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The Mach number is one of the key parameters of collisionless shocks. Understanding
shock physics requires knowledge of the spatial scales in the shock transition layer. The
standard methods of determining the Mach number and the spatial scales require
simultaneous measurements of the magnetic field and the particle density, velocity,
and temperature. While magnetic field measurements are usually of high quality and
resolution, particle measurements are often either unavailable or not properly adjusted to
the plasma conditions. We show that theoretical arguments can be used to overcome the
limitations of observations and determine the Mach number and spatial scales of the low-
Mach number shock when only magnetic field data are available.
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1 INTRODUCTION

Collisionless shocks [1] are one of the most ubiquitous phenomena in space plasmas. The unfading
interest in collisionless shocks is related to the fact that they are the most efficient accelerators of
charged particles in the known universe [2–14]. A shock is a discontinuity in terms of
magnetohydrodynamics (MHD) [15], at which the flow velocity along the shock normal drops
while the density increases. In reality, this discontinuity has a finite width, and the electric and
magnetic fields vary continuously inside the transition from the upstream region of low density and
entropy to the downstream region of higher density and entropy. A collisionless shock efficiently
converts the energy of the directed flow into the thermal energy of charged particles, the energy of
accelerated particles, and the field energy. The conversion occurs via the interaction between charged
particles and the electric and magnetic fields of the shock. Thus, understanding the processes inside
the shock requires, first and foremost, knowledge of the fields inside the transition layer together with
their dependence on time and space. Observational determination of this is not an easy problem.
Direct observational separation of spatial and temporal variations is not possible with single-
spacecraft measurements. Multi-spacecraft measurements help (e.g., Russell et al. [16], Dunlop [17])
but to a limited extent. In addition, determination of theMach number and the spatial scales requires
sufficiently good particle measurements. At present, most spacecraft that study shocks are not
designed to properly measure parameters of narrow cold beams [18–22]. Therefore, the solar wind is
not resolved to the required precision. At the same time, the available magnetic field measurements
are typically very good. It would be helpful if the Mach number and the spatial scales could be
reasonably estimated usingmagnetic field data alone. It makes sense to first attempt to develop such a
methodology for low-Mach number shocks, which are expected to be nearly stationary and planar
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and have moderately structured profiles [23–31]. There is no
strict definition of what low-Mach numbers are. Typically, a
shock with the Alfvénic Mach numberM ≲ 4 may be expected to
suit the above purposes. In contrast, in several theoretical works,
dependences of several spatial scales on the Alfvénic Mach
number have been derived, and certain tools have been
proposed for application to the magnetic field data [32–38].

TheMercury bow shock is typically a low-Mach number shock
and the 20 Hz MESSENGER magnetic field measurements are
sufficiently good for the application of the proposed methods [39,
40]. This study demonstrates the efficiency and consistency of
theoretical predictions by applying the proposed methods to
selected shocks. The study is organized as follows: first, we
summarize the theoretical estimates of the width of various shock
features proposed so far (Section 2). Next, we briefly outline the
numerical analysis used as an additional check (Section 3). After that,
we analyze in detail two selected shock profiles.

2 THEORETICAL BASIS FOR ESTIMATES
OF THE SHOCK SCALES AND MACH
NUMBER
Several theoretical estimates are available for planar stationary
shocks when the ion reflection is weak. Note that these estimates
allow determining the scales in terms of the ion inertial length but
do not allow determining the latter in dimensional units (km).
The analysis in the study is done in the normal incidence frame
(NIF), that is, the shock frame in which the upstream plasma flow
is along the shock normal.

