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We use a Riemannian metric as a cost metric when it comes to the optimal decisions that
should be made in a multi-agent/Team scenario. The two parameters of interest to us are
Team skill and Team interdependence, which are modeled as Wiener process drift and the
inverse of Wiener process diffusion, respectively. The underlying mathematics is
presented, along with some approximating rules of thumb. It is noteworthy that the
mathematics points to, what seems at first, counter-intuitive paradigms for Team
performance. However, in reality the mathematics shows a subtle interplay between
the factors affecting Team performance.

Keywords: agents, team, Wiener process, Brownian motion, multi-agent system

1 INTRODUCTION

We are concerned here with how a multi-agent System (MAS) [2], or Team, reaches the successful
conclusion of a task. In Team science, an important parameter for success is interdependence [1, 9,
10, 12]. The Team may be human, machine, or a hybrid. However, our mathematical assumptions
implicitly assume that the Team is very machine-like in its behavior and discounts the vagaries of
human psychology, e.g., [5]. We address this further at the conclusion of this article.

In [13] it was shown how to model Team behavior as (1-dimensional) Brownian motion [4]
(starting at a point Z on the line). In particular, we proposed using Brownian motion B(t) with
(high) drift μ, for (high) Team skill and (low) diffusion σ, for (high) interdependence, arbitrarily
starting at a point Z, 0 ≤ Z ≤ A. We consider that the Team has succeeded if it reaches point A before
0, and the Team has failed if it reaches 0 before A.

The drift, as mentioned, models Team skill. By way of motivation (using humans), imagine we
have a restaurant kitchen crew (building on the restaurant Team given in [11]). We would like all the
Team members to have the most skill possible; this would go into the calculation of the drift μ. High
skill mapping to high μ. We would also like the Team to work together, hence we desire a high
interdependence. Interdependence is the inverse of the diffusion, thus a Team with high
interdependence has low diffusion σ, and a Team with each Team member acting independently
of the other has high diffusion σ. This leads to the question of which is better—high drift μ, or low
diffusion σ? Again, let us go back to our kitchen crew example. If everyone in the kitchen is skilled,
but working independently of the others, the result will be a disaster. The dessert will be served before
the main course, wine will be served after dessert, etc. Thus, skill alone does not lead to optimal
success. On the other hand, consider a kitchen crew with no skill, but working together hand in glove.
The results here are also less than optimal—very bad food served in an efficient manner. What is
needed is a combination of both factors for optimal Team success, and that is what our idealized
mathematics show.

Definition 1. We say that a stochastic process Wt, t≥ 0 is a Wiener process [8] if

• W0 � 0.
• With probability 1, the function t→ Wt is continuous in t.
• The stochastic process Wt{ }, t≥ 0, has stationary, independent increments.
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• The increment, Wt+s−Ws, has the distribution of the
standard normal random variable, N (0, t) (this latter
part of the definition tells us that Wt has the distribution
of N (0, t)).

Definition 2. From [13, 15, 17, 18], we say that B(t) is
Brownian motion with drift μ and diffusion σ, that starts at Z,
0 ≤ Z ≤ A, if

B t( ) � μt + σW t( ) + Z. (1)
Let PZ(z � 0) be the probability that B(t) hits the bottom

boundary first (Team failure), then PZ(z � A) � 1 − PZ(z � 0)
is the probability that it hits the top boundary first (Team
success). Figure 1 is an example of such a sample path. These
probabilities are derived from stopping probabilities ([3]), and we
use L’Hôpital’s rule for μ = 0.

PZ z � 0( ) �
e−

2Aμ

σ2 − e−
2Zμ

σ2

e−
2Aμ

σ2 − 1
, if μ ≠ 0

1 − Z

A
, μ � 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (2)

and

PZ z � A( ) �
e−

2Zμ

σ2 − 1

e−
2Aμ

σ2 − 1
, if μ ≠ 0

Z

A
, μ � 0.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (3)

For now, we will concentrate on Equation 3. Keep in mind
that as σ → 0, then PZ(z � A) → 1, if μ > 0, and that
PZ(z � A) → 0, if μ < 0 (of course, if Z > A, this would not hold).

For Z = 0, we have that PZ(z � A) � 0 since 0 is an absorbing
boundary—that is, if we start at 0 we are done. Also, for Z = A, we
have that PZ(z � A) � 1, which also makes sense—if we start at
A, we never leave A.

