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Unextendible product basis (UPB), a set of incomplete orthonormal product states whose
complementary space has no product state, is very useful for constructing bound
entangled states. Naturally, instead of considering the set of product states, Bravyi
and Smolin considered the set of maximally entangled states. They introduced the
concept of unextendible maximally entangled basis (UMEB), a set of incomplete
orthonormal maximally entangled states whose complementary space contains no
maximally entangled state [Phys. Rev. A 84, 042,306 (2011)]. An entangled state
whose nonzero Schmidt coefficients are all equal to 1/

�
k

√
is called a special entangled

state of “type k”. In this paper, we introduce a concept named special unextendible
entangled basis of “type k”which generalizes both UPB and UMEB. A special unextendible
entangled basis of “type k” (SUEBk) is a set of incomplete orthonormal special entangled
states of “type k” whose complementary space has no special entangled state of “type k”.
We present an efficient method to construct sets of SUEBk. The main strategy here is to
decompose the whole space into two subspaces such that the rank of each element in one
subspace can be easily upper bounded by k while the other one can be generated by two
kinds of the special entangled states of “type k”. This method is very effective when k = pm

≥ 3 where p is a prime number. For these cases, we can obtain sets of SUEBk with
continuous integer cardinality when the local dimensions are large.

Keywords: unextendible entangled bases, unextendible product bases, entanglement, schmidt number, schmidt
coefficients

1 INTRODUCTION

Quantum entanglement [1] is an important resource for many quantum information processing,
such as quantum teleportation [2, 3] and quantum key distribution [4, 5]. Therefore, it is
fundamental to characterize quantum entanglement in quantum information. Bound entangled
(BE) states [6, 7] are a special entanglement in nature: non-zero amount of free entanglement is
needed to create them but no free entanglement can be distilled from such states under local
operations and classical communication.

Unextendible product basis (UPB) [8, 9], a set of incomplete orthonormal product states whose
complementary space has no product state, has been shown to be useful for constructing bound
entangled states and displaying quantum nonlocality without entanglement [10–12].

As anology of the UPB, Bravyi and Smolin introduced the concept of unextendible maximally
entangled basis (UMEB) [13], a set of orthonormal maximally entangled states inCd ⊗ Cd consisting
of fewer than d2 vectors which has no additional maximally entangled vector orthogonal to all of
them. The UMEBs can be used to construct examples of states for which entanglement of assistance
(EoA) is strictly smaller than the asymptotic EoA, and can be also used to find quantum channels that
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are unital but not convex mixtures of unitary operations [13].
There they proved that no UMEB exists in two qubits system and
presented examples of UMEBs in C3 ⊗ C3 and C4 ⊗ C4. Since
then, the UMEB was further studied by several researchers
[14–21]. Lots of the works paid attention to the UMEBs for
general quantum systems Cd ⊗ Cd′. The cardinality of the
constructed UMEBs are always multiples of d or d′.

Guo et al. extended these two concepts to the states with fixed
Schmidt numbers and studied the complete basis [22] and the
unextendible ones [23]. There they introduced the notion of
special entangled states of type k: an entangled state whose
nonzero Schmidt coefficients are all equal to 1/

�
k

√
. Then a

special unextendible entangled basis of type k (SUEBk) is a set
of orthonormal special entangled states of type k in Cd ⊗ Cd′

consisting of fewer than dd’ vectors which has no additional
special entangled state of type k orthogonal to all of them. Quite
recently, there are several results related to this subject [24, 25].
Similar to the UMEBs, the cardinality of most of the known
SUEBk’s are multiples of k. Therefore, it is interesting to ask
whether there is SUEBk with other cardinality. Based on the
technique used in [26], we try to address this question in
this work.

The remaining of this article is organized as follows. In
Section 2, we first introduce the concept of special
unextendible entangled basis and its equivalent form in
matrix settings. In Section 3, we present our main idea to
construct the SUEBk. In Section 4 and Section 5, based on the
combinatoric concept: weighing matrices, we give two
constructions of SUEBk whose cardinality varying in a
consecutive integer set. Finally, we draw the conclusions
and put forward some interesting questions in the last section.

2 PRELIMINARIES

Let [n] denote the set {1, 2, . . . , n}. LetHA,HB be Hilbert spaces
of dimension d and d′ respectively. It is well known that any
bipartite pure state in Cd ⊗ Cd′ has a Schmidt decomposition.
That is, any unit vector |ϕ〉 in Cd ⊗ Cd′ can be written as

|ϕ〉 � ∑k
i�1

λi|ei〉A|ei〉B, ∑k
i�1

λ2i � 1 (1)

where λi > 0 and {|ei〉A}ki�1 ({|ei〉B}ki�1) are orthonormal states of
system A (resp. B). The number k is known as the Schmidt
number of |ϕ〉 and we denote it by Sr(ϕ). The set Λ(|ϕ〉) ≔ {λi}ki�1
is called the nonzero Schmidt coefficients of |ϕ〉. If all these λis are
equal to 1/

�
k

√
, we call |ϕ〉 a special entangled state of type k (2

≤ k ≤ d).

