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In the present work, an Elzaki transformation is combined with a decomposition technique
for the solutions of fractional dynamical systems. The targeted problems are related to the
systems of fractional partial differential equations. Fractional differential equations are
useful for more accurate modeling of various phenomena. The Elzaki transform
decomposition method is implemented in a very simple and straightforward manner to
solve the suggested problems. The proposed technique requires fewer calculations and
needs no discretization or parametrization. The derivative of fractional order is represented
in a Caputo form. To show the conclusion, which is drawn from the results, some numerical
examples are considered for their approximate analytical solution. The series solutions to
the targeted problems are obtained having components with a greater rate of convergence
toward the exact solutions. The new results are represented by using tables and graphs,
which show the sufficient accuracy of the present method as compared to other existing
techniques. It is shown through graphs and tables that the actual and approximate results
are very close to each other, which shows the applicability of the presented method. The
fractional-order solutions are in best agreement with the dynamics of the given problems
and provide infinite choices for an optimal solution to the suggested mathematical model.
The novelty of the present work is that it applies an efficient procedure with less
computational cost and attains a higher degree of accuracy. Furthermore, the
proposed technique can be used to solve other nonlinear fractional problems in the
future, which will be a scientific contribution to research society.

Keywords: Elzaki transformation, decomposition method, nonlinear fractional partial differential equations,
analytical method, nonlinear systems, absolute error, Adomian polynomials

1 INTRODUCTION

Fractional calculus (FC) is a subject dealing with derivatives and integrations of fractional order. The
idea of FC was initiated by L’Hospital in 1965, who asked a question of Leibniz about the derivative of
fractional order. In early times, the theory of FC was presented as an apparent paradox, and later on,
it became the most popular area of research among researchers. Manymathematicians were attracted
to FC because of its numerous applications in various areas of research. Some of the important
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physical phenomena in nature have been modeled more
accurately by using FC than using ordinary calculus. In the
literature, the applications of FC can be found in modeling of
earthquake nonlinear oscillation [1], airfoil [21], fluid traffic [2],
finance [22], Chaos theory [3], Zener model [23], cancer
chemotherapy [6], Poisson–Nernst–Planck diffusion [24],
electrodynamics [5], tuberculosis [9], hepatitis B virus [8],
pine wilt disease [10], diabetes [11], hepatitis B disease model
[50, 51], fractional COVID-19 model [52–54], and other
applications in various areas of research [12–14].

Recently, fractional partial differential equations (FPDEs) [4]
are considered the most reliable and effective technique to
develop the most accurate mathematical models of various
important phenomena in physics and other applied sciences.
Many processes in nature are modeled accurately by using FPDEs
as compared to simple PDEs such as optics [7] and tuberculosis
[9]. The study related to FPDEs, the nonlinearity associated with
each problem, is of greater interest because many complex
phenomena in nature are modeled by using nonlinear FPDEs.
In this context, Hassan et al. have presented the solutions of some
nonlinear FPDEs that can be seen in studies [15–18]. Similarly,
Hilfer and Ray have discussed some efficient techniques for the
solution of certain nonlinear FPDEs in [19, 20], respectively.

Because of the aforementioned worthwhile applications of FC in
real-world problems, researchers have made the study of this subject
a compelling case for researchers. In this regard, mathematicians
realized to investigate the numerical or analytical solutions of FPDEs
and their systems to extend the analysis of the subject. Numerical
and analytical methods are frequently used to obtain the solutions of
various important mathematical models that represent some of the
physical processes in nature. In this regard, mathematicians have
worked hard to develop a variety of techniques for solving FPDEs
and their systems. The results of the targeted problems support the
actual dynamics of natural processes, making this a prominent area
of research. The researchers have made their best efforts toward this
topic and have established valuable techniques at regular intervals of
time. In this connection, important and efficient procedures are
implemented to solve FPDEs and their systems, such as the optimal
homotopy asymptotic method (OHAM) [55], finite difference
method (FDM) [27], Adomian decomposition method (ADM)
[25, 26], extended direct algebraic method (EDAM) [58], the (G/
Ǵ) expansion method [57], standard reductive perturbation method
[59], the homotopy perturbation transform technique along with
transformation (HPTM) [30–32], the Haar wavelet method (HWM)
[33, 34], the variational iteration procedure with transformation
(VITM) [38], and the differential transform method (DTM)
[35–37].

Many authors have tried their best to modify the existing
techniques for the solutions of FPDEs and their systems by using
different transformations. The well-known transformations are the
Laplace, natural, and Mohand transformations [42–44], the Mohand
decomposition method [56], etc. that can be used to simplify the
original problem and then utilize ADM, VIM, DTM, etc. for the
solutions of the targeted problems. In the same context, the Elzaki
transformation (ET) plays a vital role in solving FPDEs and their
systems [48]. This transformationwas introduced by Tarig Elzaki [45]
to solve different kinds ofDEs. First, the ETwas used to solve ordinary

differential equations and then extended to the solution of PDEs.
Recently, many authors have combined this transformation with
other existing methods and obtained solutions to higher nonlinear
problems [28, 29]. Ezaki transformation is combined with the
Adomian decomposition method to construct a new methodology
based on ET, called the Elzaki decomposition transform method
(ETDM), and is applied to the solution of FPDEs and their systems.

