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City population size is a crucial measure when trying to understand urban life. Many
socio-economic indicators scale superlinearly with city size, whilst some infrastructure
indicators scale sublinearly with city size. However, the impact of size also extends
beyond the city’s limits. Here, we analyse the scaling behaviour of cities beyond their
boundaries by considering the emergence and growth of nearby cities. Based on an
urban network from African continental cities, we construct an algorithm to create the
region of influence of cities. The number of cities and the population within a region of
influence are then analysed in the context of urban scaling. Our results are compared
against a random permutation of the network, showing that the observed scaling
power of cities to enhance the emergence and growth of cities is not the result of
randomness. By altering the radius of influence of cities, we observe three regimes.
Large cities tend to be surrounded by many small towns for small distances. For
medium distances (above 114 km), large cities are surrounded by many other cities
containing large populations. Large cities boost urban emergence and growth (even
more than 190 km away), but their scaling power decays with distance.
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1 INTRODUCTION

The world’s urban population has undergone rapid growth in recent decades, and this trend shows no
signs of ceasing [1]. By 2021, 56.2% of the world’s population lived in urban areas. Furthermore, in the last
10 years, the world’s population has increased by nearly 840 million inhabitants, but almost 95% of that
growth occurred in cities. Thus, the world is alreadymostly urban and will becomemore urbanised in the
coming decades. That said, the proportion of urban population is not uniformly spread across all regions,
with variations being as much as 82.6% in North America or 74.9% in Europe, but only 43.5% in Africa.
The percentage of the urban population is predicted to keep growing up to 68% by 2050, but this increase
will not be uniformly distributed. It is anticipated that 90% of the projected growthwill be concentrated in
just a few countries from Asia and Africa, with China, India and Nigeria accounting for 35% of the total
growth [2].

The shift to a society of urban dwellers will result in profound but still poorly understood changes. On
the one hand, urbanisation could lead to adverse changes [3–5] such as loss of biodiversity, land-cover
change, social disparity and deterioration of public health. On the other hand, urbanisation has positive
consequences since urban agglomerationmay result in increased productivity from firms [6], urban wage
premium [7], improved access to healthcare [8] and higher concentration of highly-qualified individuals
[9]. Yet, the effect of these changes will likely not be limited to each of the growing cities [10]. Instead, it
will likely spread to an area influenced by that city, which might range from just the surrounding
territories in the case of smaller urban settlements, to a regional or continental level, in the case of global
metropolises [11, 12].
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In order to understand the nature and extent of the
urbanisation process, it is necessary to investigate the patterns
formed by urban settlements, including the features and
functionality of the individual settlements and relationships
within a region’s urban system [13]. Population size can be
identified as one of the most fundamental attributes of urban
settlements, and, to a great extent, it captures their relative
importance with respect to others in the urban system since it
is often well correlated with other socio-economic indicators [14].
Furthermore, describing urban settlements by their population
size facilitates comparisons between them through history and
across civilisations. For these reasons, population size is regarded
as “the first dimension”, i.e., the most relevant factor to
differentiate a set of urban settlements [13].

A systematic knowledge of how population size characterises
urban settlements is an essential element for the creation of a
quantitative science of cities [15, 16]. Urban scaling models are
particularly suitable for this purpose since it is possible to
approximately predict the expected average characteristics
that a settlement of a given population size should display
through the observation of scaling behaviour. What is more,
deviations from urban scaling models sometimes become the
most interesting information for both policy and scientific
analyses, as they are usually the result of local characteristics
that make a settlement exceptional with respect to its peers [17].
Following the tradition inherited from allometry theory [18],
which studies the relation between the body size of different
organisms and other features such as shape, anatomy or
physiology, urban scaling models hypothesise that
environmental, economic, and social properties of urban
settlements scale as a power law of their population size [17].
More formally, if X is the population of a city and Y is an urban
indicator, then Y is a function of the population so that:

Y X( ) � αXβ, (1)
where the scaling exponent β > 0 is, in general, different from 1,
and α is a proportionality constant. Using scaling models of this
form, it has been found before that the economic productivity of a
city varies with its population size with the scaling exponent
estimated from data to be β̂ � 1.15 [17], i.e., it increases
systematically by 2.21 times its value with every doubling of a
city’s population. The walking speed [19], the criminal activity
[20], the CO2 emissions [21], the average number of contacts and
communication activity [22], the economic diversification [23],
the road length distribution [24], the number of people migrating
to a city [25], the amount of media coverage received by a city [26]
or the number of road traffic accidents [27, 28], have all been
found to scale as a power law with city size.