Now say that we need to make an assessment—is it better to
modify the drift μ or modify the diffusion σ to increase

PZ(z � A)? Also, what is the cost of this modification, and
how do we measure the cost?

2 FIRST STEPS

We start by defining our manifold B and its Riemannian
structure.1

2.1 Our Manifold B
We would like to know the costs of changing PZ(z � A) as we
vary μ and σ. We considerB(t) in terms of its two parameters, μ
and σ.

With this in mind, we define a 2-dimensional Riemannian
manifold B, homeomorphic to R × R+, and with a global μ, σ
chart. We give B the Riemannian metric

ds2 � dμ ⊗ dμ + 1
σ2

dσ ⊗ dσ. (4)

This metric captures the fact that for σ fixed, the difference
in μ is simply the standard L1 distance between them, and that
it is independent of the diffusion value. However, the
diffusion is also independent of the drift value, but as we
attempt to make the diffusion (standard deviation) smaller, it
costs more and more, until we approach ∞ at the Dirac
distribution.

Note 1—We have chosen to give an infinitesimal distance
between points (μ, σ) and (μ + dμ, σ + dσ) and then extend it
to a global distance. The Riemannian metric ds2 captures the
fact that changes in μ are Euclidean straight-line distance,
whereas changes in σ are based on the inverse of the
variance. This concept aligns with how normal
distributions differ. We further note that this result is
also similar to the Fisher information of the normal
distribution (a normalized Poincaré upper-half-plane).
What is important about our Riemannian metric is that
only the dσ2 is modified from the standard Euclidean metric.
Again, this emphasizes the fact that changing the mean of
the normal distribution is strictly Euclidean, whereas if we
attempt to lower the variance, it requires much more
“power,” and in the limit approaches infinite power. This
approach agrees with our thinking that total
interdependence (exactly the opposite of independent
behavior) has a diffusion of 0, where as totally
uncorrelated behavior has infinite diffusion [13, 6.4.2].—

Thus, B has the first fundamental form

FIGURE 1 | Brownian motion, B(t), starting at Z and with absorbing
boundaries at A (top) and 0 (bottom).

1In this article, we had to make a choice between readability for the non-expert in
differential geometry and exact precision with respect to Riemannian geometry.
We hope that we have achieved a happy middle ground, and we assure the
interested reader that any of the missing fine points can be found in the literature
(e.g. [20]).
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gij[ ] � E F
F G

( )
�

1 0

0
1

σ2

⎛⎜⎜⎝ ⎞⎟⎟⎠, where i, j are indexed independently over μ, v.

(5)
Assume we are at p ∈ B, where p = (pμ, pσ), and with tangent

vectors Û � u1 ẑ
zμ + u2 ẑ

zσ, Ŵ � w1
ẑ
zμ + w2

ẑ
zσ at p, where

ẑ
zμ,

ẑ
zσ are the

canonical basis for the tangent space at p.
The inner product between them is

〈Û, Ŵ〉 ≔ u1w1 + 1

pσ( )2u2w2.

The norm of a vector Ŵ is

‖Ŵ‖≔
�������
〈Ŵ, Ŵ〉

√
.

Say c(t) is a smooth curve in B, c: (a, b)→ B, then there is the
velocity vector field (on the curve) denoted as _c(t). This velocity
vector field assigns to each point c(t′) on the curve c(t) the velocity
vector (which is also a tangent vector of M) of the curve at c(t′)
expressed as _c(t′) (keep in mind that this is multi-dimensional).

That is, c(t) = (cμ(t), cσ(t)), and _c(t) � _cμ(t) ẑzμ + _cσ(t) ẑzσ (where
the raised dot symbol is the usual differentiation with respect to t,
and ẑ

zμ,
ẑ
zσ are understood to be the canonical tangent space basis

vectors at the point c(t) ∈ M). To simplify notation, we can
express this as _c(t) � 〈 _cμ(t), _cσ(t)〉.