2.1 Phase-Standing Whistler Precursor
In the shock with a coherent whistler precursor, the wavelength of
the whistler wave train can be estimated if the precursor is
assumed to be phase standing in the shock frame [29, 36, 41, 42]:

ω

k
� VA

kc

ωpi
( )cos θBn � Vu (1)

λ � 2π
k

� 2πlW, lW � c cos θBn
Mωpi

, (2)

where Vu is the NIF upstream plasma velocity, θBn is the angle
between the shock normal and the upstream magnetic field,M =
Vu/VA is the Alfvénic Mach number, VA � Bu/

�������
4πnump

√
is the

Alfvén speed, ωpi �
���������
4πnue2/mp

√
is the proton plasma frequency,

nu is the upstream proton number density, and mp is the proton
mass. For simplicity, the plasma is assumed to consist of protons
and electrons. Possible small addition of α-particles is neglected.
Then, conversion of the temporal scale into spatial scale can be
done by measuring the time between two successive maxima of
the whistler precursor. Equation 2 defines the characteristic
whistler length lW together with its relation to the whistler
wavelength λ.

2.2 Foot Length
Usually, the expression by Gosling and Thomsen [43] is used to
estimate the foot length. This expression is derived for a

specularly reflected ion entering the shock with the velocity of
the flow. More detailed studies have shown that ion reflection is
non-specular and the foot length is substantially smaller and can
be estimated as

Lfoot ≈ 0.5
Vu

Ωu
� 0.5M c/ωpi( ), (3)

where M is the Alfvénic Mach number and Ωu = eBu/mpc is the
upstream gyrofrequency [33, 38].

2.3 Downstream Magnetic Oscillations
Coherent magnetic oscillations arise due to the gyration of the ion
distributions produced at the shock crossing [28, 44–46]. If the
oscillations are periodic, the effect of the reflected ions is weak.
For directly transmitted ions, the distance between two successive
maxima can be estimated as [47]

Δ � Vdrift
2π
Ωd

� 2πVu

Ωu

Bu

Bd
( )2

, (4)

where Vdrift is the component of the downstream flow velocity
along the shock normal. In the quasi-perpendicular case, this drift
velocity can be approximated as Vdrift ≈ Vu(Bu/Bd), which is
sufficient for the estimate. The amplitude of the oscillations
decreases due to the gyrophase mixing. The decay is faster for
higher upstream ion temperatures [45]. If the effect of
reflected ions is significant, other peaks/dips may exist
between the main maxima/minima [48, 49]. In this case, Δ
would correspond to the distance between a maximum and
the next second maximum, or approximately the twice
distance between two adjacent maxima.

2.4 Distance From the Overshoot Maximum
to the Undershoot Minimum
This distance is more difficult to evaluate. As a rough
approximation, it can be estimated as a gyroradius of the ion,
which just crossed the ramp, in the downstream magnetic field.
Within the narrow shock approximation [47, 50] the ion speed
upon crossing the shock is

vd � Vu

����
1 − s

√
, s � 2eϕNIF

mpV
2
u

, (5)

where ϕNIF is the cross-shock potential in the normal incidence
frame. For the low upstream temperature, the ion velocity at the
entry to the ramp is approximately equal to the flow speed.
Therefore, a rough approximation for the distance from the
overshoot maximum to the undershoot minimum would be

Lmax ,min ≈
Vu

Ωu

Bu

Bd
( ) ����

1 − s
√

. (6)

This estimate is less reliable than the others because the gyration
occurs in the inhomogeneous magnetic field between the ramp
and the undershoot. Note the use of the particle velocity and not
the drift velocity because the analysis refers only to a part of the
gyration.
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2.5 Noncoplanar Magnetic Field
In laminar shocks or shocks with weak ion reflection, the
noncoplanar magnetic field component inside the ramp is
approximately [34, 35]

By � lW
dBz

dx
� c cos θBn

Mωpi

dBz

dx
. (7)

This approximation is not valid behind the ramp where the ion
distributions begin to gyrate as a whole.

