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The calibration-free laser-induced breakdown spectroscopy (CF-LIBS) technique requires
no reference samples of the same matrix to establish the calibration curve, not affected by
the matrix effect. In recent years, the CF-LIBS technology has greatly progressed, and the
accuracy of quantitative analysis has gradually improved. The purpose of this reviewwas to
introduce the CF-LIBS fundamental and modified algorithms. The Boltzmann plot method,
Saha–Boltzmann plot method, and column density Saha–Boltzmann plot (CD-SB) method
were discussed. Moreover, as a critical factor in CF-LIBS, the self-absorption effect and its
influence on CF-LIBS were also introduced. CF-LIBS has been applied in a variety of fields,
such as environmental protection, explorations of space, cultural heritage preservation,
and geological survey, which were also described in this review.
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1 INTRODUCTION

The types and compositions of elements in materials have an impact on their properties, either
directly or indirectly. It is crucial to make elemental analyses evaluate material performance.
Conventional methods include atomic absorption spectrometry (AAS), inductively coupled
plasma mass spectrometry (ICP-MS), inductively coupled plasma emission spectrometry (ICP-
AES), X-ray fluorescence spectrometry (XRF), tunable diode laser absorption spectroscopy, quartz-
enhanced photoacoustic spectroscopy, quartz-tuning-fork enhanced photothermal spectroscopy
(QEPTS), and dual-comb absorption spectroscopy [1–3]. Due to their complicated operation and
time-consuming process, these methods are usually used in laboratories. In recent years, scientists
have been looking for and have developed new analytical assays with rapid response, easy operation,
and high reliability.

Laser-induced breakdown spectroscopy (LIBS) is a new promising atomic spectrometry, more
versatile than traditional methods [4]. LIBS is also often referred to as laser-induced plasma
spectroscopy (LIPS) or laser spark spectroscopy. As the excitation source in LIBS, a pulsed laser
beam is focused onto the sample surface by using a focusing lens. Through multiphoton ionization,
atoms, ions, and molecules in the laser focus focal area absorb the laser energy and generate initial
free electrons. With the inverse bremsstrahlung effect, the free electrons are accelerated by the
electromagnetic field of the laser beam and then collide with particles in the ambient gas and
sample materials to produce more free electrons. The newly created free electrons are also
accelerated by the electric field, resulting in an electron avalanche ionization (EAI) process
throughout the laser pulse duration [5]. During a breakdown phenomenon, plasma is generated on
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the sample surface. The surface species can be quantitatively
deduced by analyzing the plasma emission spectrum [6]. LIBS
has become an attractive and popular technique in the field of
chemical analysis due to its unique advantages, such as its
application to liquids [7, 8], gases [9, 10], and solids [11, 12],
no sample pretreatment, simultaneous detection of multiple
elements, and noncontact remote detection in many fields,
including laser cleaning [13, 14], environmental protection
[15, 16], space exploration [17, 18], and cultural heritage
preservation [19, 20].

Generally, a series of certified samples of similar matrices
are required for the quantitative analysis to establish the
calibration curves in LIBS, called the referenced calibration
method (RCM). However, it is extremely difficult or even
impossible to obtain similar referenced samples in many
cases, such as soil, mining, and biological tissues, where the
matrix effect is hardly avoided [21, 22]. Furthermore, the RCM
requires consistency in the experimental conditions, such as
laser power density, temperature, and humidity. The
limitations to the reference sample have hindered the
development of LIBS.

Ciucci was the first to propose a determination method
without referenced samples: the calibration-free laser-induced
breakdown spectroscopy (CF-LIBS) [23]. The elemental
concentration information is determined by describing the
physical states of the laser-induced plasmas through
mathematical models. There is no need for referenced samples
or calibration curves, and matrix effects can be effectively
avoided. CF-LIBS has piqued researchers’ interest since its
introduction in 1999, although analytical accuracy is less
satisfactory than the RCM.

In the past few decades, experimental modification and
physical algorithmic improvements in CF-LIBS have been
made by scholars all around the world. Analytical accuracy
keeps increasing. To overview the development and the state-
of-the-art CF-LIBS, this review included three parts: the essential
assumptions and the basic mathematical model, a modified
model combined with the Saha-Eggert equation, and the self-
absorption and its effect on CF-LIBS. The purpose of this review
was to give LIBS researchers some inspiration to promote the
exploration.