We define the length of c(t), denoted as L(c), as

L c( ) ≔ ∫b

a
‖ _c τ( )‖dτ � ∫b

a

����������������
_cμ τ( )[ ]2 + _cσ τ( )[ ]2

cσ τ( )[ ]2
√

dτ. (6)

Given two points, p, q ∈ B, and c(t), any smooth curve between
them (this can be relaxed to include piece-wise smooth, but not of
class C∞), we define the distance between them as

d p, q( ) ≔ infL c( ). (7)

2.2 Team Geometry
Our metric is modeled on the hyperbolic metric in the Poincaré
half-plane model. An important difference is that E does not
depend on the σ value. The change in drift is independent of the
diffusion value which we feel is the correct way to model Team
action. Furthermore, the μ distance is linear with respect to μ.
This choice assumes that only the change of Team skill matters,
not the values it ranges between. However, the change in
diffusion, which is independent of drift, does depend on the
different diffusion (interdependence values) that the Team is
choosing between. This approach makes sense in terms of a
normal distribution. Going from a normal distribution N (μ, 10)
toN (μ, 9) requires much less change in the distribution itself than
going from N (μ, 1) to N (μ, 0.9), and again going from N (μ, 0.5)
to N (μ, 0.45).

We see in Figure 2 that as σ→ 0+, the difference in the normal
plots is more severe. This behavior is in contrast to changing μ,

which has the effect of shifting the graph to the left or right, but
not changing its shape. We use a Riemannian manifold because it
gives us the means to modify the metric for other models of Team
behavior. This approach is accomplished by adjusting the gij in
Equation 5.

2.3 Curvature and Geodesics
We start by considering the Gaussian (sectional) curvature K of B
as a function of the first fundamental form.

First, using Equation 5, we consider the easily obtainable
matrices (the sub-index indicates the partial differentiation with
respect to that index) for B.

Eμ Fμ

Fμ Gμ
( ) � 0 0

0 0
( ) and

Eσ Fσ

Fσ Gσ
( ) �

0 0

0
−2
σ3

⎛⎜⎜⎝ ⎞⎟⎟⎠. (8)

From [14, Eq. (9.22), Eq. (9.33)] we use the Brioschi formula
for a Riemannian 2-manifold in general with generic parameters
μ, v, which, for arbitrary E and G, and when F = 0 [14, Eq. 9.25],
becomes

K � −1���
EG

√ z

zμ

1��
E

√ z
��
G

√
zμ

( ) + z

zσ

1��
G

√ z
��
E

√
zμ

( ){ } (9)

� −1
2

���
EG

√ z

zμ

Gμ���
EG

√( ) + z

zσ

Eσ���
EG

√( ){ }. (10)

For B, Gμ = 0 and Eσ = 0, we find that K = 0.
Now we move on to the geodesics of B. First we have to find

the Christoffel (tensor) symbols (symmetric in the lower
indicies). We define these on a local patch of a Riemannian 2-
manifold, M, in general with generic parameters μ, σ.

Γμμμ �
GEu + FEσ − 2FFu

2 EG − F2( ) (11)

Γμμσ �
GEσ − FGu

2 EG − F2( ) (12)

Γμσσ �
−FGσ − GGu + 2GFσ

2 EG − F2( ) (13)

FIGURE 2 | N (0, σ2) for three groups. g The bottom pair is σ = 10, 9; the
middle pair is σ = 1, 0.9; and the top two, which are the most different are σ =
0.5, 0.45.

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 8616333

Moskowitz A Cost Metric for Team Efficiency

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Γσμμ �
−FEu − EEσ + 2EFu

2 EG − F2( ) (14)

Γσμσ �
EGu − FEσ

2 EG − F2( ) (15)

Γσσσ �
EGσ + FGu − 2FFσ

2 EG − F2( ) . (16)

Thus, for our manifold B, we have that all of the Christoffel
symbols are 0, except for Γσσσ � −1

σ .
Definition 3. For t ∈ (0, 1), a smooth curve c(t) = (c1(t), c2(t)),

_c(t) � ( _c1(t), _c2(t)) in a Riemannian manifold with ∇ being the
Levi-Civita connection [20] is a geodesic if

∇ _c t( ) _c t( ) � 0. (17)
In general, one does not need to restrict t to the unit interval, but

we have done this as a convenience. In general, geodesics are unique
up to an affine parametrization; without loss of generality, we have
fixed this by setting the t interval to [0, 1]. Note that by the existence
and uniqueness theorem for ordinary differential equations (ODEs),
we can find a unique geodesic if we also include the vector values at c
(0) and c′(0). (It turns out for B that this follows directly.)