Definition 1. (See [22]).A set of states {|ϕi〉}ni�1 (1 ≤ n ≤ dd’ − 1) in
Cd ⊗ Cd′ is called a special unextendible entangled basis of type k
(SUEBk) if.

(i) 〈ϕi|ϕj〉 = δij, i, j ∈ [n];
(ii) For any i ∈ [n], the state |ϕi〉 is a special entangled state of

type k;

(iii) If 〈ϕi|ϕ〉 = 0 for all i ∈ [n], then |ϕ〉 can not be a special
entangled state of type k.

The concept SUEBk generalizes the UPB (k = 1) and the
UMEB (k = d). In order to study SUEBk, it is useful to consider its
matrix form. Let |ϕ〉 be a pure quantum states in HA ⊗ HB.
Under the computational bases {|i〉A}di�1 and {|j〉B}d′j�1, it can be
expressed as

|ϕ〉 � ∑d
i�1

∑d′
j�1

mϕ
ij|i〉A|j〉B. (2)

We call the d × d′ matrix Mϕ ≔ (mϕ
ij) the corresponding

matrix representation of |ϕ〉. This correspondence satisfies the
following key properties related to SUEBk

(1) Inner product preserving:

〈ψ|ϕ〉 � ∑d
i�1

∑d′
j�1

mψ
ijm

ϕ
ij � Tr M†

ψMϕ( ) � 〈Mψ ,Mϕ〉;

(2) The Schmidt number corresponds to the matrix rank: Sr (|ϕ〉)
= rank (Mϕ);

(3) The nonzero Schmidt coefficients correspond to the nonzero
singular values.

With this correspondence, we can restate the concept in
definition 2 as follows.

Definition 2. A set of matrices {Mi}ni�1 (1≤ n≤ dd′ − 1) in
Matd×d′(C) is called a special unextendible singular values basis
with nonzero singular values being {1/ �

k
√ } (SUSVBk) if.

(i) 〈Mi, Mj〉 = δij, i, j ∈ [n];
(ii) The nonzero singular values of Mi are all equal to 1/

�
k

√
for

each i ∈ [n];
(iii) If 〈Mi, M〉 = 0 for all i ∈ [n], then some nonzero singular

value of M do not equal to 1/
�
k

√
.

Due to the good correspondence of the states and matrices,
{|ψi〉}ni�1 is a set of SUEBk in Cd ⊗ Cd′ if and only if {Mψi

}n
i�1 is a

set of SUSVBk in Matd×d′(C). Therefore, in order to construct a
set of nmembers SUEBk inCd ⊗ Cd′, it is sufficient to construct a
set of n members SUSVBk in Matd×d′(C).

3 STRATEGY FOR CONSTRUCTING
SUSVBK

Observation 1. It is usually not easy to calculate the singular
values of an arbitrary matrix. However, if there are only k nonzero
elements in M (say mi1 ,j1, . . . , mik,jk) and these elements happen
to be in different rows and columns, then there are exactly k
nonzero singular values ofM and they are just |mi1,j1|, . . . , |mik,jk|.
For example, let M be the matrix defined by
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1�
2

√ 0 0 0 0 0

0 0 0

���−1√ �
3

√ 0 0

0 0
1��
12

√ 0 0 0

0
w��
24

√ 0 0 0 0

0 0 0 0
1��
24

√ 0

0 0 0 0 0 0

0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

wherew � e2π
��−1√

/3. Then the nonzero singular values ofM are 1�
2

√ ,
1�
3

√ , 1��
12

√ , 1��
24

√ , 1��
24

√ .

Observation 2. If there are exactly k nonzero singular values of a
matrix, then the rank of that matrix is k. Therefore, the condition
rank(M) < k implies that M cannot be a matrix with k nonzero
singular values.

With the two observations above, our strategy for constructing
an n-members SUSVBk can be roughly described by two steps
(note that this is only a sufficient condition, not a necessary and
sufficient condition). Firstly, we construct a set of n-members of
orthonormal matrices M ≔ {Mi}ni�1 such that there are exactly k
nonzero elements in Mi whose modules are all 1/

�
k

√
and these

elements happen to be in different rows and columns. Secondly,
we need to show that the rank of any matrix in the
complementary space of M (define as
M⊥ ≔ {M ∈ Matd×d′(C)|〈Mi,M〉 � 0,∀Mi ∈ M}) is less
than k.