2 FUNDAMENTAL ALGORITHM

The basic assumptions of CF-LIBS include (1) chemometric
ablation, in which elemental composition and content in
plasmas are the same as in samples [23, 24]; (2) local
thermal equilibrium (LTE), ensuring the particles are in the
excited energy level, following the Boltzmann distribution [25];
(3) optical thinness, meaning that the self-absorption in the
selected spectral line can be ignored for calculation; and (4)
elemental information wholeness, observed spectra including all
the species of elements [26]. Based on the aforementioned
assumptions, the spectral intensity at wavelength λ is as
follows:

Ikiλ � FCSAki
gk

US(T)e
−( Ek

kBT
)
. (1)

F is the experimental parameter involving the receiving system
optical efficiency and plasma number density; CS is the
concentration of the emitting species s; Aki is the
spontaneous transition probability; gk and Ek are the
statistical weight and energy of the upper level k; kB is the
Boltzmann constant; US(T) is the partition function at the
temperature T. Equation 1 should be transformed, and the
logarithm of both sides should be considered:

ln
Ikiλ

Akigk
� − Ek

kBT
+ ln

FCS

US(T). (2)

Equation 2 can be rewritten in a linear form:

y � mx + qS, (3)
y � ln

Ikiλ
Akigk

, (4)
x � Ek, (5)

m � − 1
kBT

, (6)

qS � ln
FCS

US(T). (7)

A relationship of Ek and y can be linearly fitted, called the
Boltzmann plot. The linear plot can be drawn by each type of
atom and ion. The plasma temperature and concentration of
species s can be deduced by the line slope m and intercept qS ,
according to Eqs 6, 7, respectively.

The partition function US(T) is calculated as

FIGURE 1 | Typical Boltzmann plots for estimating the plasma
temperature. Emission lines from singly ionized Cu and Ni are used for
obtaining the temperature. Reproduced with permission from [30], ©2016
Cambridge core.
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US(T) � ∑gke
−Ek/KBT. (8)

The value of F can be determined through normalization,
which states that the sum of all species in the sample equals 1:

∑CS � 1
F
∑US(T)eqS � 1. (9)

Then, the concentration of each element in the sample can be
determined as

CS � 1
F
US(T)eqS . (10)

Ideally, an accurate elemental determination requires two
conditions [27–29]: (1) the fitting linear curve of the same
species has high linearity (R2 close to 1) and (2) the fitting
lines of various species are nearly parallel (shown in Figure 1
[30]). However, the analytical accuracy is generally influenced by
five factors: (I) the measured spectral intensities are inaccurate;
(II) the Boltzmann plot established for atomic lines generally
yields a lower plasma temperature than for ionic lines; (III) the
transition species are close to but not in LTE conditions (due to
ionization/recombination reactions through electronic impacts);
(IV) plasma in LIBS is optically thick and thermally
inhomogeneous, and the temperature in the plasma center is
much higher than that at the plasma periphery; and (V) Equation
1 is ideal and cannot accurately describe the plasma [19, 31].

The laser-induced plasma is transient and inhomogeneous. It
only approximately meets the conditions for LTE within the
appropriate temporal and spatial window [19]. Deviation from
LTE conditions will badly influence the analytical accuracy. The
McWhirter criterion is the most commonly used criterion for
verifying LTE, especially because in plasma with the presence of
high-density particles, the collisional transitions dominate the
radiative transitions between all states. It is a necessary but not
sufficient condition for LTE because it only applies to homogeneous
and static plasmas [32]. The McWhirter criterion can be used as

Ne > 1.6 × 1012T
1 /

2(ΔE)3, (11)
where ΔE represents the maximum adjacent energy level gap.

The obtained spectral intensity is proportional to the relative
efficiency: the light emitted by the plasma is coupled to the
spectrometer, where the detector converts the optical signal into an
electrical signal. Because the transmission and conversion efficiency of
the optical system and the spectrometer are wavelength-dependent,
the spectral intensity obtained directly must be corrected:

I(λ) � I0(λ) · E(λ), (12)
where E(λ) is the relative efficiency; I(λ) is the signal intensity
output from the spectral detector; and I0(λ) is the spectral
intensity emitted from the plasma. The spectral response can
vary significantly in different spectral regions, so spectral
correction must be performed across a wide range of
wavelengths [31, 33]. A deuterium-halogen tungsten lamp, a
combination of deuterium/halogen broadband source, a
mercury lamp, and diffusely scattered pulsed laser light
sources are general calibration light sources [34].