Scaling models provide a simple way of classifying data from a
given urban system as linear, superlinear or sublinear, depending
on whether the value of the scaling exponent β is equal, larger or
smaller than one. The scaling behaviour then determines whether
larger cities are more efficient or productive (or demanding or
polluting) than the smaller counterparts for some urban
characteristic, i.e., whether that characteristic follows an
economy of scale [29]. For example, if β < 1 for some Y (the

number of petrol stations, for example), it means that large cities
are more efficient (or that people in larger cities tend to “share”
petrol stations).

Urban scaling behaviours are a manifestation of the
hierarchical structure of the settlements that form the urban
system, with the peak of this hierarchy corresponding to the large
global metropolises. The hierarchy is such that the larger the
settlements, the fewer their number. There are many small
villages and towns but few extremely populous cities.
Furthermore, as settlements grow in population size, they tend
to be located further apart, and the variety of their functions also
increases. These observations are usually attributed to the
existence of agglomeration economies or economies of scale as
a utility maximising mechanism for economic agents [14].
Central Place Theory is among the most known theoretical
frameworks that attempts to explain the number, size,
functions and spatial distribution of urban settlements in an
urban system. Whilst this theory, devised in 1933 by Christaller
[30], deduces the observed hierarchies of urban systems, it is
based on the assumption that different settlements have different
levels of attractiveness, and this already determines their capacity
to absorb more population from the surrounding areas [14].
However, Central Place Theory has been criticised for being a
static framework that does not consider the temporal aspect in the
development of the urban hierarchy.

Other approaches have been taken to explain the hierarchy of
urban settlements, that, instead of relying on aspects related to
microeconomics, depend solely on probabilistic considerations.
Mathematically, the distribution of population sizes in an urban
system can often be modelled via heavy-tailed probability
distributions, such as the Pareto [31, 32] or the lognormal
[33]. As shown in Pumain’s review [14], dynamic models for
the growth of urban population sizes, such as Gibrat’s law [33],
have been proposed as the underlying mechanism for these
observed heavy-tailed distributions. In practice, even though
the distribution of urban population sizes displays regularities
in its behaviour, deviations from the proposed growth models are
common [34]. For example, the largest urban areas are often
more populous than predicted by the underlying heavy-tailed
distributions. These extremely large urban areas were detected by
Jefferson in [35], who named them “primate cities”. Years later,
Lahèrre and Sornette also studied these outliers by following a
probabilistic approach and referred to them as “dragon-kings”.

As predicted by the different models that describe the
hierarchy of urban settlements, there are indeed certain urban
areas that are unique which play central roles in the economic
productivity of firms and workers [36], are especially prolific in
some industry sectors or have an extraordinary cultural output
[37]. Typically, these urban areas have a population larger than
the surrounding settlements, as is the case of primate cities or
dragon-kings at the country level. Their special status has usually
been forged by amplifying mechanisms for their own growth:
their relatively large population size increases the probability of
developing and using innovations, which will eventually attract
more people. Furthermore, because more people live in them,
there are more interactions with the rest of the urban network,
and so, they may capture innovations that come from elsewhere
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[14]. In this sense, we can think of these urban settlements with a
relatively large population size as a core, formed by their
corresponding built-up area and a “region of influence”
surrounding this core. The socio-economic activities and land
use management in the region of influence will be subject to the
needs and requirements of the core. Identifying regions of
influence has been the object of many studies, for example,
based on clustering algorithms [38–40], or based on
commuting patterns [41], where urban areas are merged into
a unit based on some proximity criteria.

Here, we develop a modelling framework to understand some
structural aspects of the patterns formed by urban settlements.
Given that Africa will be one of the regions most affected by the
urbanisation process in the coming decades, we base our
analysis on an urban network of African cities. We propose
an algorithm to determine the region of influence of cities in the
urban network, based on the consideration that cities within a
threshold road distance from a relatively large city are in their
region of influence. Once the regions of influence are defined, we
apply urban scaling models to describe the relationship between
city size and several characteristics of the region of influence,
such as the number of other cities and the population within this
region. The findings of our work show that there is a significant
scaling behaviour beyond cities themselves, involving their
region of influence.