We do not want to get into too many of the details of the ∇
operator above. It is covariant differentiation, which is the directional
derivative of the vector field _c(t) in the direction _c(t) with
adjustments for curvature K. Details can be readily found in the
literature (e.g. [14]). Since the one local coordinate system (patch) we
have given for B suffices, the geodesic equation reduces to

€cμ t( ) + ∑
i,j∈ μ,σ{ }

Γμij _ci t( ) _cj t( ) � 0, and
(18)

€cσ t( ) + ∑
i,j∈ μ,σ{ }

Γσij _ci t( ) _cj t( ) � 0,
(19)

which, using the above values of the Christoffel symbols,
simplifies to

€cμ t( ) � 0, and (20)
€cσ t( ) − _cσ( )2

cσ t( ) � 0. (21)

Trivially, we find that

cμ t( ) � at + b.

To obtain cσ(t), we need to solve a non-linear second order
ODE, so we simplify notation and use the auxiliary variable
w � _cσ , which gives €cσ � dw

dcσ
_c2 � dw

dcσ
w. Now we perform the usual

trickery, but check our answer at the end.

€cσ � _cσ( )2
cσ

dw

dcσ
w � w2

cσ
dw

w
� dcσ

cσ
w � βcσ
_cσ � βcσ

cσ t( ) � αeβt.

which when we check does solve Eq. 21 for cσ(t) in its most
general form. Thus,

c t( ) � at + b, αeβt( ). (22)
Theorem 1. The constants a, b, α, β uniquely fix the geodesic.
Proof. Say there are two geodesics c, �c: [0, 1] → B such that

c t( ) � at + b, αeβt( ) , and
�c t( ) � �at + �b, �αe

�βt( ).
Assume they are the same geodesic; then by evaluating the

geodesic at t = 0, we have that

b � �b, α � �α.

Now using the above and evaluating the geodesics at t = 1, we
have that

a � �a, β � �β.

□
So all we have to do now is to determine the four constants in

the geodesic curve to uniquely specify it. As noted above, if we
specify c(0) = (μ0, σ0) and _c(0) � (ℵ, b), then simple calculations
show that we uniquely fix the geodesic as

c t( ) � ℵt + μ0, v0e
b
σ0

t( ). (23)
However, we are interested in the boundary value problem to

see if knowing c(0), c′(0) also gives us a unique solution. In
general, for geodesics on an arbitrary Riemannian manifold,
this result need not be true. By way of example, consider the
geodesics (where the locus is a great circle) on S2. Given c(0),
c(1), there are infinitely many geodesics that satisfy the
conditions (they just keep wrapping around). What is
different in our situation, however, is that the geodesics
never go back on themselves (this is seen by looking at the
form of c(t)). If we have that c(0) = (μ0, σ0) and c(1) = (μ1, σ1),
then simple calculations show that these boundary conditions
uniquely fix the geodesic as

c t( ) � μ0 + μ1 − μ0( )t, σ0e
t ln

σ1
σ0
( )( )

� μ0 + μ1 − μ0( )t, σ0
σ1
σ0

( )t( ). (24)

Thus, for the geodesics c: [0, 1] → B, we find that a solution
exists and, given c(0) and c(1), that the geodesic is uniquely
expressed as in Equation 24.

Equations 6 and 7 tell us how to obtain a topology based on
the metric distance. This topology makes B homeomorphic to the
upper half-plane with its standard topology. (Note though that B
is not isometric to the upper half-plane with the standard
Euclidean metric.) Since the latter space is complete, so is B.
By the Hopf-Rinow theorem [20], given an initial point p = (x0, y0),
and a final point q = (x1, y1), there exists a geodesic c(t) between them
such that c (0) = p, c (1) = q and L(c) = d (p, q). Given Equation 24, we
have shown how to uniquely construct such a geodesic; therefore, the
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geodesic from Equation 24 has the property that its length is the
distance between the points.

The message from this result is that, given two points p, q on B,
if we find the geodesic between them (remember we only use as a
domain [0, 1]), then the length of that geodesic is the distance
between them. This result is similar to what occurs in the
Poincaré upper half-plane. We also note that this result would
not work on S2 because the boundary values do not uniquely
determine the geodesic—as discussed above, the geodesics on S2

can wrap around themselves, which does not happen on B or the
Poincaré upper half-plane. Therefore, this leaves us with the
following corollary to the above theorem.