The Boltzmann plot was applied by researchers in various fields.
Fahad et al. quantified the composition of the limestone, as shown in
Figure 2; the results of the CF-LIBS technique compared to scanning
electron microscopy combined with energy-dispersive X-ray
spectroscopy and electron probe microanalysis are in good
agreement [35]. Pandhiji et al. used the CF-LIBS method to
quantify the elements in the coral skeleton, except for
Sn(Certified data: 10 ppm and CF-LIBS data: 6 ppm); all of the
values were in general agreement with the verified values. The results
were somewhat different compared to ICP-MS, and the reason for
this disagreement may be that the CF-LIBS data were related to the
surface of the coral, while the ICP-MS data were related to its overall
mass [36]. In the following year, they determined toxic heavy metals
(Cd, Co, Pb, Zn, Cr, etc.) in soil samples from four industrial areas by
the calibration curves, CF-LIBS, and ICP-OES methods. The results
showed that the limits of detection (LOD) for Cd and Zn in soil were
0.2 and 1.0 ppm, respectively, and the ICP-OESmethod was in good
agreement with the CF-LIBS method [37]. Similarly, Kumar et al.
created a Boltzmann plot for different elements (Ca, Fe, and Pb) in
the sludge to determine the concentrations of toxic elements Cr and
Pb [38]. Agrawal et al. used CF-LIBS as a quality control tool to
monitor the composition of various mineral elements in food
additives. The quantitative analysis results were consistent with
those on the additive label. The presence of new (not on the
label) elements and non-detected elements may be related to
errors in the food additive and was not reported by the
manufacturer due to low concentrations [39]. Yang et al. used
CF-LIBS to quantify the H/D concentration ratio in titanium
alloys, and the relative error of the H/D concentration ratio was
only 1.33% when a Boltzmann plot was used to calculate the plasma
temperature (choosing the spectral line of titanium) due to the
scarcity of H and D elemental spectral lines, as well as their
susceptibility to interference from titanium spectral lines [40].The
quantitative analysis of the composition of elements in different

FIGURE 2 |Relative elemental abundance of the limestone sample at the
fundamental harmonic (1064 nm) of the Nd:YAG laser. Reproduced with
permission from [35], ©2018 Institute Of Physics.
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karats of gold by Ahmed et al. showed that the Au content increases
from 75.9% to 92.7%, with increasing gold purity (18–22 K), and the
corresponding Cu content decreases from 17% to 5.7% [41]. Hamad
et al. analyzed the composition of pressed cement samples, and the
calculated elemental concentrations agreedwith the XRF results with
a maximum relative percentage error of 5% [42].

Under optimized experimental conditions, CF-LIBS allows
more accurate elemental content analysis, with results
comparable to those of XRF, ICP-MS, ICP-OES, AAS, and
RCM in LIBS. Moreover, a series of standard samples are not
required, making it more cost-effective and less time-consuming.
When referenced samples are unavailable for establishing
calibration curves, CF-LIBS is the only choice for the
quantitative analysis using LIBS.

3 MODIFIED ALGORITHM

3.1 Saha–Boltzmann Plot
Species in the same ionized state generally do not have enough
spectral lines for representing the whole energy level and poor
calculation accuracy of the plasma electron temperature. Yalcin
et al. proposed a method of introducing the Saha–Eggert equation
with the Boltzmann plot (Saha–Boltzmann plot method) in 1999
[43] and studied the effects of environmental conditions and laser
energy on the plasma temperature. This method indeed improved
the accuracy and reliability of temperature measurements.

The Saha–Boltzmann plot method must satisfy the condition
of LTE, as well as the Boltzmann plot method. The Saha–Eggert
equation describes the totality of neutral and singly ionic states of
the same elements under the LTE condition:

NII

NI
� 1
Ne

2UII(T)
UI(T) exp( − Eion

kBT
) (2πmekBT)32

h3
, (13)

where NI and NII represent the number density of species in
the atomic and single ionic states of the same element,

respectively; me is the electron mass; Eion is the first
ionization energy.