We observe that three distinct regimes arise, depending on
the value of the threshold road distance used to determine the
regions of influence. For a road distance smaller than 114 km,
large cities are surrounded by many urban centres within their
region of influence, but these tend to be small cities. Therefore,
for less than 114 km, large cities are surrounded by many small
cities. Between 114 and 190 km, large cities are then surrounded
by a significantly high number of cities and incorporate a large
population. By 190 km, the number of cities and population
within the region of influence of large cities is at a maximum.
Above this distance, although large cities are still surrounded by
a significantly large number of cities and corresponding
population, the effect decreases with a larger distance
threshold. Our results suggest a sublinear scaling impact of
city size in terms of the size of the region of influence of a city.

2 METHODS

Urban road networks are a type of spatial network where nodes
represent cities, and highways that connect them are the links or
edges of the network [42–44]. Urban road networks have been
used to study city to city migration [45], historical and
geographical features of the network [46–48] and local and
global indicators, such as connectivity, centrality, hierarchy,
clustering and others [43, 49–54]. They have also been used to
analyse proximity or the directedness of the network or the
geometric design of its roads [42, 55]. The transport network
is one of the main factors that shape urban patterns [56] since the
ability to access global networks influences the development of
cities [57]. Size, proximity and network connectivity shape city

functions [58] and are essential for delivering healthcare, for
distributing resources, and for economic development [59, 60].

Here, we begin with the African urban network [55],
constructed by considering all continental cities with more
than 100,000 inhabitants as the nodes, obtained from [61].
The edges of the network were created based on the road
infrastructure from [62], using all primary roads, highways
and trunk roads. Each edge was constructed by measuring the
physical distance of consecutive points that describe the intricate
patterns of the roads. Thus, a reasonably good estimate of its road
length is available for each edge. Additional nodes besides cities
are needed to fully describe the road infrastructure, such as road
intersections. These nodes are labelled as “transport nodes” and
help define possible routes between cities. Some transport nodes
correspond to towns with less than 100,000 inhabitants, so they
are labelled as attached to nearby cities. The urban network
enables us to consider the existing roads in the continent and
measure the travelling distance rather than the physical distance
between cities. The constructed network is formed by 7,361 nodes
(2,162 cities and 5,199 transport nodes) and 9,159 edges. Also, the
network is connected, meaning that it is possible to find a
sequence of nodes and existing roads that connects any pair of
cities, and therefore, it is also possible to find the shortest road
distance between any two cities and define it as the network
distance. The network consists of 361,000 km of road
infrastructure and connects 461 million people living in
African cities, representing roughly 39% of the continent’s
population.

2.1 Constructing the Region of Influence of
a City
Cities are spatially arranged in a highly ordered pattern where
large cities cluster with others while small towns tend to be more
isolated [63]. Yet, whilst large cities tend to attract more
population, they also create some dispersion by having an
increased cost of living and by the competition they impose

FIGURE 1 | Scheme for constructing the region of influence Ri(δ) of
cities. Cities are represented by discs, according to their size. For a short
influence distance δ (top) many small regions are formed, represented by
different colour ribbons. The centre of each region is the white disc.
Some of the cities which were a centre for small values of the influence
distance δ, become part of the region of influence of another city for larger
values of δ.
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on the nearby population in terms of resources, such as food or
water [64]. Therefore, instead of a single cluster of cities, we
expect to detect many clusters or city “archipelagos”, where large
and distant cities form the core, andmedium and small secondary
towns fall within the corresponding region of influence [44].

The list of all cities in decreasing order according to their
population is considered. For city C1, the city with the largest
population size, all urban agglomerations at a road distance
smaller than some influence distance δ, with δ > 0, are
considered to be within the region of influence R1(δ) of C1.
From the list, all cities inR1(δ) are removed, including city C1.
Then, the largest city remaining in the list is labelled as C2 and
its region of influenceR2(δ) is constructed in a similar fashion.
The procedure finishes when the list of cities is empty, meaning
that all cities have been assigned to only one region of influence
(Figure 1). The result gives M regions of influence,
R1(δ),R2(δ), . . . ,RM(δ). Each region of influence Ri(δ) is
identified by its “centre”, or city i, corresponding to the largest
city of that region of influence.