Let d, d′ be integers such that 2 ≤ d ≤ d′. We define the
coordinate set to be

Cd×d′ ≔ i, j( ) ∈ N2|i ∈ d[ ], j ∈ d′[ ]{ }. (4)
Now we define an order for the set Cd×d′. Equivalently, we can

define a bijection:

Od×d′: Cd×d′ → dd′[ ]
i, j( ) ⟼

j − i( )d + i if i≤ j;
d′ + j − i( )d + i if i> j.{ (5)

Then we call (Cd×d′,Od×d′) an ordered set (See Figure 1 for an
example). We can also define an orderOd×d′ for the case d′ ≤ d by
Od×d′ ≔ Od′×d.

Let (i1, j1), (i2, j2) be two different coordinates in Cd×d′. It is easy
to check that if i1 = i2 or j1 = j2, then
|Od×d′[(i1, j1)] −Od×d′[(i2, j2)]|≥ d − 1. Therefore, any d − 1
consecutive coordinates in Cd×d′ under the order Od×d′ is
coordinately different. That is, these d − 1 coordinates must
come from different rows and different columns.

Let P ⊆ Cd×d′. Then P inherit an order O from that of Cd×d′(An
order here means a bijective map from P to [#P] where #P denotes
the number of elements in the set P). In fact, as
N ≔ #Od×d′(P) � #P, there is an unique map πP from the set
Od×d′(P) to [#P] which preserves the order of the numbers. First, list
P1, P2, . . . , PN ∈ P such thatOd×d′(Pi)<Od×d′(Pj) for 1 ≤ i < j ≤N.
Then πP(Od×d′(Pi)) � i. Then we defineO ≔ πP◦Od×d′|P (that is,
the composition ofOd×d′|P and πP) to be the order of P inherit from
that of Cd×d′. For example, let P ≔ {(1, 2), (4, 3), (5, 6)} ⊆ C5×9.
Then the πP from the set {O5×9[(1, 2)] � 6,O5×9[(5, 6)] �
10,O5×9[(4, 3)] � 44} to [3] = {1, 2, 3} is just defined by: πP (6)
= 1, πP (10) = 2, πP (44) = 3. Therefore, the order O of P inherited
from that of Cd×d′ is exactly the map: O[(1, 2)] � 1,O[(5, 6)] �
2,O[(3, 4)] � 3.

In order to step forward, we first state the following observation
which is helpful for determine the orthogonality of matrices. Let
P ⊆ Cd×d′ and denote O the order of P inherit from the Od×d′ l
denotes the number of elements in P. As we have defined an order
for the set Cd×d′, it induces an order relation on its subset P. For any
vector v ∈ Cl, we define a d × d′ matrix

Md×d′ P, v( ) ≔ ∑
i,j( )∈P

vO i,j( )[ ]Ei,j (6)

where Ei,j denote the d × d′matrix whose (i, j) coordinate is 1 and
zero elsewhere.

Lemma 1. Let P1, P2 ⊆ Cd×d′ be nonempty sets and v,w be vectors
of dimensions #P1 and #P2 respectively. Then we have the
following statements:

(1) If P1 ∩ P2 = ∅, then we have

〈Md×d′ P1, v( ),Md×d′ P2, w( )〉 � 0. (7)

(2) If P1 = P2 and v, w are orthogonal to each other, then we
also have

〈Md×d′ P1, v( ),Md×d′ P1, w( )〉 � 0. (8)

Proof.DenoteO1 andO2 the orders of P1 and P2 inherit from the
Od×d′ respectively.

(a) As

FIGURE 1 | This is a picture of the orderO5×9 on the coordinate set C5×9.
For examples, O5×9[(3, 8)] � (8 − 3) × 5 + 3 � 28, and O5×9[(5, 2)] �
(9,+,2 − 5) × 5 + 5 � 35.
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Md×d′ P1, v( ) ≔ ∑
i,j( )∈P1

vO1 i,j( )[ ]Ei,j,

Md×d′ P2, w( ) ≔ ∑
k,l( )∈P2

wO2 k,l( )[ ]Ek,l,
(9)

we have

〈Md×d′ P1, v( ),Md×d′ P2, w( )〉
� Tr Md×d′ P1, v( )†Md×d′ P2, w( )[ ]
� ∑

i,j( )∈P1

∑
k,l( )∈P2

vO1 i,j( )[ ]wO2 k,l( )[ ]Tr Ej,iEk,l[ ]
� ∑

i,j( )∈P1

∑
k,l( )∈P2

vO1 i,j( )[ ]wO2 k,l( )[ ]δikδjl � 0.