N is proportional to CS, CS � bN. Equation 1 can be
modified as

Ikiλ � FCSAki
gk

US(T)e
− Ek
kBT � FNNAki

gk

US(T)e
− Ek
kBT. (14)

Combining Equations 13, 14, the intensity of the ionic line
can be rewritten as

IIIjh � FNN
IAII

jhg
II
j

exp( − EII
j

kBT
)

UI(T)
⎛⎝2(2πmekBT)3

/

2

Neh3
⎞⎠exp( − Eion

kBT
).
(15)

Rearranging the aforementioned equation and taking the
logarithm of both sides, we obtained the following equation:

yp � m · xp + q, (16)
where yp � ln( Ijh

Ajhgj
) − ln(2(2πmekBT)

3/

2

Neh3
), xp � Eion + Ej, and

m � − 1
kBT

, q � ln(FNNI

US(T)). To improve the accuracy and
precision of plasma temperature, several emission lines that
cover a wide range of upper energies were used (as shown in
Figure 3, Ref. [44]). To some extent, this method mitigates the
effect of line strength decline due to self-absorption [45]. This
method is becoming increasingly popular among researchers in a
variety of studies. Zhang et al. assessed the Ca/Na and Mg/Na
ratios in human biological tissues and compared them to the ICP-
OES method, revealing that the relative errors in hair and nails
were less than 10% (the specific comparison graph, as shown in
Figure 4), demonstrating the analytical accuracy [45]. Veis et al.
quantified the H/D ratio in Be/W mixture coatings [46]. Pribula
et al. studied the composition of tungsten-based samples with
protective carbon layers using the W III spectral line to obtain
more accurate results (quantitative results significantly influenced
by the self-absorption effect of single ionized atoms) [47]. Alicia

FIGURE 3 | Saha–Boltzmann plot for silicon and aluminum. Reprinted
from [44], Copyright (2013), with permission from Elsevier.

FIGURE 4 | Comparison of ICP-OES and LIBS results in hair and nails.
Reprinted from [45], Copyright (2021), with permission from Elsevier.
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et al. explored the quantitative analysis of ps-CF and ns-CF LIBS
for tungsten-based model materials (WCu) and found that the
high linearity of the Saha–Boltzmann plot using the ps state
resulted in a more accurate estimation of plasma temperature
[48]. Horáková et al. measured the composition of acid pitchstone
and found that the results agreed well with those of the electron
microprobe analysis (EMPA) [49]. Wang et al. studied the
emission spectra of Codonopsis pilosula to determine the
elemental contents of Mg and Ca and compared them with
liquid cathode glow discharge-atomic emission spectrometry
(LCGD-AES) and inductively coupled plasma mass
spectrometry (ICP-MS) [50].

3.2 Columnar Density Saha–Boltzmann Plot
The methods based on the Boltzmann plot and the
Saha–Boltzmann plot both have significant limitations: (I)
optical thinness is needed; (II) the plasma electron temperature
cannot be accurately deduced by the slope of the Boltzmann or
Saha–Boltzmann plot when only a small number of spectral lines
for elements in the same ionization state can be observed.

The column density Saha–Boltzmann (CD-SB) method can
effectively overcome the aforementioned limitations [51], where
the column density of the ground state can be directly calculated.
Furthermore, the presence of self-absorption in the resonance
lines ensures long-term atomic evolution [52]. This method
proposed by Cristoforetti and Tognoni opened up a new
avenue for accurate plasma temperature calculation (the
columnar density Saha–Boltzmann plot, shown in Figure 5 [51]).

Similar to the conventional CF-LIBS method, the plasma is
assumed to be spatially homogeneous over the measured time
interval in the CD-SB plot method. Equation 13 can be rewritten
according to [51]:

nIIi l

gII
i

� 2(2πmekBT)32
Neh3

nIl

UI(T)e
−EII

i
+Eion−ΔEion

kBT . (17)

This equation describes the equilibrium population of
different ionization stages in terms of the number density of
the lower level of an ionic transition ( nIIi l ). E

II
i is the energy of

the ionic transition at the lower energy level, and ΔEion is the
reduced ionization energy due to the plasma environment, which
is 1–2 orders of magnitude lower than the sum of ( EII

i + Eion)
and is generally negligible. The columnar density nIl can be
determined as the following:

nIl � 1770
Δλ0
fλ20

k(λ0)l × 1017, (18)

where λ0 and Δλ0 are in _A units; the value of k(λ0)l can be
evaluated by the self-absorption coefficient, and f is the line
oscillator strength.

