = 1/T the frequency, T the period, for ferromagnetic (B) and
antiferromagnetic (D) interactions, at temperature β = 1 and system size N = 500.
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phase at finite temperature here is robust which is in contrast to the
melting behavior of continuous time crystal (CTC) shown in
Ref. [33].

Finally, we hope to address the critical question about how could
this time order, sort of a perpetual time dependence, can be observed.
We note the bulk two-time auto-correlation function introduced
F(t) � limN→∞〈N̂sum(t)N̂sum(0)〉 denotes nothing but the
ground-state (averaged) conditional outcome of measuring Nsum(t)
at t after starting with Nsum(0) initially. The dynamics of F(t) follows
that of Nsum(t) as in the quantum regression theorem. Given the
system is well controlled, highly reproducible, one can simply detect
F(t) by measuring Nsum(t), although for each measurement at an
instant t, a condensate is destroyed, and a follow-up one will have to
be prepared as closely as possible in every respects (through selection
and post-selection) and be measured at a different t′ > t. Thus, a
plausible way to detect the ground-state time dependence will require
reconstructing the time dependence of F(t)/Nsum(0). As long as the
oscillation amplitude is more than a few percent, it will be easily
observable with not too much difficulty, although such a
reconstruction will still be difficult as Nsum(0) can be rather small
compared toN0 ~N in the polar state. Alternatively, one can perhaps
start from a twin-Fock state, that is, by preparing an initial state with
Nsum(0) ~ N.

In Figure 7A, we show the behavior of oscillation amplitude
for F(t)/Nsum(0). The time dependence of F(t)/Nsum(0) at q = 2.5
for ferromagnetic interaction is shown in Figure 7B.

4.3 A Variational Polar State for
Ferromagnetic Spin-1 BEC
One might naively expect that nothing particularly interesting
could happen in the polar phase of a ferromagnetic spin-1 BEC,
where essentially all atoms reside in the single particle state |1, 0〉.
Nevertheless, due to the competition between spin exchange
interaction c2 and quadratic Zeeman shift q, the ground state
of our system differs from |N1 = 0,N0 =N,N−1 = 0〉, which can be
affirmed based on a simple variational analytical calculation given
in this section.

We use the number-state basis |N1, N0, N−1〉 ≡|[N], M, k〉,
whereNmF denotes the occupation number of the mF magnetic

state, M ≡ N1 − N−1, and k ≡ N−1. We take the following
ground-state variational ansatz |ψ0〉 � 1����

1+|a|2
√ (|0, N, 0〉 +

a|1, N − 2, 1〉) for the polar state of ferromagnetic spin-1
BEC, where a = re

iϕ
is a (complex) variational parameter

with r and ϕ as real parameters. From Eq. 6 and (assumed)
p = 0, the ground-state energy follows from

E � 〈ψ0|H|ψ0〉
〈ψ0|ψ0〉

� 1
1 + apa

c2(2N − 5)
N

+ 2q( )apa + c2

�����
N − 1
N

√
(ap + a)[ ]

� 1

1 + r2
c2(2N − 5)

N
+ 2q( )r2 + 2c2

�����
N − 1
N

√
r cos(ϕ)[ ].

(28)
We see the extreme value (the minimum) of E is reached when
cos(ϕ) = ±1, that is, for a real variational parameter a, which
will be assumed from now on. This gives the following
equation:

E � x1a2 + x2a

1 + a2
, (29)

with x1 � c2(2N−5)
N + 2q and x2 � 2c2

���
N−1
N

√
. The derivative of the

energy function E(a) is as follows:

E′(a) � −x2a2 + 2x1a + x2

(1 + a2)2 , (30)
which determines the locations for the extreme values.

a± � 1

2c2
���������
N(N − 1)√

c2(2N − 5) + 2Nq ± N

�����������������������������������
c22(8N2 − 24N + 25)

N2
+ 4c2q(2N − 5)

N
+ 4q2

√[ ],
(31)

and the corresponding extreme values are as follows:

E± � c2 + q ±
1
2

��������������������������������
4q2 + 8c2q + 8c22 +

−24c22 − 10c2q
N

+ 25c22
N2

√
− 5c2
2 N

. (32)

FIGURE 7 | (A) Bi/Nsum(0) as a function of q for ferromagnetic interaction. (B) F(t)/Nsum(0) as a function of time t at q = 2.5 for ferromagnetic interaction. The red and
blue solid lines correspond to the real and imaginary part of F(t)/Nsum(0), respectively.
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In the thermodynamic limit N→ ∞, they reduce, respectively, to

a± � 1 + q
c2
±

��������
2c22+2c2q+q2

√
c2

and E± � c2 + q ±
������������
2c22 + 2c2q + q2

√
.