(10)

The last equality holds as the condition P1 ∩ P2 = ∅ implies
δikδjl = 0.

(b) For the second part, we have the following equalities:

〈Md×d′ P1, v( ),Md×d′ P1, w( )〉
� Tr Md×d′ P1, v( )†Md×d′ P1, w( )[ ]
� ∑

i,j( )∈P1

∑
k,l( )∈P1

vO1 i,j( )[ ]wO1 k,l( )[ ]Tr Ej,iEk,l[ ]
� ∑

i,j( )∈P1

∑
k,l( )∈P1

vO1 i,j( )[ ]wO1 k,l( )[ ]δikδjl

� ∑
i,j( )∈P1

vO1 i,j( )[ ]wO1 i,j( )[ ] � 〈v|w〉 � 0.

(11)

4 CONSTRUCTIONS OF SUEBK

In the following, we try to construct a set of matrices
M ≔ {Mi}ni�1 consisting of matrices of the form T1. While its
complementary space M⊥ is the set of matrices of the form T2.

T1 �

p p / p p / p

..

. ..
. ..

. ..
. ..

. ..
. ..

.

p p / p p / p

0 0 / 0 p / p

0 0 / 0 0 / 0
..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 / 0 0 / 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, T2 �

0 0 / 0 0 / 0
..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 / 0 0 / 0
p p / p 0 / 0
p p / p p / p

..

. ..
. ..

. ..
. ..

. ..
. ..

.

p p / p p / p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We start our construction by a simple example.

Example 1. There exists a SUEB3 in C7 ⊗ C7 whose cardinality
is 41.

Proof. As 41 = 6 × 7–1, we define B41 to be the set with 41
elements which is obtained from C7×7 by deleting {(7, 1) (7, 2), (7,
3) (7, 4), (7, 5) (7, 6), (7, 7), (6, 1)}. We can define an order O for
the set B41. In fact, theO is chosen to be the order of B41 inherited
from that of C7×7 (See Figure 2A for an intuitive view). Any five
consecutive elements of B41 under the order O come from
different rows and columns. Firstly, we have the following
identity

41 � 7 × 3 + 5 × 4. (12)
Since there are 41 elements in the set B41, by the

decomposition (12), we can divide the set B41 into (7 + 5)
sets: seven sets of short states (denote by Si, 1 ≤ i ≤ 7) of
cardinality 3 and five sets of long states (denote by Lj, 1 ≤ j ≤
5) of cardinality 4. In fact, we can divide B41 into these 12 sets
through its order O. That is,

Si ≔ O−1 3 i − 1( ) + x[ ] | x � 1, . . . , 3{ }, 1≤ i≤ 7,
Lj ≔ O−1 21 + 4 j − 1( ) + y[ ] | y � 1, . . . , 4{ }, 1≤ j≤ 5

(13)

where O−1 denotes the inverse map of the bijection O. See
Figure 2B for an intuitive view of the set Si, Lj. Set

H3 �
1 1 1
1 w w2

1 w2 w

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, O4 �
0 1 1 1
1 0 −1 1
1 1 0 −1
1 −1 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (14)

where w � e
2π
��−1√

3 . We can easily check that H3H
†
3 � 3I3 and

O4O
†
4 � 3I4. Now set vx to be the xth row of H3 (x = 1, 2, 3)

and wy to be the yth row of O4 (y = 1, 2, 3, 4). So vx ∈ C3 and
vy ∈ C4. So we can construct the following 7 × 3 + 5 × 4 = 41
matrices:

M7×7 Si,
1�
3

√ vx( ),M7×7 Lj,
1�
3

√ wy( ),
1≤ i≤ 7, 1≤x≤ 3, 1≤ j≤ 5, 1≤y≤ 4.