Similarly, the Boltzmann Equation can be rewritten as

nIi l

gI
i

� nIl

UI(T)e
− EI

i
kBT, (19)

where EI
i is the energy of the atomic transition at the lower

energy level i.
Combining Equations 17, 19, the column density

Saha–Boltzmann equation can take the following format:

yp � mxp + q, (20)
where m � − 1

kBT
and q � ln nIl

UI(T); for atomic lines, xp � EI
i and

yp � ln
nIi l
gI
i
; for ionic lines, xp � EII

i + Eion and

yp � ln
nIIi l
gII
i
− ln 2(2πmekBT)32

Neh3
. The plasma temperature is deduced

by the slope of the linear fitting curves in the CD-SB plot
method. The yp coordinate is calculated based on the
column density of the atomic and ionic lines, rather than the
intensity of spectral lines; the xp coordinate indicates the lower
(instead of higher in the Boltzmann plot method) energy
level value.

Since its introduction in 2013, this method has piqued the
interest of many researchers because there is no need to
search for optically thin spectral lines, calibrate the
detection system, or correct self-absorption (instead, using
self-absorbed lines to establish the CD-SB plot directly). Safi
et al. determined the electron temperature of plasmas in
aluminum alloys, which shows that the CD-SB plot is
more suitable for plasma temperature determination,
especially in the later stages of plasma evolution [52]. Hu
et al. utilized the CD-SB plot in conjunction with the standard
reference line method to determine the elemental
composition of aluminum-bronze and aluminum alloy
samples, demonstrating that this method outperformed the
traditional CF-LIBS method in terms of precision and
accuracy [53]. As shown in Figure 6, the CD-SB method
combined with the standard reference line improves the
results of quantitative elemental analysis compared to the
traditional CF-LIBS method. Overall, this method not only
improves accuracy compared to the traditional CF-LIBS
method but also eliminates the need for complex self-
absorption correction procedures.

FIGURE 5 | Modified Saha–Boltzmann plot built by using the columnar
density of self-absorbed lines from Al and Mg species. Reprinted from [51],
Copyright (2013), with permission from Elsevier.
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4 SELF-ABSORPTION CORRECTION

4.1 Effect of Self-Absorption on CF-LIBS
The plasma is optically thin under ideal LIBS conditions, where
the light emitted from the plasma is free from self-absorption.
The intensities of spectral lines and elemental concentrations
have a linear relationship. However, according to the classical
radiation theory of spontaneous radiation and stimulated
absorption, self-absorption is bound to exist, especially at
higher elemental contents, corresponding to optically thick
plasmas. The light emitted from the plasma center would be
absorbed by atoms and ions at the plasma periphery. The self-
absorption effect of the emission spectral lines increases the full
width at half-maximum (FWHM), reduces the intensity, and
even produces severe self-reversal phenomena. As a result, the
optical information emitted from the plasma is distorted, far away
from the original relationship with elemental contents. The
complexity of laser-matter interactions, the inhomogeneity of
the plasma, and the transient nature of plasma evolution make
self-absorption a very complex phenomenon. The principle of the
self-absorption process in plasma, including self-absorption and

self-reversal, is shown in Figure 7 [54, 55]), influenced by laser
energy [56, 57], delay time [56–58], ambient gas [57, 59, 60], gas
pressure [60], geometrical optical configuration [61, 62], and
other methods [55, 63–65].

CF-LIBS was based on optically thin plasmas, without self-
absorption. The electron temperature of the plasma was evaluated
using the Boltzmann or Saha–Boltzmann plot, and the content of
the elements in the sample was determined. Actually, inevitable
self-absorption reduces the spectral intensity, resulting in an
unrealistic higher value of the calculated plasma electron
temperature, while the calculated intercept is lower.

4.2 Self-Absorbing Correction Improves the
Accuracy of CF-LIBS
4.2.1 Curve of Growth
The curve of growth is a self-absorption correction model that
can be applied to CF-LIBS to calculate plasma-related parameters
in an iterative form based on the corrected experimental
intensities. Gornushkin et al. first used the COG method for
elemental analysis in stainless steel [66], establishing a Boltzmann

FIGURE 6 | AEs of aluminum-bronze alloy (A) and aluminum alloy (B) were calculated by classical CF-LIBS and CF-LIBS with CD-SRL. Reprinted from [53],
Copyright (2021), with permission from Elsevier.