For different values of δ, a distinct number of regions of
influence is obtained, that is, M depends on δ. Also, a region of
influence Ri(δ) might contain a single city (for instance, for
isolated towns and/or small values of δ).

For each region of influence, two metrics are constructed.
First, the number of cities κi(δ) > 0, corresponding to the
number of cities in Ri(δ) including city i. Second, the
population of influence ϕi(δ) ≥ 0, corresponding to the
urban population inside region Ri(δ), but now without
considering the population of city Ci. By not counting the
population of city Ci, then a large value for ϕi(δ) is not due to a
large population in Ci directly.

2.2 Comparing Against Randomness
The algorithm for constructing regions of influence is based on
city size. Therefore, regions of influence with larger centres will
be more likely to have higher values of κi(δ) and of ϕi(δ) since
they appear early on in the list. Thus, observing any impact of
city size could be simply the result of the algorithm and not
because large cities are surrounded by more emergent cities
and more population.

To detect if the observed results are only due to our
algorithm or if large cities are, in fact, surrounded by more
emergent cities and population, we consider a random
permutation of the nodes in the network as follows. We
keep the structure of nodes and edges, but we permute the
city size among its nodes. With this technique, a large city takes
up a random location in the network. We then follow the same
algorithm to construct regions of influence and measure a
permuted (p) number of cities κ(p)i (δ) and the population of
influence ϕ(p)i (δ). Suppose the results observed for the original
network and the permuted network for κi(δ) and κ(p)i (δ), and
also in terms of the population ϕi(δ) and ϕ(p)i (δ) are similar. In
this case, the metrics are the result of our algorithm. However,
if the observed metrics are different when the network is
permuted, we can ensure that large cities’ position in the
network creates this observed urban scaling.

3 RESULTS

Useful insights arise when observing Africa’s urban network. For
example, defining the city degree as the number of roads that
connect it with somewhere else (so, the city degree is the node
degree), a sublinear behaviour is observed [55]. The road network
made of continental cities in Africa has a diameter (or maximum
network distance) of 11,950 km between Umtata Central in South
Africa and Tinduf in Argelia. The average road distance between
each pair of cities is 4,559 km. In contrast, the average geodesic
distance is 3,264 km, suggesting that road distances are 39.6%
times larger than the shortest distance between cities (Figure 2).

The network has 2,162 cities. With δ = 50 km, we get M = 1,
131 regions of influence (Figure 3). However, by simulating 2,162
random points inside continental Africa and following the same
procedure (also with δ = 50 km), we obtain 1, 680 ± 25 regions.
Therefore, cities are much more clustered than randomness
would suggest, and there are vast empty regions in the
continent (Figure 2). Also, we observe that the most isolated
town in the continent is in the south of Libya, in the Sahara
Desert, 851 km away from the nearest city. However, by
simulating 2,162 random points inside Africa, we get that the
most isolated town is roughly 200 km away from the nearest city.
Indeed, most cities are clustered around some main urban
corridors (including the Nile River, the Mediterranean coast,
the Lagos-Abidjan coast in West Africa, Lake Victoria and the
South Africa network). Still, some cities are highly isolated in the
Sahara Desert, the Congolian Rainforest and the Kalahari Desert
in Botswana, Namibia and South Africa (see the Supplementary
Appendix).

FIGURE 2 | For different values of δ, distinct regions of influence are
constructed. For some value of δ, all regions of influence are identified using
the same colour. Larger values of δ have darker colours and smaller values of
δ, corresponding to smaller regions of influence, have lighter colours.
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With a distance δ = 70 km, the largest region of influence has
Cairo as its centre, with 40.3 million inhabitants (57% of them
corresponding to people living in Cairo and 43% in cities nearby
Cairo).