3 BASICS OF NUMERICAL ANALYSIS

Further check of the estimates will be done using the adjustable
test particle analysis [51, 52]. We briefly describe the principles of
the method. Model magnetic and electric fields are chosen,
determined by a small number of parameters. The equations
of motion for ions are solved numerically in these fields. A large
number of ions from the initial upstream ion distribution are thus
numerically traced across the shock front, which provides the ion
distribution everywhere. The relevantmoments of this distribution are

determined numerically and used in the corresponding conservation
law, pressure balance (see below). The pressure balance equation is
used to derive the magnetic field, which would be consistent with the
numerically found ion pressure. The derived magnetic field is
compared with the chosen model field. The parameters of the
chosen model are varied until a reasonable agreement is achieved.
For a model low-Mach number shock, a reasonable model profile is
given by the following expressions [45, 51]:

Bz

Bu sin θBn
� Rz + 1

2
( ) + Rz − 1

2
( )tanh 3x

D
( ) , (8)

Bd

Bu
�

����������������
R2
z sin

2θBn + cos2θBn
√

. (9)

The parameters Rz = Bd,z/Bu,z and θBn are taken from
observations. The shock ramp width D is one of the adjustable
parameters. The electrostatic field along the shock normal is
modeled using Ex ∝ dBz

dx and

−∫Exdx � ϕNIF, (10)

whereas the noncoplanar component of the magnetic field is
taken from Eq. 7. An incident Maxwellian distribution of ions is
traced across the shock. The total ion pressure is numerically
determined as a function of the coordinate x along the shock
normal. The pressure is inserted in the pressure balance:

pi,xx + pe + B2

8π
� pi,xx,u + pe,u + B2

u

8π
, (11)

where pi,xx is the total ion pressure, which is the sum of the
dynamic and kinetic pressure. The electron pressure pe is
assumed adiabatic, pe ∝ nγ, γ = 5/3. We also assume βe = βi,
where β � 8πnTu/B2

u, Tu being the upstream temperature.
Equation 11 is used to numerically find the magnetic field
that would be consistent with the pressure balance. The shock
parameters M, s, D, β are varied until the magnetic field
magnitude derived from Eq. 11 converges to the initial model
magnetic field well beyond the ramp, and the derived and initial
ramp slope are in agreement. For low-Mach number shocks,

FIGURE 1 |Magnetic field magnitude of a MESSENGERmeasured shock.
Top: ± 20 s around the crossing. Bottom: ± 180 s around the crossing.

FIGURE 2 | The magnetic field in MSO coordinates: Bx (green), By (red), Bz (blue), and |B| (black) for the shock crossing 2011/083/12:25:00. The red vertical lines
mark the upstream region used to calculate the normal from magnetic coplanarity, and the blue vertical lines mark the downstream region. Time is measured in seconds
from the shock crossing (marked by the black vertical line).
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magnetic oscillations of the derived field around the downstream
value are small so that their effect on the ion motion can be
neglected. Earlier studies [44, 45, 51] have shown that, for low-
Mach number shocks, the method is not too sensitive to the
variation of the parameters within reasonable limits expected by
the theory so that the adjustment procedure converges rapidly.

4 A LOW-MACH NUMBER SUBCRITICAL
SHOCK

Figure 1 shows the shock crossing at 2011/083/12:25:00 at two
different scales. The top panel shows the very transition as the
magnetic field within ±20 s around the crossing. The bottom
panel shows the shock and the magnetic field around the shock, ±
180 s, around the crossing. Figure 2 shows the magnetic field
components in MSO coordinates and the magnetic field
magnitude. The red vertical lines mark the upstream region used
to calculate the normal from the magnetic coplanarity, and the blue
vertical lines mark the downstream region. The black vertical line
marks the crossing time. The upstream magnetic field vector Bu is
found by averaging the magnetic field vector over the chosen
upstream region. The downstream magnetic field vector Bd is
determined similarly. In the following, Bu = |Bu| and Bd = |Bd|.