FIGURE 7 | Self-absorption process in the plasma (Refs. [54, 55]). Reproduced with permission from [54], ©2019 Institute Of Physics; Reproduced with
permission from [55], ©2015 Optical Society of America.
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plot for the iron ion lines with different laser energies, and the
results showed that the higher the temperature, the higher was the
excitation of the higher energy states. Bulajic applied the COG
model to CF-LIBS and used it to correct for self-absorption,
elucidating the effect of self-absorption on the line profile [67].
The self-absorption was corrected by the plasma electron
temperature, electron number density, Gaussian broadening,
Lorentzian broadening, and optical path length using the COG
method. Three different steel and ternary alloy samples were used
to validate the COGmodel. The precious alloy Au917 was used to
create a Boltzmann plot without self-absorption correction and
with the COG method after self-absorption correction, as shown
in Figures 8, 9. It illustrates the findings of its quantitative
analysis. The results demonstrated that the COG model could
be applied with CF-LIBS, and the quantitative analysis results
after self-absorption correction are very close to the certified
values. Based on Bulajic’s method, Praher et al. investigated the

relationship between line broadening and self-absorption and
proposed a simplified model [68]. Alfarraj et al. used the COG
model, number density N, and absorption path length l to
calculate the optical depth and self-absorption of strontium
and aluminum lines under various conditions of different laser
energies, gate delay time, and gate width time [69]. The COG
method has been demonstrated to effectively correct self-
absorption to improve the LIBS analysis performance.
Nevertheless, this method and its variants have high
algorithmic complexity, limiting practical applications.

4.2.2 Self-Absorption Coefficient
The so-called self-absorption coefficient method is to select an
optically thin line (or Hα line) as an internal reference line (or
theoretical FWHM) for self-absorption correction. Sun et al.
proposed an internal reference for the self-absorption
correction (IRSAC) method [27]. Several lines with ignorable
self-absorption were selected as references to correct other lines
with self-absorption based on the initial temperature and the
intensity of the reference line. Finally, the optimal plasma
temperature was determined by an iterative procedure until
the convergence of the correlation coefficients on the
Boltzmann plot. The Boltzmann plot of the aluminum alloy
before and after correction is shown in Figure 10 (see Ref.
[27] for Fe-Cr alloy and Fe-Cr-Ni alloy). Similarly, Shakeel
et al. applied the CF-LIBS method to Al-Si alloys, optimized
the experimental conditions, removed background signals, and
corrected for self-absorption with an internal reference line [70].
It is worth noting that the effectiveness of an optically thin plasma
can be verified by comparing the intensity of two observed lines of
the same element in the same state and transition energy level
with the intensity calculated from the known atomic parameters
[71, 72]. Based on this, Ahmed et al. constructed a Boltzmann plot
with optically thin lines and compared it to the IRSAC method
[73]. Dong et al. proposed an internal reference-external standard
with the iteration correction (IRESIC) procedure based on the
IRSAC approach, which requires a standard sample to estimate
the plasma temperature using a genetic algorithm [74].
Furthermore, the internal reference line can be chosen

FIGURE 8 | Boltzmann plot for precious alloy Au917 (without self-absorption corrections) and the Boltzmann plot for precious alloy Au917 (with self-absorption
corrections). Reprinted from [67], Copyright (2002), with permission from Elsevier.

FIGURE 9 |Quantitative analysis for precious alloys. Reprinted from [67],
Copyright (2002), with permission from Elsevier.
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manually or programmatically based on the emission coefficient
[75], and temperature estimation can be optimized using a
particle swarm algorithm [76]. However, the method of
IRSAC still has some limitations: (I) the choice of the internal
reference line has a significant impact on the final result, while it is
not always possible to select the spectral line with the self-
absorption coefficient fb

λ � 1; (II) a spectral line with almost
no self-absorption was chosen as the internal reference line for
each element. After the last iteration, the Boltzmann plot may
reveal that the fitted lines for various elements are not parallel.
Eventually, setting the initial temperature of the element with the
highest temperature estimated as the mean value of the
temperatures determined by all elements may not be the best
choice.