In this work, the analytical investigations of the linear and
nonlinear systems of FPDEs are combined and solved by using
the Elzaki transform decomposition method. The solutions to these
systems of FPDEs were solved by Abdul Majeed Wazwaz by using
the variational iteration method [39] in 2007, where he has
calculated the solutions only for the integer order of the
suggested system. Later on, in 2009, Jafari et al. implemented the
homopotopy analysis method [40] for the proposed system related
to FPDEs, wherein they investigated the fractional and integer
solutions of each system simultaneously. Jafari et al. implemented
the iterative Laplace transforms method [41] in 2013 to obtain
solutions for the systems under consideration. In this study, we have
used a very simple and straightforward technique, which is known as
the Elzaki transform decomposition method (ETDM), for the
solution of the previously discussed systems of FPDEs. The
comparison of all the methods has confirmed that ETDM is an
efficient and simple technique. Moreover, all the aforementioned
techniques are analytical and therefore provide identical solutions. In
this study, ETDM is further extended for the solutions of some linear
and nonlinear systems of FPDEs within the Caputo operator [28,
47]. The proposed method has the novelty of expressing the
nonlinear terms in the problems by using a stable and accurate
procedure. The Ezaki transformation is implemented first to reduce
the given problem to its simple form.

For this purpose, several nonlinear examples of FPDEs are first
converted into a simpler form by using the Elzaki transformation
and Adomian polynomials because the Elzaki transformation [49]
cannot be implemented directly into the nonlinear terms of the
targeted problems. At the end of the proposed procedure, an iterative
technique is used to investigate the highly convergent components of
the desired series form solution. The obtained solutions to various
problems are represented through graphs and tables. The 2D and 3D
plots have confirmed the greater contact between the ETDM
solutions and the actual dynamics of the problems. Moreover,
the present method is massive while producing the solutions at
different fractional orders of the derivatives. The suggested method
requires no linearization and discretization and provides suitable
results by using small calculations. The accuracy of the current
method is shown in terms of absolute error, which confirms the
sufficient accuracy of ETDM. It is concluded that the present work
will support researchers in solving high nonlinear problems in other
fields of basic sciences.

2 DEFINITIONS

Here, some important definitions and literature related to the
present research work are discussed. These definitions and other
preliminary concepts are necessary to complete the present
research task.
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FIGURE 1 | ETDM μ-solution (A) 3D and (B) 2D graph at various values of α and β

FIGURE 2 | ETDM ]-solution (C) 3D and (D) 2D graph at various values of α and β

FIGURE 3 | ETDM (A) 3D μ-solution, (B) 3D v-solution, and (C) 3D ω-solution graph, respectively, at various values of α, β and γ of Problem 2.
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2.1 Riemann–Liouville Integral Operator
The fractional partial Riemann–Liouville integral, denoted by Iαϑ ,,
where α ∈ N, α ≥ 0, is define as [28] follows:

Iαϑ] ζ , ϑ( ) �
1

Γ α( )∫
ϑ

0
] ζ , ϑ( )dϑ, α, ϑ> 0,

] ζ , ϑ( ), α � 0, ϑ> 0,

⎧⎪⎪⎨⎪⎪⎩ (1)

where Γ represents the gamma function.

FIGURE 4 | ETDM (D) 2D μ-solution, (E) 2D v-solution, and (F) 2D ω-solution graph respectively at various values of α, β and γ of Problem.

TABLE 1 | AE of ETDM at different time levels and ℵ

ℵ ETDM solution AE (ϑ = 0) AE (ϑ = 0.1) AE (ϑ = 0.2)) AE (ϑ = 0.3) AE (ϑ = 0.4) AE (ϑ = 0.5)

μ1 (ζ, ς, ϑ) 0 4.89E−3 1.86E−2 4.00E−2 6.78E−2 1.00E−1

ℵ = 0 ]1 (ζ, ς, ϑ) 0 7.00E−3 2.73E−2 6.63E−1 1.05E−1 1.16E−1

μ2 (ζ, ς, ϑ) 0 2.34E−4 1.849E−3 6.13E−3 1.43E−2 2.75E−2

ℵ = 1 ]2 (ζ, ς, ϑ) 0 1.65E−4 1.27E−3 4.15E−3 9.50E−3 1.78E−2

μ3 (ζ, ς, ϑ) 0 4.15E−6 6.47E−5 3.18E−4 9.78E−4 2.32E−3

ℵ = 2 ]3 (ζ, ς, ϑ) 0 5.88E−6 9.29E−5 4.64E−4 1.44E−3 3.49E−3

TABLE 2 | AE of ETDM at various values of α and β

α β AE at μ3 (ζ,
ς, ϑ)

AE at ν3 (ζ,
ς, ϑ)

1 1 4.27E−14 5.97E−14

0.9 0.9 1.53E−3 1.10E−3

0.7 0.7 7.8E−3 1.10E−2

0.5 0.5 3.42E−2 4.87E−3

0.3 0.3 1.84E−1 1.19E−1

TABLE 3 | AE of ETDM at different time levels and ℵ

ℵ ETDM solution AE (ϑ = 0.01) AE (ϑ = 0.03) AE (ϑ = 0.05) AE (ϑ = 0.07)

μ1 (ζ, ς, ϑ) 3.68E−4 3.29E−3 9.08E−3 1.76E−2

ℵ = 0 ]1 (ζ, ς, ϑ) 1.36E−4 1.23E−3 3.45E−3 6.81E−3

ω1 (ζ, ς, ϑ) 1.84E−5 1.67E−4 4.67E − 4 9.22E−4

μ2 (ζ, ς, ϑ) 1.36E−6 1.52E−4 4.15E−4 4.15E−4

ℵ = 1 ]2 (ζ, ς, ϑ) 4.55E−7 1.23E−5 5.73E−4 1.58E−4

ω2 (ζ, ς, ϑ) 6.14E−8 1.776E−6 7.76E−5 2.14E−5

μ3 (ζ, ς, ϑ) 3.07E−9 2.48E−7 1.90E−6 7.28E−6

ℵ = 2 ]3 (ζ, ς, ϑ) 1.13E−10 9.30E−8 7.15E−7 2.75E−6

ω3 (ζ, ς, ϑ) 1.53E−10 1.25E−8 9.67E−8 3.73E−7
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2.2 Caputo Operator
The Caputo operator of order α for fractional derivatives is
expressed as follows [28]:

Dα
ϑ( )] ζ( ) � zα] ζ( )

zϑα
�

Iℵ−α
zα] ζ( )
zϑα

[ ] ℵ − 1< α≤ℵ,

zα] ζ( )
zϑα

,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (2)

where ℵ ∈ N, ζ > 0, ] ∈ Cϑ, and ϑ ≥ 1.