Figure 3 shows the normalized magnetic field rotated into the
shock coordinates: x is along the shock normal and y is the
noncoplanarity direction. The fields are normalized on the
upstream magnetic field magnitude Bu. The rotation is made
using the unit vectors:

ẑ � Bd − Bu

|Bd − Bu|, ŷ � Bd × Bu

|Bd × Bu|, x̂ � ŷ × ẑ. (12)

The main magnetic field, Bz, has a clear monotonic ramp, a
whistler precursor, and a barely noticeable overshoot: Bd/Bu = 1.7
andmax |B|/Bu= 1.75. There is no visible foot. The region between the
blue and the red vertical lines in the Figure 3 is the whistler precursor.
The region between the red and the green vertical lines is the ramp.

The black vertical line passes through the maximum of the overshoot.
Judging by the above-described features of the profile, the shock
should be a low-Mach number subcritical shock with no or negligible
ion reflection. The noncoplanar magnetic field exhibits
fluctuations at the spatial scale of the ramp and the whistler
precursor. The normal component fluctuates inside the ramp.
The spatial scales of these fluctuations are substantially smaller
than the ramp width. We tend to interpret these deviations from
planarity as a small-scale rippling inside the ramp, which
propagates along the shock surface. The normal component
of the magnetic field does not have fluctuations at the whistler
spatial scale outside the ramp, which makes us conclude that the
whistler propagates or phase stands along the normal. The angle
between the shock normal and the upstream magnetic field is
θBn = 67° and cos θBn = 0.39. Moderate changes of the upstream
and downstream intervals did not affect the normal
determination noticeably.

Figure 4 is a close-up of Figure 3 but plotted using points to
show explicitly the resolution of the magnetic field
measurements. The horizontal black line marks B = 0. The
magnetic field increase in the ramp is nearly linear, and the
noncoplanar magnetic field has a rather broad maximum. The
behavior is consistent with the relation (7).

The magnetic field is measured as a function of time in the
spacecraft frame. Accordingly, in the following, all scales are
given as temporal equivalents of the corresponding spatial scales.
Proper conversion of temporal durations into spatial lengths
should be done by multiplying by the unknown shock speed
Vsh in the spacecraft frame. This speed cannot be determined in
dimensional units (km/s) without density measurements.
Inspection of Figure 3 has shown that the time separation of
the two successive maxima of the whistler precursor is ΔtW =
3.19 s, which gives the spatial-to-temporal correspondence λ =
2πLW = VshΔtW (see (2)), or lW = VshΔtW/2π = Vsh · 0.5 s. Using
the estimate based on the noncoplanar magnetic field from Eq. 7
and d/dt = Vsh (d/dx), one gets lW = Vsh · 0.6 s. The agreement is
quite good. The ramp duration is Δtr = 2.4 s so that the ramp
width is D = VshΔtr = Vsh · 2.4 s and

FIGURE 3 | The normalized magnetic field rotated into the shock coordinates: x is along the shock normal, and y is the noncoplanarity direction. Colors are as in
Figure 2. The region between the blue and the red vertical lines is the whistler precursor. The region between the red and the green vertical lines is the ramp. The black
vertical line passes through the maximum of the overshoot.
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D ≈
ΔtW
2πΔtr

( ) c cos θBn
MAωpi

( ) ≈ 4
c cos θBn
MAωpi

( ) ≈ 1.6
c

MAωpi
( ).

(13)
Assuming D ≈ c/ωpi [27], we get an estimate of the Alfvénic Mach
number: MA ≈ 1.6.

The shock is laminar, indicating low β [23, 25, 26]. Figure 5 shows
the results of the adjustable test particle analysis. The shock angle was

taken from the above determination using magnetic coplanarity, and
the ramp width was taken as one ion inertial length. In contrast, the
Mach number M, the cross-shock potential s, and the ion βi were
varied. The best convergence to the downstream magnetic field was
found forM= 1.65, βi= 0.1, and s= 0.63. The overshoot in the derived
profile is also in agreement with the observations.