(15)

LetM be the set of the above matrices. Note that the elements
of each Si or Lj are coordinately different. Hence by Observation 1,
the states corresponding to the above 41 matrices are special
entangled states of type 3. Since H3H

†
3 � 3I3, v1, v2, v3 are

pairwise orthogonal. Similarly, as O4O
†
4 � 3I4, w1, w2, w3, w4

are also pairwise orthogonal. And the 12 sets above are pairwise
disjoint. Therefore, by Lemma 1, the 41 matrices above are
pairwise orthogonal. Let V be the linear space spanned by the
matrices inM. Therefore, dimV = 41 as orthogonal elements are
always linearly independent. Denote dimV⊥ the set of all
elements in Mat7×7(C) that are orthogonal to every elements
in V. By the definition of B41 at the beginning of the proof, each
matrix in B⊥ ≔ {Ei,j ∈ Mat7×7(C)|(i, j) ∈ C7×7\B41} �
{(7, 1), (7, 2), (7, 3), (7, 4), (7, 5), (7, 6), (7, 7), (6, 1)} is
orthogonal to V. Hence, B⊥ ⊆ V⊥. As

FIGURE 2 | (A) shows the order of subset of C7×7. While the (B) shows
the distribution of the short and long states through this order.
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dimV + dimV⊥ � dimMat7×7 C( ) � 49, (16)
we have dimV⊥ = 8. Note that the dimension of spanC(B⊥) is just
8. Both spanC(B⊥) and V⊥ are Hilbert space of dimensional 8. By
the inclusion spanC(B⊥) ⊆ V⊥, we must have V⊥ � spanC(B⊥).
One should note that the rank of any nonzero matrix in
spanC(B⊥) is less than 2. Such a matrix cannot correspond to
a special entangled state of type 3. Therefore, the set of states
corresponding to the matrices M is a SUEB3.

One can find that the H3 and O4 play an important role in the
proof of the Example 1. We give their generalizations by the
following matrix and the weighing matrix in Definition 3. There
always exists some complex Hadamard matrix of order d. For
example,

Hd ≔

1 1 1 / 1
1 ωd ω2

d / ωd−1
d

1 ω2
d ω4

d / ω2 d−1( )
d

..

. ..
. ..

.
1 ..

.

1 ωd−1
d ω2 d−1( )

d / ω d−1( )2
d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (17)

where ωd � e
2π
��−1√

d . In fact, this is the Fourier d-dimensional matrix
(discrete Fourier transform). The matrix Hd satisfies

HdH
†
d � dId. (18)

Definition 3. (See [27]). A generalized weighing matrix is a
square a × a matrix A all of whose non-zero entries are nth roots
of unity such that AA† = kIa. It follows that 1�

k
√ A is a unitary

matrix so that A†A = kIa and every row and column of A has
exactly k nonzero entries. k is called the weight and n is called the
order of A. We denoteW (n, k, 1) the set of all weight k and order
a generalized weighing matrix whose nonzero entries being
nth root.

One can find the following lemma via theorem 2.1.1 on the
book “The Diophantine Frobenius Problem” [28]. The related
problem is also known as Frobenius coin problem or coin
problem.

Lemma 2. ([28]). Let a, b be positive integers and coprime. Then
for every integer N ≥ (a − 1) (b − 1), there are non-negative
integers x, y such that N = xa + yb.

Now we give one of the main result of this paper.

Theorem 1. Let k be a positive integer. Suppose there exist
a, b, m, n ∈ N such that W (m, k, a) and W (n, k, b) are
nonempty and gcd (a, b) = 1. If d, d′ are integers such that
d ≥max{a, b} + k and d′ ≥max{a, b} + 1, then for any integer N ∈
[(d − k + 1)d′, dd’ − 1], there exists a SUEBk in Cd ⊗ Cd′ whose
cardinality is exactly N.

Proof. Without loss of generality, we suppose a < b and A ∈W
(m, k, a), B ∈W (n, k, b). Any integer N ∈ [(d − k + 1)d′, dd’ − 1]
can be written uniquely asN = d′q + rwhere (d − k + 1) ≤ q ≤ d − 1
and r is an integer with 0 ≤ r < d′. Then we have a coordinate set
C(q+1)×d′ with order O(q+1)×d′. Notice that any q consecutive
elements of C(q+1)×d′ under the order O(q+1)×d′ are coordinately
different. DenoteBN to be the set by deleting the elements {(q + 1,

i)|1 ≤ i ≤ d′ − r} from C(q+1)×d′. The subset BN inherit an order O
from that of C(q+1)×d′. As |O(q+1)×d′[(q + 1, i)] −
O(q+1)×d′[(q + 1, j)]|≥ q for any 1 ≤ i ≠ j ≤ d′, any q − 1
consecutive elements of BN under the order O are
coordinately different. Since q − 1 ≥ d − k ≥ max{a, b}, any a
or b consecutive elements of BN under the order O come from
different rows and columns. As N ≥ qd’ > (a − 1) × (b − 1), by
Lemma 2, there exist nonnegative integers s, t such that

N � s × a + t × b. (19)
Since there areN elements in the set BN, by the decomposition

(19), we can divide the set BN into (s + t) sets: s sets (denote by Si,
1 ≤ i ≤ s) of cardinality a and t sets (denote by Lj, 1 ≤ j ≤ t) of
cardinality b. In fact, we can divide BN into these s + t sets
through its order O. That is,