2.3 Lemma
For ℵ − 1 < α, β ≤ ℵ with ℵ ∈ N and ] ∈ Cϑ with ζ ≥ −1, then
[42]2

IαIβ � Iα+β] ζ( ), α, β≥ 0,

Iαζβ � Γ β + 1( )
Γ α + β + 1( )ζα+β, α> 0, β> − 1, ζ > 0

IαDβ] ζ( ) � ] ζ( ) − ∑ℵ−1
k�0

]k 0+( ) ζ
k

k!
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)

where ζ > 0, ℵ − 1 < α ≤ ℵ.

2.4 Definition
The Laplace transform (LT) for g(ϑ) is given as follows [43]:

G s( ) � L g ϑ( )[ ] � ∫∞

0
e−stg ϑ( )dϑ.

2.5 Definition
The LT of fractional derivative is given as follows [43]:

L Dα
ϑg ϑ( )( ) � sαG(s) − ∑ℵ−1

k�0
sα−1−kg k( ) 0( ), ℵ − 1< α<ℵ,

where G(s) is the LT of g(ϑ).

2.6 Definition
The Mittag-Leffler function is expressed as follows [28]:

Eα p( ) � ∑∞
ℵ�0

pℵ

Γ αℵ + 1( ) α> 0 p ∈ C.

2.7 Adomian Polynomials
The Adomian polynomial to express the nonlinear term in a
given problem is given as follows [28]:

Nu η, ϑ( ) � ∑∞
ℵ�0

Aℵ, (4)

where

Aℵ � 1
ℵ!

dℵ

dλℵ
N∑∞

ℵ�0 λℵuℵ( )[ ][ ]
λ�0

, ℵ � 0, 1, . . . , (5)

is called Adomian polynomials.

2.8 Elzaki Transform
ET is the generalized form of Sumudu transformation, which can
be define as follows [28, 46]:

ε f ϑ( )[ ] � F q( ) � q∫∞

0
f ϑ( )e−ϑq dϑ, ϑ> 0.

The following are the results of ET for certain partial differential
equations:

i. ε
zf ζ , ϑ( )

zϑ
[ ] � 1

q
F ζ , q( ) − qf ζ , 0( ).

ii. ε
z2f ζ , ϑ( )

zϑ2
[ ] � 1

q2
F ζ , q( ) − f ζ , 0( ) − q

zf ζ , 0( )
zϑ

.

iii. ε
zf ζ , ϑ( )

zζ
[ ] � d

dζ
F ζ , q( ).

iv. ε
z2f ζ , ϑ( )

zζ2
[ ] � d2

dζ2
F ζ , q( ).

2.9 Elzaki Transform Fractional Derivative in
Term of Caputo Sense
Theorem 1. Let the LT of the function f(ϑ) is denoted by G(s) and
then ET F(q) of f(ϑ) is define as follows [47]:

F q( ) � qG
1
q
( ).

Theorem 2. The ET of the fractional derivatives defined as
follows:

ε Dαf ϑ( )[ ] � F q( )
qα

− ∑ℵ−1
k�0

qk−α+2f k( ) 0( ), ℵ − 1< α≤ℵ.

TABLE 4 | AE of ETDM at different fractional orders α, β and γ

α β γ AE at
μ3 (ζ,
ς, ϑ)

AE at
ν3 (ζ,
ς, ϑ)

AE at
ω3 (ζ,
ς, ϑ)

1 1 1 3.07E−13 1.13E−14 1.15E−14

0.9 0.9 0.9 7.92E−3 2.93E−3 3.96E−4

0.7 0.7 0.7 5.68E−2 2.11E−2 2.86E−3

0.5 0.5 0.5 2.49E−2 9.70E−2 1.31E−2

0.3 0.3 0.3 9.13E−1 4.32E−1 5.85E−1

TABLE 5 | Nomenclature.

FPDEs Fractional partial deferential
equations

ℵ Degree of the polynomials
ETDM Elzaki transformation decomposition method
VIM Variational iterative method
HAM Homotopy analysis method
LIM Laplace iterative method
DTM Differential transform method
FC Fractional calculus
PDEs Partial differential equations
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3 ELZAKI TRANSFORM DECOMPOSITION
METHOD PROCEDURE

Here, the ETDM procedure is [28] presented to solve the system
of FPDEs:

Dα
ϑμ ζ , ϑ( ) + �L1 μ, ]( ) +N 1 μ, ]( ) − P1 ζ , ϑ( ) � 0,

Dβ
ϑ] ζ , ϑ( ) + �L2 μ, ]( ) +N 2 μ, ]( ) − P2 ζ , ϑ( ) � 0,

ℵ − 1< α, β≤ℵ,
(6)

with initial sources

μ ζ , 0( ) � g1 ζ( ), ] ζ , 0( ) � g2 ζ( ), (7)
whereDα

ϑ � zα

zϑα is the Caputo type derivative of order α,
�L1, �L2 are

linear and N 1, N 2 are nonlinear functions, and the source term
are represented by P1,P2.Applying the ET to Equation 6, we
have

ε Dα
ϑμ ζ , ϑ( )[ ] + ε �L1 μ, ]( ) +N 1 μ, ]( ) − P1 ζ , ϑ( )[ ] � 0,

ε Dβ
ϑ] ζ , ϑ( )[ ] + ε �L2 μ, ]( ) +N 2 μ, ]( ) − P2 ζ , ϑ( )[ ] � 0.