The self-absorption coefficient can be also expressed as [77]

SA � ( Δλ
Δλ0

)
1
/α
, (21)

where α � −0.54; Δλ is the FWHM of the actual measured
spectral line, and the Stark broadening can be separated t by the
deconvolution method. The deconvolution method, however, is

excessively time-consuming and can be approximated in the
computation by assessing the actual measured width minus
the Gauss instrumental broadening
Δλ ≈ Δλactual − Δλ2Gauss/Δλactual; Δλ0 is the line FWHM,
generally calculated by the Hα line. Using the Hα line for
electron density measurement has the distinct advantage of
providing a result that is not affected by self-absorption.
Furthermore, there is also no need to scrounge around for
electronic collision parameters [78, 79]. The specific formula
for calculating the electron number density using the Hα is as
follows:

Ne(Hα) � 8.02 × 1012(Δλ1/2
α1/2

)
3 /

2

, (22)

where α1/2 is the half-width of the reduced Stark profiles and is a
weak function of electron density and temperature, whose value
can be found in [80]. Mansour obtained a more accurate electron
temperature by analyzing the electron density ratio of the
observation line to the optically thin Hα line, corrected for
the self-absorption effect of the aluminum atomic line [81].
Similarly, Iqbal et al. compared the effect of self-absorption
correction on the emission intensity of spectral lines using the
internal reference line and density methods, respectively [82].
Based on Sun’s method, Yang et al. proposed a modified method
[83]: the spectral intensity was first corrected using the IRSAC
method, and second the self-absorption effect was calculated,
according to the electron number density and theoretical
broadening.

4.2.3 Microwave-Assisted Excitation and Geometrical
optical Configuration
The mechanism of microwave-assisted excitation is similar to the
LIBS method of stimulated absorption, where the ground-state
atoms in the plasma absorb microwave energy coupled to near-
field radiation and transition to a higher energy level state. By
adjusting the position of the sample relative to the microwave
radiator, sharper peaks and better profiles were observed [84],
and the schematic diagram of the device is shown in Figure 11.

FIGURE 10 | (A) Initial Boltzmann plot derived from the raw line intensity of the aluminum alloy sample. (B) Boltzmann plot corrected by the IRSAC for the aluminum
alloy sample. Reprinted from [27], Copyright (2019), with permission from Elsevier.

FIGURE 11 | Schematic presentation of two different microwave
radiator locations related to the laser plasma and the sample in
measurements: the two needles of a microwave radiator located about 2 mm
above the sample surface and (A) 0.5 mm horizontally away from the
ablation spot; (B) a 5-mm horizontal pass away from the ablation spot.
Reprinted with permission from [84], ©The Optical Society.
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Over a wide spectral range, the microwave-assisted approach can
reduce multiple elemental self-absorption in LIBS. In addition,
some exceptional geometries of optical systems can reduce the
effects of self-absorption to a certain extent. In unusual parallel
laser irradiation, the sample is ablated by a shockwave generated
from the air breakdown plasma formed near the sample surface
[61]; a dual pulse system with an orthogonal configuration of pre-
ablation (the first pulse laser used to generate air breakdown
plasma; the second laser is propagated perpendicular to the
sample for sample ablation) and reheating models (the first
laser is focused perpendicularly to the sample surface for
sample plasma generation; the second laser propagated parallel
to the sample for plasma heating) [85, 86]; the dual pulse system
in collinear configuration [87, 88].

Although few people have studied the microwave-assisted and
geometrical optical configuration in CF-LIBS, it gives us some
inspiration to utilize the aforementioned methods in CF-LIBS.

5 CONCLUSION

Taking the matrix as part of the analysis interest, CF-LIBS can
effectively avoid the matrix effect. It is based on basic assumptions
of chemometric ablation, local thermal equilibrium, and optical
thinness to describe the spectral intensity by mathematical
models. The plasma electron temperature and elemental ratio
are obtained by the slope and intercept of the Boltzmann plot.
After normalization, the concentration of each element can be
obtained. Generally speaking, the higher the linearity of the fitted
lines for individual elements (same ionized state) and the more
parallel the fitted lines for different elements, the higher will be
the accuracy of the calculated results. The accuracy of the plasma
electron temperature calculated by the Boltzmann plot method is
low when only a small number of spectral lines of species in the
same ionized state can be observed, or the corresponding energy
level distribution range is small. The method of the
Saha–Boltzmann plot was a modified method for solving this
problem. CD-SB is another modified method, which can directly
use atomic and ionic lines in the ground state. According to

classical radiation theory, self-absorption exists. The self-
absorption will inevitably affect the calculation of the plasma
temperature and CF-LIBS accuracy. The methods for mitigating
self-absorption are required, including the COGmethod, the self-
absorption coefficient method, and the microwave-assisted and
geometrical optical configuration methods. In recent years, CF-
LIBS attracts increasing attention in a variety of fields, such as
environmental protection, explorations of space, cultural heritage
preservation, and geological survey.
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