Si ≔ O−1 i − 1( )a + x[ ] | x � 1, . . . , a{ }, 1≤ i≤ s,
Lj ≔ O−1 sa + j − 1( )b + y[ ] | y � 1, . . . , b{ }, 1≤ j≤ t. (20)

Now let vx be the xth row of 1�
k

√ A (1 ≤ x ≤ 1) and wy be the yth
row of 1�

k
√ B (1 ≤ y ≤ b). So vx ∈ Ca and vy ∈ Cb. Then we can

construct the following s × a + t × b = N matrices:

Md×d′{ Si, vx( ),Md×d′ Lj, wy( ),
1≤ i≤ s, 1≤x≤ a, 1≤ j≤ t, 1≤y≤ b.

(21)

Let M be the set of the above matrices. Note that the (s + t)
sets S1, . . . , Ss, L1/, Lt are pairwise disjoint. And the rows of A
(resp. B) are orthogonal to each other as AA† = kIa (resp. BB

† =
kIb). By Lemma 1, the above sa + tb matrices are orthogonal to
each other. By construction, all the sets S1 . . . , Ss, L1, . . . , Lt are
all coordinately different. Using this fact and the definition of
generalized weighing matrices, the states corresponding to
these matrices are all special entangled states of type k (see
Observation 1). Set V be the linear subspace of Matd×d′(C)
generated by M. Note that each matrix in
B⊥ ≔ {Ei,j ∈ Matd×d′(C)|(i, j) ∈ Cd×d′\BN} is orthogonal to V.
And the dimension of spanC(B⊥) is just dd’ − N. Therefore,
V⊥ � spanC(B⊥). One should note that the rank of any matrix
in spanC(B⊥) is less than k. That is to say, any state orthogonal
to the states corresponding to M has Schmidt rank at most
(k − 1). Such state cannot be a special entangled state of type k.
Therefore, the set of states corresponding to the matricesM is
a SUEBk.

Noticing that Hk ∈ W (k, k, k) for all integer k ≥ 2. Therefore,
by Theorem 1, we arrive at the following corollary.

Corollary 1. Let k be an integer such that W (n, k, k + 1) is
nonempty for some integer n. Then there exists some SUEBk with
cardinality varying from (d − k + 1)d′ to dd’ − 1 in Cd ⊗ Cd′

whenever d ≥ 2k + 1 and d′ ≥ k + 2.
In the following, we list a result about the weighing matrices

proved by Gerald Berman.

Lemma 3. (See [27]). If p, t, r and n are positive integers such that
p is prime, n|r (n ≥ 2) and r|(pm − 1). Then there exists a
generalized weighing matrix W (n, p(t−1)m, (ptm − 1)/r).
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In particular, set t = 2, r = n = pm − 1. If pm > 2, thenW (pm − 1,
pm, pm + 1) is nonempty. As the set W (pm, pm, pm) is always
nonempty, we have the following corollaries.

Corollary 2. Let p be a prime and k = pm > 2 for some positive
integer m. Then there exists some SUEBk with cardinality varying
from (d − k + 1)d′ to dd’ − 1 in Cd ⊗ Cd′ whenever d ≥ 2k + 1 and
d′ ≥ k + 2.

Corollary 3. Let p1, . . . , ps be different primes and k � pm1
1 /pms

s
where m1, . . . , ms are positive integers. If gcd(pmi

i + 1, k) � 1 for
each i = 1, . . . , s, Then there exists some SUEBk with cardinality
varying from (d − k + 1)d′ to dd’ − 1 inCd ⊗ Cd′ whenever d≥ k +∏s

i�1(pmi
i + 1) and d ≥ 2k + 1 and d′≥ 2 +∏s

i�1(pmi
i + 1).

5 SECOND TYPE OF SUEBK

In the following, we try to construct a set of matrices
M ≔ {Mi}ni�1 consisting of matrices of the following left form.
While its complementary space M⊥ is the set of matrices of the
following right form where r + s < k.

We also start our construction from a simple example.

Example 2. There exists a SUEB4 in C8 ⊗ C9 whose cardinality
is 54.