Corollary 1.1. Given two points in p = (μ0, v0) ∈ B, and q =
(μ1, σ1) ∈ B, there is a unique geodesic c: [0, 1] → B between
them such that c(0) = p, c(1) = q. Furthermore, c(t) is length
minimizing, that is, L(c) = d (p, q). The geodesic is as given in
Equation 24.

Now let us examine the length of our geodesic c(t) between p =
(μ0, σ0) and q = (μ1, σ1). By Equation 6, we have

that. L(c) � ∫1
0

������������������
(μ1 − μ0)2 + [ln(σ1σ0)]2

√
dτ, thus,

Corollary 1.2. Given two points in p = (μ0, σ0) ∈B, q = (μ1, σ1) ∈
B, the length of the unique geodesic c(t) between them is��������������������

μ1 − μ0( )2 + ln
σ1

σ0
( )[ ]2

√√
. (25)

Let us see what some of these geodesics look like (their traces).
Example 1: Let us examine the case where σ is held constant

between two points. Let p = (μ1, σ), q = (μ2, σ). The geodesic
between them is

c t( ) � μ0 + μ1 − μ0( )t, σ( ).
We illustrate this result with p = (9, 2), q = (3, 2) in Figure 3.

When v is fixed, we are in a standard Euclidean metric, the length
of the geodesic is its distance, and it follows from Eqs 6, 7 that
d (p, q) = |μ1 − μ0|,

The result is a horizontal straight line of length six. When v is
fixed, our geometry is standard Euclidean geometry. Example 2:
Let us now look at the opposite situation, when we hold μ fixed
and vary σ.

The trace of this geodesic, shown in Figure 4, is simply a
vertical line, however, its length is not its Euclidean length of
2—0.5 = 1.5, rather its length is |ln(.5/2)| � 1.39. The geometry

here is far from Euclidean. But now let us consider the geodesic
starting at p = (3, 0.2) and ending at q = (3, 0.05). Again, its length
is not the Euclidean length of 0.15; rather, its length is
|ln(.05/.2)| � 1.39, the same as the first part of this example. Let
us summarize these two examples. For B, the length of a geodesic
connecting two points with fixed σ is simply their Euclidean distance.
However, the length of a geodesic inB connecting two points with the
same μ only depends on their ratio, the distance being the absolute
value of the natural log of the ratio.

Let us look at the general geodesics a bit more. In Figure 5, we
see paths of the geodesics that start at (μ0, σ0) and end at (μ1, σ1).
These representative samples, along with Figures 3, 4, show the
general shape of the geodesics.

An interesting question becomes: Given a point (μ0, σ0), what
is the locus of points (μ, σ) distance D from this point? From
Equation 25, we easily have that

σ � σ0e
±
��������
D2− μ−μ0( )2√

. (26)
From this result, we see that μ ∈ [μ0 −D, μ0 +D] and σ ∈ [σ0e−D,

σ0e
D].
We plot in Figure 6 the locus of points for σ as a 2-valued

“function” of μ, with distance 2 from the point (1.5, 3) and when
Z=.6 (recall that we have normalized A to 1).

Let us go back to Eq. 3 and see how P.6(z � 1) varies as we
look at all of the points at a set distance from (μ0, σ1).

We start by summarizing some of the results from [16, Sec
6.2.2] that discuss how PZ(z � A) behaves.

• PZ(z � A) is an increasing function of μ.
• For μ > 0, PZ(z � A) is a decreasing function of σ.
• For μ < 0, PZ(z � A) is an increasing function of σ.

Since the center of our 2-ball is (1.5, 3), let us examine the two
points with extreme μ values of -0.5 and 3.5. We find that

P.6 z � 1( )| −.5,3( ) � .587<P.6 z � 1( )| 1.5,3( ) � .639

<P.6 z � 1( )| 3.5,3( ) � .690,

and

FIGURE 3 | Geodesic starting at p = (9, 2) and ending at q = (3, 2).