(8)

Using the differential property of ET, we get

ε μ ζ , ϑ( )[ ] � sα ∑ℵ−1

k�0
s2+k−α

zkμ ζ , ϑ( )
zkϑ

|ϑ�0 + sαε P1 ζ , ϑ( )[ ] − sαε �L1 μ, ]( ) +N 1 μ, ]( ){ }],
ε ] ζ , ϑ( )[ ] � sβ ∑ℵ−1

k�0
s2+k−β

zk] ζ , ϑ( )
zkϑ

|ϑ�0 + sβε P2 ζ , ϑ( )[ ] − sβε �L2 μ, ]( ) +N 2 μ, ]( ){ }]. (9)

The decomposition solution for μ(ζ, ϑ) and ](ζ, ϑ) is as follows:

μ ζ , ϑ( ) � ∑∞
ℵ�0

μℵ ζ , ϑ( ), ] ζ , ϑ( ) � ∑∞
ℵ�0

]ℵ ζ , ϑ( ). (10)

The Adomian polynomials represent forN 1 andN 2 are given as

N 1 μ, ]( ) � ∑∞
ℵ�0

Aℵ, N 2 μ, ]( ) � ∑∞
ℵ�0

Bℵ. (11)

The nonlinearities in Eq. 6 can be represented as

Aℵ � 1
ℵ!

zℵ

zλℵ
N 1 ∑∞

k�0λ
kμk,∑∞

k�0λ
k]k( ){ }[ ]

λ�0
,

Bℵ � 1
ℵ!

zℵ

zλℵ
N 2 ∑∞

k�0λ
kμk,∑∞

k�0λ
k]k( ){ }[ ]

λ�0
.

(12)

Substituting Eqs 10, 12 into Eq. 9 gives

ε ∑∞
ℵ�0

μℵ ζ , ϑ( )⎡⎣ ⎤⎦ � sα ∑ℵ−1
k�0

s2+k−α
zkμ ζ , ϑ( )

zkϑ
|ϑ�0 + sαε P1 ζ , ζ( ){ }

−sαε �L1 ∑∞
ℵ�0

μℵ,∑∞
ℵ�0

]ℵ⎛⎝ ⎞⎠ +∑∞
ℵ�0

Aℵ
⎧⎨⎩ ⎫⎬⎭,

ε ∑∞
ℵ�0

]ℵ ζ , ϑ( )⎡⎣ ⎤⎦ � sβ ∑ℵ−1
k�0

s2+k−β
zk] ζ , ϑ( )

zϑ
|ϑ�0 + sβε P2 ζ , ϑ( ){ }

−sβε �L2 ∑∞
ℵ�0

μℵ,∑∞
ℵ�0

]ℵ⎛⎝ ⎞⎠ + ∑∞
ℵ�0

Bℵ
⎧⎨⎩ ⎫⎬⎭.

(13)

Using inverse ET to Eq. 13, we have

∑∞
ℵ�0

μℵ ζ , ϑ( ) � ε− sα ∑ℵ−1
k�0

s2+k−α
zkμ ζ , ϑ( )

zkϑ
|ϑ�0 + sαε P1 ζ , ϑ( ){ }⎡⎣

−sαε �L1 ∑∞
ℵ�0

μℵ,∑∞
ℵ�0

]ℵ⎛⎝ ⎞⎠ +∑∞
ℵ�0

Aℵ
⎧⎨⎩ ⎫⎬⎭⎤⎥⎥⎦,

∑∞
ℵ�0

]ℵ ζ , ϑ( ) � ε− sβ ∑ℵ−1
k�0

s2+k−β
zk] ζ , ϑ( )

zkϑ
|ϑ�0 + sβε P2 ζ , ϑ( ){ }⎡⎣

−sβε �L2 ∑∞
ℵ�0

μℵ,∑∞
ℵ�0

]ℵ⎛⎝ ⎞⎠ + ∑∞
ℵ�0

Bℵ
⎧⎨⎩ ⎫⎬⎭⎤⎥⎥⎦.

(14)

We describe the following terms:

μ0 ζ , ϑ( ) � ε− sα ∑ℵ−1
k�0

s2+k−α
zkμ ζ , ϑ( )

zkϑ
|ϑ�0 + sαε+ P1 ζ , ϑ( ){ }⎡⎣ ⎤⎦,

]0 ζ , ϑ( ) � ε− sβ ∑ℵ−1
k�0

s2+k−β
zk] ζ , ϑ( )

zkϑ
|ϑ�0 + sβε+ P2 ζ , ϑ( ){ }⎡⎣ ⎤⎦,

(15)
μ1 ζ , ϑ( ) � −ε− sαε+ �L1 μ0, ]0( ) +A0{ }[ ],
]1 ζ , ϑ( ) � −ε− sβε+ �L2 μ0, ]0( ) + B0{ }[ ].

In general for ℵ≥ 1, is given by

μℵ+1 ζ , ϑ( ) � −ε− sαε+ �L1 μℵ, ]ℵ( ) +Aℵ{ }[ ],
]ℵ+1 ζ , ϑ( ) � −ε− sβε+ �L2 μℵ, ]ℵ( ) + Bℵ{ }[ ],

which is the generalized ETDM algorithm for the solutions of the
system of FPDEs in two variables.