Proof. As 54 = 7 × 8–2, we can define B54 to be the set with 54
elements which can be obtained by deleting {(6, 8), (7, 8)} from
C7×8. Notice that any six consecutive elements of C7×8 under the
order O7×8 come from different rows and columns. Denote O as
the order of B54 inherited from O7×8. As
O7×8[(7, 8)] � 14,O7×8[(6, 8)] � 20, any five consecutive
elements of B54 under the order O come from different rows

and columns (See Figure 3A for an intuitive view). We have the
following identity

54 � 6 × 4 + 6 × 5. (22)
Since there are 54 elements in the set B54, by the decomposition

(22), we can divide the set B54 into (6 + 6) sets: six sets of short
states (denote by Si, 1 ≤ i ≤ 6) of cardinality four and six sets of long
states (denote by Lj, 1 ≤ j ≤ 6) of cardinality 5. In fact, we can divide
B54 into these 12 sets through its order O. That is,

Si ≔ O−1 4 i − 1( ) + x[ ] | x � 1, . . . , 4{ }, 1≤ i≤ 6,
Lj ≔ O−1 24 + 5 j − 1( ) + y[ ] | y � 1, . . . , 5{ }, 1≤ j≤ 6.

(23)
See Figure 3B for an intuitive view of the set Si, Lj. Set

O5 �

1 1 1 1 0
1 w w2 0 1
1 w2 0 w w2

1 0 w w2 w
0 1 w2 w w

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, wherew � e2π

��−1√
/3. (24)

We can easily check that O5O
†
5 � 4I5. Now set vx be the xth

row ofH4 (x = 1, 2, 3, 4) and wy be the yth row of O5 (y = 1, 2, 3, 4,
5). So vx ∈ C4 and vy ∈ C5. So we can construct the following 6 ×
4 + 6 × 5 = 54 matrices:

M8×9 Si,
1�
3

√ vx( ),M8×9 Lj,
1�
3

√ wy( ),
1≤ i≤ 6, 1≤x≤ 4, 1≤ j≤ 6, 1≤y≤ 5.

(25)

Let M to be the set of the above matrices. Note that the
elements of each Si or Lj are coordinately different. Hence by
Observation 1, the states corresponding to the above 54 matrices
are special entangled states of type 4. SinceH4H

†
4 � 4I4, v1, v2, v3,

v4 are pairwise orthogonal. Similarly, as O5O
†
5 � 4I5, w1, w2, w3,

w4, w5 are also pairwise orthogonal. And the 12 sets above are
pairwise disjoint. Therefore, by Lemma 1, the 54 matrices above
are pairwise orthogonal. Set V be the linear subspace of
Mat8×9(C) generated by M. Each matrix in
B⊥ ≔ {Ei,j ∈ Mat8×9(C)|(i, j) ∈ C8×9\B⊥} is orthogonal to V.
And the dimension of spanC(B⊥) is just (72–54). Therefore,
V⊥ � spanC(B⊥). One should note that the rank of any matrix in
spanC(B⊥) is less than 4. That is to say, any state orthogonal to
the states corresponding toM has Schmidt rank at most 3. Such
state cannot be a special entangled state of type 4. Therefore, the
set of states corresponding to the matrices M is a SUEB4.

Theorem 2. Let k be a positive integer. Suppose there exist
a, b, m, n ∈ N such that W (m, k, 1) and W (n, k, b) are
nonempty and gcd (a, b) = 1. Let d, d′ be integers. If there are
decompositions d =m1 + q, d′ =m2 + r such thatm1,m2 ≥max{a,
b} + 2 and 1 ≤ q + r < k. Then for any integer N ∈ [m1m2, dd’ − 1],
there exists a SUEBk in Cd ⊗ Cd′ whose cardinality is exactly N.

Proof.Without loss of generality, we suppose a < b and A ∈W
(m, k, a), B ∈W (n, k, b). We separate the intervalm1m2, dd′ into
q + r pairwise disjoint intervals:

FIGURE 3 | (A) shows the order of subset of C8×9. While the (B) shows
the distribution of the short and long states through this order.
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m1 + i( )m2, m1 + i + 1( )m2[ ), 0≤ i≤ q − 1,
d m2 + j( ), d m2 + j + 1( )[ ), 0≤ j≤ r − 1.

(26)

Any integer N ∈ [m1m2, dd’ − 1] lies in one of the above q + r
intervals. Without loss of generality, we assume that N ∈ (m1 +
i0)m2, (m1 + i0 + 1)m2 for some i0 ∈ {0, . . . , q − 1}. SupposeN= (m1

+ i0)m2 + f, with 0≤ f≤m2− 1.DenoteBN to be the set by deleting the
elements {(m1 + i0 + 1, i)|1 ≤ i ≤m2 − f} from C(m1+i0+1)×m2. Then we
have a coordinate set C(m1+i0+1)×m2 with order O(m1+i0+1)×m2. Notice
that any max{a, b}+1 consecutive elements of C(m1+i0+1)×m2 under the
orderO(m1+i0+1)×m2 are coordinate different asm1,m2≥max{a, b} + 2.
The subsetBN inherit an orderO from that of C(m1+i0+1)×m2. One can
find that any a or b consecutive elements of BN under the order O
come from different rows and columns. AsN ≥m1m2> (a − 1) × (b −
1), by Lemma 2, there exist nonnegative integers s, t such that