FIGURE 4 | Geodesic starting at p = (3, 2) and ending at q = (3, 0.5).
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P.6 z � 1( )| 3.5,.406( ) � .999>P.6 z � 1( )| 1.5,3( ) � .639

>P.6 z � 1( )| 3.5,22.17( ) � .601.

Keep in mind that for μ fixed at 3.5, as σ grows, the boundary
probability approaches 0.6 = Z/A = 0.6/1. This results in the
values at the four “corners” of the metric-circle. One might think
that the south pole is the highest probability. Let us plot

PZ(z � A) � 1 as a 2-valued function of μ. That is, we plot
PZ(z � A) � 1 as a function of μ with σ � σ0e

��������
D2−(μ−μ0)2

√
(which

corresponds to the top red semi-circle) and σ � σ0e−
��������
D2−(μ−μ0)2

√
(which corresponds to the bottom blue semi-circle). The range of
μ is μ ∈ [μ0 − D, μ0 + D]. The point (μ, e

��������
D2−(μ−μ0)2

√
) has a lesser

probability than (μ, e−
��������
D2−(μ−μ0)2

√
), since for μ fixed, the smaller σ

becomes, the greater the probability when μ is positive.
Please note when comparing Figures 6, 7 that the blue and red

regions have shifted.

FIGURE 5 | Various geodesics.
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From Figure 7, one might infer that the maximum probability
occurs at the bottom corner (μ, σ) = (1.5, 0.406). Further
numerical analysis shows that this is not true; the actual
maximum occurs closer to when μ = 2 (with the
corresponding σ > 0.406). Let us use a different example to
show this result better, as in Figure 8. Here, it is much more
obvious that the maximum probability does not occur at the
south pole of the metric circle.

We also see that the minimum probability does not occur for
the smallest μ; rather, it too is a combination of a small μ, but with
a larger σ.

In Figure 9, we have combined the plots from Figures 6, 7.
That is, Figure 6, which is a plot of a 2-valued function of σ
against μ, is sketched in (μ, σ, 0) space. In Figure 7, since σ is
now a 2-valued function of μ, we see that the probability
P.6(z � 1) (of points distance 2 from the center (1.5, 3)) is a 2-
valued function of μ and lives naturally in (μ, σ, p) space. In
other words, the points on the top of a point of distance 2 is

on the top plot. The red curves correspond to
σ � 3e

��������
22−(μ−1.5)2

√
, and the blue curves correspond to

σ � 3e−
��������
22−(μ−1.5)2

√
. We see that the red probability hovers

around 0.6, whereas the blue approaches, very closely in
fact, to a probability of 1.

3 SURFACE GEOMETRY

Let us move away from points a certain Riemannian distance
from a point and consider the surface and the level sets of
PZ(z � A). As before, we will normalize A to be 1, and let

FIGURE 6 |Geodesic locus: Points at a distance 2 from (1.5, 3) with A =
1, Z =0.6. This is our metric “circle.”

FIGURE 7 | P.6(z � 1) of point distance 2 from (μ, σ) = (1.5, 3) as μ

increases (indicated by arrow direction) from −0.5 to 3.5. We see that for
negative drift, the probabilities have an inverse behavior.

FIGURE 8 | P.6(z � 1) of points distance 2 from (μ, σ) = (1.5, 6) as μ

increases (indicated by the arrow’s direction) from −0.5 to 3.5.
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Z = 0.6. The behavior of PZ(z � A) as functions of μ and σ has
been analyzed in [13], so we will not repeat the results from there.
The plot of P.6(z � 1) is given in Figure 10.

Let us consider the level sets of P.6(z � 1); in fact, this holds
for the level sets of PZ(z � A) for Z ∈ (0, 1).

Theorem 2. The level sets of PZ(z � 1), 0<Z< 1 correspond to
constant values of μ/σ2.

Proof. (*) If μ/σ2 = μ′/σ′2 = k, then it is obvious that

PZ(z � 1) � e
−2Zμ
σ2 −1

e
− 2μ

σ2−1
� e−2Zk−1

e−2k−1 � e
−2Zμ′
σ′2 −1

e
− 2μ′
σ′2−1

. (0) By (16, Cor 3.1), we

have that for C > D > 0, that e−Dk−1
e−Ck−1 is an increasing function of x.