3.1 Impact of City Size on the Regions of
Influence
For some value of δ, the expected number of cities inside a region
of influence conditional on the population size of the centre Pi is
denoted by E[κi|Pi]. We use the urban scaling modelling
framework to express this quantity according to Eq. 2:

E κi δ( )|Pi[ ] � αδP
βδ
i , (2)

where αδ and βδ are the scaling coefficients corresponding to the
quantity κi(δ). We estimate the value of these scaling coefficients
via a Poisson regression. For example, for a distance δ = 155 km,
we get that α155 = (7.326 ± 1.262) × 10–4 and that β155 = 0.682 9 ±
0.012, so the expected number of cities inside a region of influence
is given by E[κi(δ)|Pi] � 7.326P0.682 9

i × 10−4. We also use the
same procedure to model the expected population of the region of

influence, conditional on the population of the centre. This can be
expressed as

E ϕi δ( )|Pi[ ] � aδP
bδ
i , (3)

for some aδ and bδ which are the scaling coefficients for ϕi(δ).
Again, a Poisson regression yields for δ = 155 km, a155 = 0.567 3 ±
0.000 4 and b155 = 1.022 ± 5 × 10–5. For δ = 155 km, our results
suggest that regions of influence where the centre is a large city
have more urban agglomerations and more population than
regions where the centre is smaller (Figure 4).

For values of δ = 155 we get that β155 is smaller than one and
b155 is close to one. Yet, the impact of city size is significant for the
size and population of regions of influence. Comparing, for
example, the number of cities of the region of influence of city
Ci and of city Cj, ten times larger than city Ci, then we expect

α155P
β155
j /α155P

β155
i � 10β155 ≈ 4.8 times more cities and

10b155 ≈ 10.5 times more population (without considering the
population from the centre). Furthermore, this is not the
result of constructing regions of influence based on larger
cities. By permuting the population of cities in the network,
we get that β(p)155 ∈ (0.496 8, 0.570 2), which is far from the

FIGURE 3 | The result of considering δ = 255 km. The procedure gives M = 288 regions of influence. The largest region of influence has 246 cities and 57 million
inhabitants, with Cairo at its centre. The largest centres are Cairo, Lagos, Onitsha, Kinshasa, Johannesburg, Luanda, Alexandria and Nairobi. With δ = 255 km, there are
84 regions of influence with a single city.
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observed value of β155 = 0.682 9 ± 0.012, and
b(p)155 ∈ (0.701 0, 0.890 7), also far from the b155 = 1.022 ± 5 ×
10

–5
obtained.

How far the region of influence of a city spreads is a critical
aspect of the model. By considering different values of the
influence distance δ, we obtain different regions of influence.
The result also gives different values for βδ and bδ (Figure 5).

The observed scaling parameters for the number of cities βδ
remain above and outside the intervals obtained with a permuted
network. Thus, the number of cities inside a region of influence
grows with city size in a non-trivial manner. Therefore, the
network structure plays a role, and large cities tend to be
surrounded by numerous urban agglomerations. The observed
scaling parameter for the urban population within a region of
influence bδ also remains above the permuted values. However,
for small distances, it has values inside the interval of the
permuted network, suggesting that cities tend to be
surrounded by smaller towns rather than big cities.

For small regions of influence, we get many cites with a small
population. For example, for δ = 50 km, we get that β50 = 0.3.
Thus, when a city is ten times larger, it has twice as many cities
within a network distance of 50 km (since 100.3 ≈ 2). For the same
δ = 50 km, b50 = 0.56. When a city is ten times larger, it has
3.6 times more population within a distance of 50 km. Thus, a ten
times larger city tends to have twice as many urban areas and
3.6 times more population at a distance of 50 km. Meaning it has
more and larger cities nearby.

The average size of cities within the region of influence
depends on the population of the centre which can be
computed based on Eq. 2. The result gives

μi δ( ) � ϕi δ( )
κi δ( ) �

aδ
αδ
P
bδ−βδ
i , (4)

where the exponent (bδ − βδ) > 0 indicates that large cities are
surrounded by more populous urban agglomerations. Results
show that bδ − βδ remains well above values of zero for all values
of δ > 0 (Figure 6).

Our results indicate that big cities are surrounded bymore and
larger cities within their region of influence. The result is not due
to the construction of regions of influence since the permuted
network gives less significant coefficients. Large cities tend to
cluster, whereas small cities are more likely to be isolated [64].
Cities form hierarchical structures, a pattern that has also been
observed for roads [65].