4 NUMERICAL EXAMPLES

Problem 1
Here, we take the following FPDE [39–41]:

Dα
ϑ μ( ) − z]

zζ
+ ] + μ � 0,

Dβ
ϑ ]( ) − zμ

zζ
+ ] + μ � 0, α, β ∈ 0, 1( ],

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (16)

with initial source

μ ζ , 0( ) � sinh ζ( ),
] ζ , 0( ) � cosh ζ( ),{ (17)

The exact solution at α = β = 1 is

μ ζ , ϑ( ) � sinh ζ − ϑ( ),
] ζ , ϑ( ) � cosh ζ + ϑ( ),{

Using ET, Eq. 16 can be written as

ε
zαμ

zϑα
{ } � ε

z]
zζ

− ] − μ{ },
ε

zβ]
zϑβ
{ } � ε

zμ

zζ
− ] − μ{ },
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1
sα
ε μ ζ , ϑ( ){ } − s2−αμ ζ , 0( ) � ε

z]
zζ

− ] − μ{ },
1

sβ
ε ] ζ , ϑ( ){ } − s2−β] ζ , 0( ) � ε

zμ

zζ
− ] − μ{ },

After simplification, we obtain

ε μ ζ , ϑ( ){ } � s2 μ ζ , 0( ){ } + sαε
z]
zζ

− ] − μ{ },
ε ] ζ , ϑ( ){ } � s2 ] ζ , 0( ){ } + sβε

zμ

zζ
− ] − μ{ }, (18)

Using the ET inverse to Eq. 18, we have

μ ζ , ϑ( ) � μ ζ , 0( ) + ε− sαε
z]
zζ

− ] − μ[ ][ ],
] ζ , ϑ( ) � ] ζ , 0( ) + ε− sβε

zμ

zζ
− ] − μ[ ][ ], (19)

The assume decomposition solutions for variables μ(ζ, ϑ) and ](ζ,
ϑ) in Eq. 19 can be written as follows:

μ ζ , ϑ( ) � ∑∞
ℵ�0

μℵ ζ , ϑ( ), and ] ζ , ϑ( ) � ∑∞
ℵ�0

]ℵ ζ , ϑ( ), (20)

∑∞
ℵ�0

μℵ ζ , ϑ( ) � μ ζ , 0( ) + ε− sαε
z∑∞

ℵ�0]ℵ ζ , ϑ( )
zζ

− ∑∞
ℵ�0

]ℵ ζ , ϑ( ) − ∑∞
ℵ�0

μℵ ζ , ϑ( )⎡⎢⎣ ⎤⎥⎦⎡⎢⎣ ⎤⎥⎦,
∑∞
ℵ�0

]ℵ ζ , ζ , ϑ( ) � ] ζ , 0( ) + ε− sβε
z∑∞

ℵ�0μℵ ζ , ϑ( )
zζ

− ∑∞
ℵ�0

]ℵ ζ , ϑ( ) − ∑∞
ℵ�0

μℵ ζ , ϑ( )⎡⎢⎣ ⎤⎥⎦⎡⎢⎣ ⎤⎥⎦.
(21)

Furthermore,

∑∞
ℵ�0

μℵ ζ , ϑ( ) � sinh ζ( ) + ε− sαε
z∑∞

ℵ�0]ℵ ζ , ϑ( )
zζ

− ∑∞
ℵ�0

]ℵ ζ , ϑ( ) − ∑∞
ℵ�0

μℵ ζ , ϑ( )⎡⎢⎣ ⎤⎥⎦⎡⎢⎣ ⎤⎥⎦,
∑∞
ℵ�0

]ℵ ζ , ϑ( ) � cosh ζ( ) + ε− sβε
z∑∞

ℵ�0μℵ ζ , ϑ( )
zζ

− ∑∞
ℵ�0

]ℵ ζ , ϑ( ) − ∑∞
ℵ�0

μℵ ζ , ϑ( )⎡⎢⎣ ⎤⎥⎦⎡⎢⎣ ⎤⎥⎦.
(22)

The component comparison in Eq. 22 provides the following
recursive ETDM algorithm:

μ0 ζ , ϑ( ) � sinh ζ( ), ]0 ζ , ϑ( ) � cosh ζ( ), (23)
For ℵ = 0,

μ1 ζ , ϑ( ) � −cosh ζ( ) ϑα

Γ α + 1( ), ]1 ζ , ϑ( ) � −sinh ζ( ) ϑβ

Γ β + 1( ),
(24)

For ℵ = 1,

μ2 ζ , ϑ( ) � −cosh ζ( ) ϑα+β

Γ α + β + 1( ) + sinh ζ( ) ϑα+β

Γ α + β + 1( ) + cosh ζ( ) ϑ2α

Γ 2α + 1( ),

]2 ζ , ϑ( ) � −sinh ζ( ) ϑα+β

Γ α + β + 1( ) + cosh ζ( ) ϑα+β

Γ α + β + 1( ) + sinh ζ( ) ϑ2β

Γ 2β + 1( ).
(25)

For ℵ = 2,

μ3 ζ , ϑ( ) � −cosh ζ( ) ϑ3α

Γ 3α + 1( ),

]3 ζ , ϑ( ) � sinh ζ( ) ϑ3β

Γ 3β + 1( ),
..
.

(26)

Similarly for (ℵ > 2), the remaining terms of μm and ]m can be
calculated easily by using ETDM.In general, the solution of
ETDM is given as follows:

μ ζ , ϑ( ) � ∑∞
ℵ�0

μℵ ζ , ϑ( ) � μ0 ζ( ) + μ1 ζ( ) + μ2 ζ( ) + μ3 ζ( ) +/ ,

] ζ , ϑ( ) � ∑∞
ℵ�0

]ℵ ζ , ϑ( ) � ]0 ζ( ) + ]1 ζ( ) + ]2 ζ( ) + ]3 ζ( ) +/ ,

(27)
Substituting Eqs 23, 24, 25, and 26 in Eq. 27, we get

μ ζ , ϑ( ) � ∑∞
ℵ�0

μℵ ζ( ) � sinh ζ( ) − cosh ζ( ) ϑα

Γ α + 1( ) − cosh ζ( ) ϑα+β

Γ α + β + 1( )
+sinh ζ( ) ϑα+β

Γ α + β + 1( ) + cosh ζ( ) ϑ2α

Γ 2α + 1( )/ ,

] ζ , ϑ( ) � ∑∞
ℵ�0

]ℵ ζ( ) � cosh ζ( ) − sin ζ( ) ϑβ

Γ β + 1( ) − sinh ζ( ) ϑα+β

Γ α + β + 1( )
+cosh ζ( ) ϑα+β

Γ α + β + 1( ) + sinh ζ( ) ϑ2α

Γ 2α + 1( )/ ,

μ ζ , ϑ( ) � sinh ζ( ) 1 + ϑα+β

Γ α + β + 1( ) +/[ ]
−cosh ζ( ) ϑα

Γ α + 1( ) +
ϑα+β

Γ α + β + 1( ) − ϑ2α

Γ 2α + 1( ) +/[ ],
] ζ , ϑ( ) � cosh ζ( ) 1 + ϑα+β

Γ α + β + 1( ) +/[ ]
−sinh ζ( ) ϑα

Γ α + 1( ) +
ϑα+β

Γ α + β + 1( ) − ϑ2α

Γ 2α + 1( ) +/[ ],
(28)