N � s × a + t × b. (27)
Since there areN elements in the set BN, by the decomposition

(27), we can divide the set BN into (s + t) sets: s sets (denote by Si,
1 ≤ i ≤ s) of cardinality a and t sets (denote by Lj, 1 ≤ j ≤ t) of
cardinality b. In fact, we can divide BN into these s + t sets
through its order O. That is,

Si ≔ O−1 i − 1( )a + x[ ] | x � 1, . . . , a{ }, 1≤ i≤ s,
Lj ≔ O−1 sa + j − 1( )b + y[ ] | y � 1, . . . , b{ }, 1≤ j≤ t. (28)

Now set vx to be the xth row of 1�
k

√ A (1 ≤ x ≤ 1) andwy to be the
yth row of 1�

k
√ B (1 ≤ y ≤ b). So vx ∈ Ca and vy ∈ Cb. Then we can

construct the following s × a + t × b = N matrices:

Md×d′ Si, vx( ),Md×d′ Lj, wy( ),
1≤ i≤ s, 1≤x≤ a, 1≤ j≤ t, 1≤y≤ b.

(29)

LetM to be the set of the above matrices. Note that the (s + t)
sets S1, . . . , Ss, L1/, Lt are pairwise disjoint. And the rows of A
(resp. B) are orthogonal to each other as AA† = kIa (resp. BB

† = kIb).
By Lemma 1, the above sa + tbmatrices are orthogonal to each other.
By construction, all the sets S1 . . . , Ss, L1, . . . , Lt are all coordinately
different. Using this fact and the definition of generalized weighing
matrices, the states corresponding to these matrices are all special
entangled states of type k (see Observation 1). Set V be the linear
subspace of Matd×d′(C) generated by M. Each matrix in
B⊥ ≔ {Ei,j ∈ Matd×d′(C)|(i, j) ∈ Cd×d′\BN} is orthogonal to V.

And the dimension of spanC(B⊥) is just dd’ − N. Therefore,
V⊥ � spanC(B⊥). As r + s < k, so the rank of any matrix in
spanC(B⊥) is less than k. That is to say, any state orthogonal to
the states corresponding to M has Schmidt rank at most (k − 1).
Such state cannot be a special entangled state of type k. Therefore, the
set of states corresponding to the matrices M is a SUEBk.

Remark: Theorem 1 (the first type) can not obtain from
Theorem 2 (the second type) by setting r = 0. In fact, in
Theorem 2, we assume d, d′ ≥ max{a, b} + 2 while we only
assume d′ ≥ max{a, b} + 1 in Theorem 1.

As application, Theorem 2 give us that there is some SUEB4 in
C8 ⊗ C9 whose cardinality being one of the integer in the interval
[49, 71], where a = 4, b = 5, m1 = 7, q = 1, m2 = 7, r = 2.

In fact, we may move further than the results showed in
Theorem 2. Here we present some examples (See Example 3)
which is beyond the scope of Theorem 2. But their proof can be
originated from the main idea of the constructions of SUEBk.

Example 3. For any integer N ∈ [12, 19], there exists a SUEB3 in
C4 ⊗ C5 whose cardinality is exactly N(See Figure 4).

6 CONCLUSION AND DISCUSSION

We presented a method to construct the special unextendible
entangled basis of type k. The main idea here is to decompose the
whole space into two subspaces such that the rank of each element in
one subspace is easily bounded by k and the other can be generated by
two kinds of the special entangled states of type k. We presented two
constructions of special unextendible entangled states of type k by
relating it to a combinatoric concept which is known as weighing
matrices. This method is effective when k = pm ≥ 3.

However, there are lots of unsolved cases. Finding out the largest
linear subspace such that it does not contain any special entangled
states of type k. This is related to determine the minimal cardinality of
possible SUEBk. It is much more interesting to find some other
methods that can solve the general existence of SUEBk. Note that the
concept of SUEBk is a mathematical generalization of the UPB (k = 1)
and theUMEB (k= d). BothUPBs andUMEBs are useful for studying
some other problems in quantum information. Therefore, another
interesting work is to find out some applications of the SUEBk.

FIGURE 4 | This figure shows the distribution of the short states and long states for constructing SUEB3 in C4 ⊗ C5 with cardinality N varying from 12 to 19.
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