There is a significant difference between the size at the centre
and the size of cities within the region of influence. Only a few
cities are large, and most are small [30]. For example, for Cairo
(with nearly 23million inhabitants), the average size of a city in its
region of influence is 300,000 inhabitants within a few kilometres,
and it decays with distance to 200,000. After a discontinuity at

FIGURE 4 | Number of cities κ(155) inside regions of influence (A) and
population inside the region of influence (ignoring the population from the
centre) ϕ(155) (B) against city size (horizontal axis). Axis have a logarithmic
scale. Each city is represented by a coloured disc, with its size
proportional to population. Five African regions are represented by the colour
of the disc.

FIGURE 5 | Observed and permuted values of βδ (A) and bδ (B) for the
number of cities and the population in the region of influence of cities. The
horizontal axis is the influence distance δ in kilometres. The red lines are the
observed values, and the purple line and the shaded interval around the
permuted results give the range of values obtained from the permuted
network. Intervals are obtained for a fixed value of δ by permuting 100 times
the population size of cities and removing the top 5 and the bottom 5
simulated values to drop outliers.
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about 114 km from the centre, the size increases slightly to
260,000 but then decays again with more considerable
distances (Figure 6). Thus, cities the size of Cairo, Lagos or
Johannesburg can be thought of as massive planets surrounded by
a surprisingly large number of minor satellites orbiting around.
Considering a network distance of δ = 155 km, for example, Cairo
has 215 cities within its region of influence, with an average size of
fewer than 150,000 inhabitants in each satellite town. Although
minor in size, the 215 satellite towns have a total population of 31
million inhabitants, thus, surpassing the size of Cairo itself.
Within 155 km of Cairo, the city is only 43% of the urban
population of the region of influence. This region of influence
is similar to the Alexandria-Cairo-Luxor mega-city constructed
based on clustering distinct agglomerations [40]. And the same
goes for Lagos, with 49 satellite towns adding nearly 13 million
inhabitants in the region. Within 155 km, ten out of the top
twenty most populated cities in Africa have less than 60% of the
population of their regions of influence.

3.2 Regions With High Isolation
Scaling studies often focus on the large cities, but on the other side
of the spectrum, we find a high level of isolation with huge
distances to some primary city. Isolation is one of the main
contributors to poverty [66] and our results show that some cities
are highly isolated.

For example, with δ = 155 km, results show that 203 regions of
influence are formed of a single city, with an average size of 90,000
inhabitants. In total, 18.6 million people live in a city that is a
single city within a region of influence. Still, with δ = 155 km, we
get 406 regions of influence where the total population,
considering people from the centre as well, has less than one
million inhabitants. This means that 406 regions (with 87 million

people combined) with less than onemillion people living in cities
within 155 km. In the extreme case, with δ = 1000 km, we find
nine towns at a distance of 1000 km or more to their nearest city.
Africa is characterised by large booming cities surrounded by an
even larger population nearby and many regions with high
isolation.

4 DISCUSSION

Many socio-economic indicators tend to be have
disproportionally larger values in more populated cities. For
example, large cities tend to have higher crime levels and
produce more patents, on a per capita basis (superlinear
scaling). Meanwhile, there are other urban indicators, typically
those referring to infrastructure, which increase slower than the
population (sublinear scaling), suggesting less demand and a
sharing of resources. Urban scaling is a crucial aspect of cities
that can bring value in the design of policies for producing faster
andmore sustainable development [67]. Here, we showed that the
scaling impact of city size goes beyond urban indicators
experienced within the city. Large cities are surrounded by a
disproportionate number of urban agglomerations and
corresponding populations, and the effect is observed for some
distance, even hundreds of kilometres.

Rather than the city coordinates and geodesic distances, a
consideration of the urban network offers a more realistic
approximation for travel between cities. A network where the
cities are nodes and where the road infrastructure are the
edges provides significant details regarding city connectivity
and existent natural and political barriers. The network might
not capture some details at a very small scale, for instance,
details at the street level, such as tolls or highways. Also, the
network itself might not be needed for very long distances
since approximating the road distance by inflating the
geodesic distance by a constant factor of 1.396 [55] is
sufficiently accurate for measuring long-distance
interactions. Thus, after a certain threshold, the road
distance grows linearly with the geodesic distance (see the
Supplementary Appendix). However, for medium distances
(between 20 and 300 km), where intracity interactions are
more prevalent, the network captures the infrastructure,
political barriers and the fragmentation of the continent,
among many factors that increase the road distance of
nearby cities, thus, reducing their interactions.