5 A LOW-MACHNUMBER SUPERCRITICAL
SHOCK

Figure 6 shows the shock crossing at 2013/047/06:57:00 in a
format similar to Figure 1. Figure 7 shows the magnetic field
components in MSO coordinates, as well as the magnetic field
magnitude, the shock crossing moment, and the upstream and
downstream regions used in the analysis. The format is similar to
that of Figure 2. Figure 8 shows the normalized magnetic field
rotated into the shock coordinates, similar to Figure 3. This shock
has a clear overshoot and a noticeable foot, which means that this
shock is expected to be a moderately supercritical shock. The
downstream-to-upstream main magnetic field ratio is Rd = Bd/Bu
= 2.66 and max |B|/Bu = 3.54. The angle between the shock
normal and the upstreammagnetic field is θBn ≈ 63° and cos θBn ≈
0.45. Moderate changes of the upstream and downstream
intervals did not affect the normal determination noticeably.
High-frequency turbulence is present. We remove it using the

FIGURE 4 | Close-up of Figure 3.

FIGURE 5 | Profile adjusted using test particle analysis withM = 1.65, βi = 0.1, and s = 0.63. The initial profile is shown by the blue line. The red line is the magnetic
field derived from the pressure balance.

FIGURE 6 | Magnetic field magnitude of a MESSENGER measured
shock. (A): ± 20 s around the crossing. (B): ± 180 s around the crossing.
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wavelet denoising as follows: 1) 211 points of data are taken
around the crossing time to cover sufficiently the upstream and
downstream regions, 2) the Daubechies-10 wavelet transform is
applied, 3) five smallest scales are removed, and 4) the inverse
wavelet transform is performed. The procedure is done for Bx, By,
Bz and separately for |B| because, otherwise, the foot region is
smeared out. Figure 9 shows the magnetic field magnitude with
the high-frequency noise removed. The maximum magnetic field
is now Rm = |Bdn, max|/Bu = 3.3. We shall adopt this value as the
maximum overshoot magnetic field.

Figure 10 shows some meaningful points marked at the
magnetic field profile. Among these, the most important for us
will be the beginning of the foot at t1 = − 10 s, the end of the foot
and the beginning of the ramp at t2 = − 1.9 s, with the elevation of
the magnetic field of ΔBfoot/Bu = 0.1, and the overshoot maximum
at t3 = 0.7 s, with the additional elevation of the magnetic field of
ΔBro/Bu = 2.2. The minimum of the undershoot occurs at t5 = 5.8 s,
and the magnetic field there drops to B5/Bu = 2, well below the
downstream value. The width of the foot is estimated as Lfoot ≈
0.5M(c/ωpi) = Vsh · 8.1 s, where M is the Alfvénic Mach number
[33]. Figure 11 shows all three components of the magnetic field

with high-frequency noise removed. The normal component Bx
(red line) remains reasonably constant with only small variations
inside the ramp. The noncoplanar component has the maximum
value of By/Bu ≈ 0.4 inside the ramp where the slope is the steepest,
(1/Bu) dBz

dt ≈ 0.84 s−1, and dBz
dx � (1/Vsh) dBz

dt . This behavior implies
that the relation (7) may be a good estimate [35]. Using it, we get

LW � c cos θBn
Mωpi

Vsh � Vsh · 0.47 s. (14)

Note that this relation is not valid behind the ramp because of the
strong non-gyrotropy of the ion distribution [32]. Together with
the estimate of Lfoot, we get the estimate of the Mach number

M �
�����������
2Lfoot cos θBn

LW

√
≈ 3.9. (15)

Another estimate of the Mach number can be obtained from [50]

R2
m � 2M2 1 − ����

1 − s
√( ) + 1, (16)

where s � 2eϕNIF/mpV2
u is the normalized NIF cross-shock

potential. Taking s = 0.5, one gets M ≈ 4.1. The two estimates

FIGURE 7 | The magnetic field in MSO coordinates: Bx (green), By (red), Bz (blue), and |B| (black), for the shock crossing 2013/047/06:57:00. The red vertical lines
mark the upstream region used to calculate the normal from magnetic coplanarity, and the blue vertical lines mark the downstream region. Time is measured in seconds
from the shock crossing (marked by the black vertical line).