Substituting α = β = 1 in Eq. 29, we get:

μ ζ , ϑ( ) � sinh ζ( ) 1 + ϑ2

2( )! +
ϑ4

4!( ) +/[ ] − cosh ζ( ) ϑ

1!( ) +
ϑ3

3!( ) +
ϑ5

5!( ) +/[ ] � sinh ζ − ϑ( ),

] ζ , ϑ( ) � cosh ζ( ) 1 + ϑ2

2( )! +
ϑ4

4!( ) +/[ ] − sinh ζ( ) ϑ

1!( ) +
ϑ3

3!( ) +
ϑ5

5!( ) +/[ ] � cosh ζ + ϑ( ).

Thus,

μ ζ , ϑ( ) � sinh ζ − ϑ( ),
] ζ , ϑ( ) � cosh ζ + ϑ( ),

which is the ETDM solution in closed form, when α = β = γ = 1.

Problem 2
Here, we take the following FPDE [39–41]:

Dα
ϑ μ( ) + ]ζως − ]ςωζ � −μ,

Dβ
ϑ ]( ) + μςωζ + μςωζ � ],

Dγ
ϑ ω( ) + μζ]ς + μς]ζ � ω, α, β, γ ∈ 0, 1( ],

⎧⎪⎪⎨⎪⎪⎩ (29)

with initial sources

μ ζ , ς, 0( ) � expζ+ς,
] ζ , ς, 0( ) � expζ−ς,
ω ζ , ς, 0( ) � exp−ζ+ς

⎧⎪⎨⎪⎩
The exact solution at α = β = γ = 1 is
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μ ζ , ς, ϑ( ) � expζ+ς−ϑ,
] ζ , ς, ϑ( ) � expζ−ς+ϑ,
ω ζ , ς, ϑ( ) � exp−ζ+ς+ϑ,

⎧⎪⎨⎪⎩
Using ET, Eq. 29 can be written as follows:

ε
zα μ

zϑα
{ } � ε −μ + ]ζως − ]ςωζ{ },
ε

zβ]
zϑβ
{ } � ε ] − μςωζ − μςωζ{ },
ε

zγω

zϑγ
{ } � ε ω − μζ]ς − μς]ζ{ },

1
sα
ε μ ζ , ς, ϑ( ){ } − s2−αμ ζ , ς, 0( ) � ε −μ + ]ζως − ]ςωζ{ },

1

sβ
ε ] ζ , ς, ϑ( ){ } − s2−β] ζ , ς, 0( ) � ε ] − μςωζ − μςωζ{ },

1
sγ
ε ω ζ , ζ , ϑ( ){ } − s2−γω ζ , ς, 0( ) � ε ω − μζ]ς − μς]ζ{ },

After simplification, we have

1
sα
ε μ ζ , ς, ϑ( ){ } � s2−αμ ζ , ς, 0( ) + ε −μ + ]ζως − ]ςωζ{ },

1

sβ
ε ] ζ , ς, ϑ( ){ } � s2−β] ζ , ς, 0( ) + ε ] − μςωζ − μςωζ{ },

1
sγ
ε ω ζ , ζ , ϑ( ){ } � s2−γω ζ , ς, 0( ) + ε ω − μζ]ς − μς]ζ{ },

ε μ ζ , ς, ϑ( ){ } � s2μ ζ , ς, 0( ) + sαε −μ + ]ζως − ]ςωζ{ },
ε ] ζ , ς, ϑ( ){ } � s2] ζ , ς, 0( ) + sβε ] − μςωζ − μςωζ{ },
ε ω ζ , ζ , ϑ( ){ } � s2ω ζ , ς, 0( ) + sγε ω − μζ]ς − μς]ζ{ }. (30)

Taking inverse ET of Eq. 30, we obtain

μ ζ , ς, ϑ( ) � μ ζ , ς, 0( ) + ε− sαε −μ + ]ζως − ]ςωζ{ }[ ],
] ζ , ς, ϑ( ) � ] ζ , ς, 0( ) + ε− sβε ] − μςωζ − μςωζ{ }[ ],
ω ζ , ς, ϑ( ) � ω ζ , ς, 0( ) + ε− sγE ω − μζ]ς − μς]ζ{ }[ ], (31)

The decomposition solutions for variables μ(ζ, ς, ϑ), ](ζ, ς, ϑ), and
ω(ζ, ς, ϑ) can be written as follows:

μ ζ , ς, ϑ( ) � ∑∞
ℵ�0

μℵ ζ , ς, ϑ( ),

] ζ , ς, ϑ( ) � ∑∞
ℵ�0

]ℵ ζ , ς, ϑ( ), and

ω ζ , ς, ϑ( ) � ∑∞
ℵ�0

ωℵ ζ , ς, ϑ( ).