Let C = 2, D = 2Z, we have that f(k) � e−2Zk−1
e−2k−1 is an increasing

function of k and the result follows. □

FIGURE 9 | Combo.

FIGURE 10 | Plot of P.6(z � 1) for μ ∈ (−3, 3), σ ∈ (0, 1.5). The limited range is due to the fact that the plot is extremely close to 1 for large μ and small σ. The function
is continuous and is equal to 0.6 when μ = 0.

FIGURE 11 | Level sets of P.6(z � 1), horizontal axis is μ, vertical axis
is σ.
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Let us look at the level sets of this surface in Figure 11. We see
100 level sets going from left to right in ascending order from
0.01 to 0.99 in approximate steps of 0.01. The middle level set
is white and that corresponds to P.6(z � 1) � .6 which occurs
when μ = 0.

Keep in mind that every level set of P.6(z � 1) corresponds to
the curve given by μ/σ2 = k. For k < 0, we have the level set on
the left hand side (LHS) of Figure 11. For k = 0, we have the
vertical white line at μ = 0, and for k > 0 we have the level sets
on the right hand side (RHS) of Figure 11. Note that we
specifically illustrated the level set corresponding to μ/σ2 = −1
which is equivalent to σ � − ��

μ
√

and corresponds to the red
level set on the LHS of the figure; and corresponds to
P.6(z � 1) � .363. We also illustrated the level set
corresponding to k = 1, which is the purple curve on the
RHS of the figure and corresponds to P.6(z � 1) � .808. Of
course, now we see why the maximum values that we
discussed above are not at μ corresponding to the center
of the metric circle, but to the right. This result occurs
because the level curve that is tangent to the plot is where
the maximum is found. This result can be analyzed with
Lagrange multiplier theory, a direction we will pursue in
future work. It suffices for this article to show that the trade-
off between μ and σ is non-trivial.

4 IMPACT ON TEAMS AND MULTI-AGENT
SYSTEMS

We have learned from the mathematics that the decision to
attempt to increase skill or to increase interdependence is not
trivial. The best answer is a complicatedmathematical expression.
We also could have looked at the time to obtain the correct
answer, but this is even more complicated and will also be
addressed in future work.

Presently, our problem boils down to the probability of
reaching the correct answer by using the Riemannian
distance described in this article—which gets a Team to
the highest new probability of success by
staying within the distance constraints on skill and
interdependence.

Of course, general rules of thumb can be derived by studying
the geometry of the question in hand, and near-optimal solutions
may be good enough to satisfy a user.

Recall from [16], for μ > 0 (the situations we have been
looking into), the lower the diffusion, the greater the
interdependence. We note that our mathematics shows
that to optimize Team performance, it takes a combination
of increasing the drift/skill μ > 0 and lowering the diffusion σ
(increasing interdependence) to optimize the probability of the
Team of multi-agents of reaching the correct conclusion to a
problem that it confronts.

5 CONCLUDING REMARKS

Presently, to avoid complicated Riemannian geometric
discussions, it is best to use rules of thumb that can be
derived from the various plots of the Teams in question. This
present work continues the theme emphasized by Lawless [9, 10]
of the importance of interdependence, but also has thrown the
skill issue into the mathematical mix. This point is not to say that
others have ignored skill, rather that their focus was in the
interesting and not completely understood topic of
interdependence. It was our desire in this article to present a
framework incorporating more of the mathematics for decision
making.

Future work needs to be done on this topic. We have presented
an idealized mathematical model. If the Teams are not simply
multi-agents systems, but rather human, or human-machine
hybrid teams, our model must be tempered by human factors.
Humans do not act as automatons. These ideas are discussed in
detail in the beautiful books by Kahneman [6, 7], and also [21]. A
good overview of Kahneman’s Nobel prize work in behavioral
economics can be found in [5]. In fact, from [7] we can take the
concept of noise and view that in terms of diffusion. As we rely
more and more on hybrid teams, we must factor in a behavioral
economics type approach to Team decision making. How this
relates to the mathematics holds promise as a new research area.
Furthermore, Teams are often subject to the wisdom of crowds
[21], or the stupidity of crowds [19] (this work involves ants,
which might be better representative agents than humans when
attempting to model a machine), and the mathematical model we
have presented does not incorporate such human factors. Of
course, future work could include looking at and measuring these
factors for an actual Team/MAS.
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