FIGURE 8 | The normalized magnetic field rotated into the shock coordinates: x is along the shock normal, y is the noncoplanarity direction. Colors as in Figure 7.
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agree very well. There should be no illusions though because all
these are approximations. Using M ≈ 4, we get

c

ωpi
≈ Vsh · 4 s,

Vu

Ωu
� M

c

ωpi
( ) ≈ Vsh · 16 s. (17)

The distance between the maximum of the overshoot and the
minimum of the undershoot is 5 s. A rough estimate of this
distance is

Vd

Ωd
≈

����
1 − s

√
Rd

( ) Vu

Ωu
( ) ≈ Vsh · 4.25 s, (18)

which is not bad at all. Consistence of all these estimates encourages
to conclude that the chosen s = 0.5 is not far from reality.

The absence of downstream magnetic oscillations, that is, only
one overshoot and undershoot, indicates high β [45]. Figure 12
shows the results of the adjustable test particle analysis. The best
convergence to the downstream magnetic field was found forM =
4, βi = 0.75, and s = 0.5. The overshoot in the derived profile is also
in agreement with the observations. The position of the undershoot
is close to the predicted. However, the magnetic field in the
undershoot of the derived profile is somewhat higher than the
observed one probably because the overshoot modifies the ion
motion. The initial profile used for adjustment was a simple tanh-
like profile. A better agreement could potentially be achieved by
using a more sophisticated model with an overshoot and
undershoot. We leave this issue for further studies.

6 VERIFICATION WITH MAGNETOSPHERIC
MULTISCALE

There were no particle data for the analyzed MESSENGER
shocks. The above analysis has been done using magnetic field

FIGURE 9 | The original (blue) and the denoised (red) B.

FIGURE 10 | The denoised B and the meaningful points, from left to right: the beginning of the foot (t1), the end of the foot and the beginning of the ramp (t2), the
overshoot maximum (t3), the point where the magnetic field decreases to the value nearly equal to the downstream magnetic field magnitude (t4), the minimum of the
undershoot (t5), the point where the mean magnetic field essentially levels off (t6).

FIGURE 11 | Three components of the denoised magnetic field: Bx (red),
By (blue), and Bz (black). The maximum of By lies inside the ramp at the point
with the steepest slope.
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measurements alone. It is desirable to verify this analysis with
shocks for which the Mach number and the scales could be
determined by the above methods and, independently, by the
conventional methods involving additional measurements. For
this task, an MMS1 shock was selected with sufficient magnetic
features to apply the above approach. Two independent analyses
have been performed: one applied the theoretical estimates to the
magnetic profile without utilizing any other information and the
other was done in the standard way. We present the comparison
below. The shock crossing occurred at 2020-11-12 14:36:04.
Figure 13 shows a part of the shock, |B|/Bu, in GSE
coordinates, with the time set to zero at the shock crossing.
The black line shows the normalized magnetic field magnitude.
The sampling rate is 16 measurements per second. The upstream
magnetic field is determined by averaging over about 20 first
seconds of the Figure 13. The downstream magnetic field is
determined by averaging over about 50 last seconds of the figure.
The shock normal is determined using magnetic coplanarity. The
found shock normal is n̂ � (0.627 5, 0.778 6,−0.000 5). The red
line shows the denoised magnetic field. The denoising
(i.e., removing high-frequency fluctuations to only retain what
is assumed to be the stationary profile) is done by applying

discrete wavelet transform. The Daubechies 10 wavelet
transform was applied to the 4,096 data points, and five
finest scales were removed. The vertical blue lines show
the chosen beginning and end of the foot used for further
analysis. The duration of the foot is 10.16 s. The denoised
magnetic field is used to determine Rd ≈ 2.5 and Rm ≈ 3.6.
Figure 14 shows the noncoplanar and main magnetic field
components in the vicinity of the ramp. Using Eqs 3, 7, the
Mach number is estimated as M ≈ 3.35, and the ion inertial
length corresponds to the duration ≈ 6.0 s. Using the distance
between the two adjacent downstream maxima gives a result
that is inconsistent with other estimates. Using twice this
distance [48, 49], together with the foot length, also givesM ≈
3.35. Note that the precision of the determination of the
durations used for the estimates and the application of the
wavelet transform is not sufficient to ensure the above
excellent agreement of the Mach number estimates.