Here, ]ζως � ∑∞
ℵ�0Am, ]ςωζ � ∑∞

ℵ�0Bℵ, μζως � ∑∞
ℵ�0Cℵ,

μςωζ � ∑∞
ℵ�0Dℵ, μζ]ς � ∑∞

ℵ�0Eℵ, and μς]ζ � ∑∞
ℵ�0Fℵ are the

Adomian polynomials, and the nonlinear terms were
characterized.Equation 31 can be further simplified as follows:

∑∞
ℵ�0

μℵ ζ , ς, ϑ( ) � μ ζ , ς, 0( ) + ε− sαε −∑∞
ℵ�0

μℵ ζ , ς, ϑ( ) + ∑∞
ℵ�0

Aℵ − ∑∞
ℵ�0

Bℵ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦,
∑∞
ℵ�0

]ℵ ζ , ς, ϑ( ) � ] ζ , ς, 0( ) + ε− sβε ∑∞
ℵ�0

]ℵ ζ , ς, ϑ( ) − ∑∞
ℵ�0

Cℵ + ∑∞
ℵ�0

Dℵ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦,
∑∞
ℵ�0

ωℵ ζ , ς, ϑ( ) � ω ζ , ζ , γ, 0( ) + ε− sγε ∑∞
ℵ�0

ωℵ ζ , ς, ϑ( ) − ∑∞
ℵ�0

εℵ + ∑∞
ℵ�0

Fℵ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦.
(32)

Using Eq. 31, the nonlinearity in the given problem can be
expressed as follows:

A0 � z]0
zζ

zω0

zς
, A1 � z]0

zζ

zω1

zς
+ z]1

zζ

zω0

zς
, B0 � z]0

zς

zω0

zζ
, B1 � z]0

zς

zω1

zζ
+ z]0

zζ

zω1

zς
,

C0 � zμ0
zζ

zω0

zς
, C1[Equal]zμ1

zζ

zω0

zς
+ zμ0

zζ

zω1

zς
, D0 � zμ0

zς

zω0

zζ
, D1 � zμ0

zς

zω1

zζ
+ zμ1

zς

zω0

zζ
.

E0 � zμ0
zζ

z]0
zζ

, E1 � zμ1
zζ

z]0
zς

+ zμ0
zζ

z]1
zς

, F 0 � zμ0
zς

z]0
zζ

, F 1 � zμ1
zς

z]0
zζ

+ zμ0
zζ

z]1
zς

,

The component comparison in Eq. 32 provides the following
recursive ETDM algorithm:

μ0 ζ , ς, ϑ( ) � μ ζ , ς, 0( ),
]0 ζ , ς, ϑ( ) � ] ζ , ς, 0( ),
ω0 ζ , ς, ϑ( ) � ω ζ , ς, 0( ),

μ1 ζ , ς, ϑ( ) � ε− sαε −μ0 ζ , ς, ϑ( ) + A0 − B0[ ][ ][ ],
]1 ζ , ς, ϑ( ) � ε− sβε ]0 ζ , ς, ϑ( ) − C0 +D0[ ][ ][ ],
ω1 ζ , ς, ϑ( ) � ε− sγε ω0 ζ , ς, ϑ( ) − E0 + F 0[ ][ ][ ],

μℵ+1 ζ , ς, ϑ( ) � ε− sαε −μℵ ζ , ς, ϑ( ) + Aℵ − Bℵ[ ][ ][ ],
]ℵ+1 ζ , ς, ϑ( ) � ε− sβε ]ℵ ζ , ς, ϑ( ) − Cℵ +Dℵ[ ][ ][ ],
ωℵ+1 ζ , ς, ϑ( ) � ε− sγε ωℵ ζ , ς, ϑ( ) − Eℵ + Fℵ[ ][ ][ ].

(33)

Using the ETDM algorithm, we get the following results:

μ0 ζ , ς, ϑ( ) � expζ+ς, ]0 ζ , ς, ϑ( ) � expζ−ς ω0 ζ , ς, ϑ( ) � exp−ζ+ς.
(34)

For ℵ = 0,

μ1 ζ , ς, ϑ( ) � −expζ+ς ϑα

Γ α + 1( ), ]1 ζ , ς, ϑ( ) � expζ−ς
ϑβ

Γ β + 1( ),
ω1 ζ , ς, ϑ( ) � exp−ζ+ς

ϑγ

Γ γ + 1( ).
(35)

For ℵ = 1,

μ2 ζ , ς, ϑ( ) � expζ+ς
ϑ2α

Γ 2α + 1( ), ]2 ζ , ς, ϑ( ) � expζ−ς
ϑ2β

Γ 2β + 1( ),
ω2 ζ , ς, ϑ( ) � exp−ζ+ς

ϑ2γ

Γ 2γ + 1( ).
(36)

For ℵ = 2,

μ3 ζ , ς, ϑ( ) � −expζ+ς ϑ3α

Γ 3α + 1( ), ]3 ζ , ς, ϑ( ) � expζ−ς
ϑ3β

Γ 3β + 1( ),
ω3 ζ , ς, ϑ( ) � exp−ζ+ς

ϑ3γ

Γ 3γ + 1( ).
..
.

(37)
In the same manner, the remaining terms of μℵ, ]ℵ, and ωℵ for
(ℵ > 3) can be calculated easily by using ETDM. In general,
solution of ETDM is given by
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μ ζ , ς, ϑ( ) � ∑∞
ℵ�0

μℵ ζ , ς, ϑ( ) � μ0 ζ , ς, ϑ( ) + μ1 ζ , ς, ϑ( ) + μ2 ζ , ς, ϑ( ) + μ3 ζ , ς, ϑ( ) +/ ,

] ζ , ς, ϑ( ) � ∑∞
ℵ�0

]ℵ ζ , ς, ϑ( ) � ]0 ζ , ς, ϑ( ) + ]1 ζ , ς, ϑ( ) + ]2 ζ , ς, ϑ( ) + ]3 ζ , ς, ϑ( ) +/ ,

ω ζ , ς, ϑ( ) � ∑∞
ℵ�0

ωℵ ζ , ς, ϑ( ) � ω0 ζ , ς, ϑ( ) + ω1 ζ , ς, ϑ( ) + ω2 ζ , ς, ϑ( ) + ω3 ζ , ς, ϑ( ) +/ .