The left and right asymptotic value for the energy function
E(a) is therefore

E(a) � c2 2 − 5
N

( ) + 2q, (when a →± ∞). (33)

For ferromagnetic interaction (c2 < 0), E− assumes the minimum,
which corresponds to the ground state |ψ0〉 � 1���

1+a2−
√ (|0, N, 0〉 +

a−|1, N − 2, 1〉) with Nsum � 2a2−/(1 + a2−), and a− � 1 + q
c2
−��������

2c22+2c2q+q2
√

c2
in the thermodynamic limit N → ∞.

Despite the vanishing order parameter nsum in the polar phase
(here the gTC order phase from the time order perspective), the
enlarged quantity Nsum retains a finite value. Hence, the physics
we present here clearly belongs to the realm of quantum effects,
beyond the reach of mean-field theory.

4.4 The Non-Hermitian Spin Model With
Multi-Body Interaction
The non-Hermitian quantum many-body model Hamiltonian is

Ĥ � Ĥ0 + (λ + γi)Ĥ1, (34)
with

Ĥ0 � −∑N
j�1

σzjσ
z
j+1,

Ĥ1 � σx
1σ

x
2/σx[N/2] − σx[N/2]+1/σxN,

(35)

where [·] denotes the integral part, σN+1 ≡σ1, λ, and γ are spin-
string interaction strength and dissipation strength, respectively.
λ and γ are both real numbers. i is the imaginary unit. σx,y,z are
Pauli operators. N is the qubit number of the system. The
Hamiltonian has the [(N + 1)/2]-body interaction term and
supports the GHZ state |G+〉 as a non-degenerate excited state.

First, the Greenberger–Horne–Zeilinger (GHZ) states are
denoted as follows:

|G±〉 � 1
2
(|0〉⊗N ±|1〉⊗N), (36)

and

| ~G−,I〉 �
1�
2

√ |0〉1/|0〉[N/2]|1〉[N/2]+1/|1〉N − |1〉1/|1〉[N/2]|0〉[N/2]+1/|0〉N( ), (37)

where I � ([N/2] + 1, [N/2] + 2, . . . , N) is a multi-index.
We immediately know that |G±〉 is the degenerate ground state of

the ferromagnetic Ising Hamiltonian Ĥ0 with eigen-energy E(0) = −
N, | ~G−,I〉 is the excited state of Ĥ0 with eigen-energy E(1) = −N + 4.

The action of Ĥ1 on |G−〉 (| ~G−,I〉) gives | ~G−,I〉 (|G−〉) with a
multiplicative factor –2.

Ĥ1|G−〉 � −2| ~G−,I〉,
Ĥ1| ~G−,I〉 � −2|G−〉.

(38)

Then we know the two eigen-states of Ĥ are a superposition of |
G−〉 and | ~G−,I〉, and can be written as

|Ψ〉 � α1|G−〉 + α2| ~G−,I〉, (39)
where α1,2 are the undetermined coefficients. By substituting into
the Schrödinger equation ĤΨ〉 � ϵ|Ψ〉, we get

ϵ2 − E(0) + E(1)( )ϵ + E(0)E(1) − 4(λ + γi)2( ) � 0, (40)
2(λ + γi)α2 � (E(0) − ϵ)α1. (41)

We obtain the eigen-energy

ϵ(±) � 1
2 [E(0) + E(1) ±

����������������������
(E(1) − E(0))2 + 16(λ + γi)2

√
]. Choosing

α1 � 1, we have α2 � E(0)−ϵ
2(λ+γi). Imposing the normalization

condition, we have the following equation:

|Ψ(±)〉 � α1����������
|α1|2 + |α2|2

√ |G−〉 + α2����������
|α1|2 + |α2|2

√ | ~G−,I〉. (42)

If γ = 0, the Hamiltonian is Hermitian, and we have the ground state
|Ψ0〉 ≡|Ψ(−)〉 with energy ϵ0 ≡ ϵ(−) � −N − 2(

�����
1 + λ2

√
− 1) (see

more details about the Hermitian version of the system in Ref. [18]).
Here, we choose the eigen-state from {|Ψ(+)〉, |Ψ(−)〉} as the ground
state |Ψ0〉 of our generalized non-Hermitian system, for it deforms
into the ground state of the Hermitian case when γ approaches zero.
If ϵ is real, then ground-state energy ϵ0 corresponds to the smaller
one from ϵ(±). However, ground-state energy ϵ0 corresponds to the
one with the larger imaginary part when ϵ is a complex number.
Ground state |Ψ0〉 is obtained straightforwardly.

For the GHZ state |G+〉, we can know it is a non-degenerate
excited state with energy ϵ+ = − N, for

Ĥ1|G+〉 � 0. (43)
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