Our method for constructing regions of influence has some
caveats. First, the way cities are defined may alter results [38, 68,
69]. Here, we have used an Open Access dataset that combines
satellite and aerial imagery, official demographic data such as
censuses and other cartographic sources [61]. A city polygon is
defined as an area with less than 200m between buildings and
constructions in the data. Results might change if a different
definition of a city is adopted. Second, the method ignores the
implications of international borders in a continent that is not
fully integrated and where borders might impose a high cost on
journeys and travel between cities. African border cities are growing
faster than the average [70], suggesting that international borders are

FIGURE 6 | Average city size (vertical axis) for different values of the
influence distance δ (horizontal axis) for a centre with a population of 23 million
inhabitants (nearly the population of Cairo, for example) in purple, and a city
10, 100, and 1000 times smaller (the pink, orange, and yellow polygons).
Thus, at a distance of 50 km from a city with the size of Cairo, for example, we
expect cities to have an average size of roughly 300,000 inhabitants.
However, at a distance of 50 km from a smaller city, for example, a centre with
2.3 million inhabitants, cities in the region of influence will have, on average,
100,000 inhabitants.
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an essential part of the continent’s dynamics and play a role in urban
interactions. Third, a city is assigned to a unique region of influence,
but some urban areas might have a high dependence and interactions
with many cities, perhaps in a hierarchical manner (see the
Supplementary Appendix for the results of constructing regions
of influence using a hierarchical algorithm). Fourth, we have assumed
the same distance threshold across the whole continent for
constructing regions of influence. Thus, we use the same values of
δ to construct the region of influence for Nairobi as Cairo, a city four
times the size and in a more industrialised country. It is possible to
consider other techniques, such as a distance-decay function or
varying values of δ depending on city size, for example, by setting
δ(Pi) � ρPγ

i , for some values of ρ and γ (so our model is for γ = 0).
Also, the impact of distance and the construction of regions of
influence may differ in less densely populated and less urban areas.
For example, some regional aspects could also be considered. Notice
that large cities from the central region of Africa (Figure 4, coloured
differently from other regions) fall under the expected number of
cities κ and population ϕ within their region of influence. Also, with
our scaling parameters, we only observe correlations and not causality
for the emergence or the growth of cities. For example, the region
along the Nile River and its delta has attracted the emergence of
Egyptian cities for its proximity to water but maybe also due to its
proximity to Cairo or Alexandria.

Despite those caveats, our results still show some non-trivial
patterns in the structure of the urban system formed by African
cities. The observed patterns are at the core of serious social issues
such as poverty, inequality or isolation.

4.1 Regions of Influence of the Present,
Mega-Cities of the Future?
When looking at the current situation of cities, it is as if we are
observing a screenshot of a movie that is still playing.
Particularly, since the urban scaling models are applied to
cross-sectional data, the interpretation of the results obtained
here should be used in a comparative or descriptive manner as
opposed to a predictive one [71]. Cities are very dynamic and
will evolve, grow and adapt [72], and so the values of the
scaling parameters computed here are also likely to change.
This is especially the case for the population size of African
cities. What has happened in some cities in the last 60 years
may be nothing compared to what will happen in the next
60 years [73]. In 2020, for example, Egypt was home to 102
million inhabitants, and it is expected to double its population

before 2080. The same is true, if not more so, for many African
countries, with, for example, Chad, Mali and Niger expected
to double their 2020 population before 2050 or even before
2040. Therefore, Ndjamena, Bamako and Niamey will likely
double their population in the upcoming decades. If
urbanisation and population growth continue, Lagos in
Nigeria could soon become the world’s largest city, home
to 85 or 100 million people [73].

It is likely that what we observe today as a large metropolis
surrounded by dozens of minor satellite urban areas within its
region of influence will become a unified polycentric city. A
large metropolis will thus incorporate peripheral
agglomerations as it expands [74]. Hence, some, if not
most of the cities within the region of influence of large
metropolitan areas such as Lagos or Kinshasa, probably
will eventually merge. Today’s large regions of influence
are tomorrow’s polycentric cities.
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