(38)

Substituting Eqs 34, 35, 36, and 37 in Eq. 38, we get

μ ζ , ς, ϑ( ) � ∑∞
ℵ�0

μℵ ζ , ς, ϑ( )

� expζ+ς − expζ+ς
ϑα

Γ α + 1( ) + expζ+ς) ϑ2α

Γ 2α + 1( ) − expζ+ς
ϑ3α

Γ 3α + 1( )/ ,

] ζ , ς, ϑ( ) � ∑∞
ℵ�0

μℵ ζ , ς, ϑ( )

� expζ−ς + expζ−ς
ϑβ

Γ β + 1( ) + expζ−ς) ϑ2γ

Γ 2β + 1( ) + expζ−ς
ϑ3β

Γ 3β + 1( )/ ,

ω ζ , ς, ϑ( ) � ∑∞
ℵ�0

μℵ ζ , ς, ϑ( )

� exp−ζ+ς + exp−ζ+ς
ϑγ

Γ γ + 1( ) + exp−ζ+ς) ϑ2γ

Γ 2γ + 1( ) + exp−ζ+ς
ϑ3γ

Γ 3γ + 1( )/ ,

μ ζ , ς, ϑ( ) � expζ+ς 1 − ϑα

Γ α + 1( ) +
ϑ2α

Γ 2α + 1( ) −
ϑ3α

Γ 3α + 1( )/[ ],
] ζ , ς, ϑ( ) � expζ−ς 1 + ϑβ

Γ β + 1( ) + ϑ2γ

Γ 2β + 1( ) + ϑ3β

Γ 3β + 1( )/[ ],
ω ζ , ς, ϑ( ) � exp−ζ+ς 1 + ϑγ

Γ γ + 1( ) + ϑ2γ

Γ 2γ + 1( ) + ϑ3γ

Γ 3γ + 1( )/[ ],
(39)

Substituting α = β = γ = 1 in Eq. 39, we get

μ ζ , ς, ϑ( ) � expζ+ς 1 − ϑ

Γ 2( ) +
ϑ2

Γ 3( ) −
ϑ3

Γ 4( )/[ ],
] ζ , ς, ϑ( ) � expζ−ς 1 + ϑ

Γ 2( ) +
ϑ2

Γ 3( ) +
ϑ3

Γ 4( )/[ ],
ω ζ , ς, ϑ( ) � exp−ζ+ς 1 + ϑ

Γ 2( ) +
ϑ2

Γ 3( ) +
ϑ3

Γ 4( )/[ ].
μ ζ , ς, ϑ( ) � expζ+ς 1 − ϑ

1!
+ ϑ2

2!
− ϑ3

3!
/[ ],

] ζ , ς, ϑ( ) � expζ−ς 1 + ϑ

1!
+ ϑ2

2!
+ ϑ3

3!
/[ ],

ω ζ , ς, ϑ( ) � exp−ζ+ς 1 + ϑ

1!
+ ϑ2

2!
+ ϑ3

3!
/[ ],

μ ζ , ς, ϑ( ) � expζ+ς−ϑ,
] ζ , ς, ϑ( ) � expζ−ς+ϑ,
ω ζ , ς, ϑ( ) � exp−ζ+ς+ϑ,

(40)

which is the ETDM solution in closed form of Eq. 40, when α =
β = γ = 1.

5 Results and Discussion
In Figure 1, 2D and 3D plots of u-solution for Problem 1 are
presented at different fractional-orders of the derivatives.
The sub-graphs A and B have shown the 3D and 2D plots of
u-solution of Problem 1 respectively. The fractional
solutions have displayed the consistent plots and therefore
confirm the validity of the proposed method. Similarly,
Figure 2, express the 2D and 3D plots of v-solutions at
various fractional orders of the derivatives of Problem 1. The
sub-graphs C and D displayed the 3D and 2D plots at

differential orders of Problem 1 respectively. Figure 3,
display the 3D plots fractional valued plots of variables u,
v and w of Problem 2. The sub-graphs A, B and C have shown
the 3D-solutions for variable u, v and w variables of Problem
2. Similarly, Figure 4, have the sub-graphs D, E and F which
represent the 2D plots for variable u, v and w variables of
Problem 2 respectively. Table 1, is concerned with absolute
error associated with ETDM for u variable at different time
level and degree of the polynomials of Problem 1. Table 2,
describe the absolute error of ETDM at different fractional
orders and along with third degree of the approximated
polynomials. Similarly, Table 3, represents the ETDM
absolute error for variables u,v and w at different time
level and degree of polynomials of Problem 2. Table 4,
express the absolute error of ETDM for variable u,v and w
variables at different fractional orders of Problem 2. The
graphs and table have shown that ETDM and Exact solutions
are in closed contact with each other and possess the higher
degree of accuracy.

6 CONCLUSION

In this study, the important systems of FPDEs are considered
for their analytical solutions using the ETDM. The numerical
solutions are completed in two steps. In the first step, the Elzaki
transformation is used to convert the targeted problems into
simpler forms, and then the decomposition method is
applied to obtain the resultant solutions. It is observed from
the tables and figures that the current technique has a higher
capability to evaluate the results of the targeted problems. The
problem’s solutions at various time levels and m are
investigated, which cover the different aspects of the
modeling of the targeted problems and suggested technique.
The solutions at various fractional orders are presented, and a
very fast convergence of fractional solutions is shown toward
an integer-order solution. The graphical representation
has shown a very consistent relationship between the
fractional- and integer-order solutions. It should be noted
that the ETDM procedure is simple and straightforward,
and thus, it can be extended to solve high nonlinear FPDEs
and their systems.
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