The shock was independently analyzed using theMMSmagnetic
field and particle (density and velocity) measurements. The
upstream and downstream magnetic field vectors in GSE
coordinates are Bu = (1.48, − 6.53, 4.52) nT and Bd = (7.93, −
12.94, 12.4) nT, respectively. The upstream and downstream velocity

FIGURE 12 | Profile adjusted using test particle analysis withM = 4, βi = 0.75, and s = 0.5. The initial profile is shown by the blue line. The red line is themagnetic field
derived from the pressure balance.

FIGURE 13 | The MMS shock used for verification. The black line shows the normalized magnetic field magnitude. The red line shows the denoised magnetic field.
The vertical blue lines show the beginning and the end of the foot. See details in the text.
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vectors in the spacecraft frame andGSE coordinates areV1 = ( − 376,
33, − 19) km/s and V2 = ( − 264, 133, − 18) km/s, respectively. The
upstream and downstream number densities, measured by MMS,
are Nu = 8.11 cm−3 and Nd = 23.12 cm−3, respectively. The model
shock normal [53] n̂ � (0.62, 0.78,−0.03) was used for the
determination of the shock speed Vsh and the upstream velocity Vu:

Vsh � NdV2 −NuV1( ) · n̂
Nd −Nu

, Vu � | V2 − V1( ) · n̂|
1 −Nu/Nd

. (19)

Note that the model shock normal and the normal found earlier
from coplanarity are quite similar. In order to avoid confusion,
velocities V1 and V2 are the bulk plasma velocities relative to the
spacecraft in the upstream and downstream regions, respectively.
Value Vu is the NIF upstream plasma speed. The Mach number is
M =Vu/VA, whereV2

A � B2
u/4πNump. The derivedMach number is

M = 3.68 with the shock speed of Vsh = 20.3 km/s. Because the
spacecraft instruments are not quite appropriate for catching the
cold solar wind, the OMNI density [54] is often used to replace the
upstream ion density measured by the spacecraft. In this case, the
OMNI density is Nu,OMNI = 7.4 cm−3, slightly lower than the MMS
measured value, and the corresponding Mach number is M = 3.36,
with the shock speed ofVsh = 10 km/s. TheMach numbers obtained
in the two approaches differ by less than 10%, which is within the
precision of the determination of the shock parameters.

7 DISCUSSION AND CONCLUSION

In this study, we applied existing theoretical estimates to the
magnetic field measurements to determine the Aflvénic Mach
number and the scale parameters of two low-Mach number
shocks. One of these shocks has a very low overshoot and a clear
whistler precursor. Another one possesses a substantial overshoot
and a foot. In both cases, we estimated the Mach number using at
least two independent theoretical approaches and found good
agreement between the various methods. In addition, this allowed
us to determine the correspondence of the duration of the
measurement of a particular feature to its physical spatial scale in
terms of the upstream convective gyroradius and/or ion inertial

length. As always, the determination of the shock parameters
requires making some assumptions, such as stationarity and
planarity. Although the methods were applied to rather clean
shocks with classical profiles at this stage, they will possibly allow
extension to less favorable cases, in part by comparison with the
success of the present study. The method has been tested with an
MMS observed shock, for which sufficiently good particle
measurements are also available. The Mach number obtained
with the magnetic measurements and theory and the Mach
number obtained with both magnetic field and particle
measurements differ by less than 10%, which is encouraging.
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