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Pseudostratified epithelia have smooth apical and basal surfaces, yet along the apical-
basal axis, cells assume highly irregular shapes, which we introduce as punakoids. They
interact dynamically with many more cells than visible at the surface. Here, we review a
recently developed new perspective on epithelial cell organisation. Seemingly random at
first sight, the cell packing configurations along the entire apical-basal axis follow
fundamental geometrical relationships, which minimise the lateral cell-cell contact
energy for a given cross-sectional cell area variability. The complex 3D cell neighbour
relationships in pseudostratified epithelia thus emerge from a simple physical principle.
This paves the way for the development of data-driven 3D simulation frameworks that will
be invaluable in the simulation of epithelial dynamics in development and disease.
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INTRODUCTION

Epithelia are common to all animals and plants, and play a key structural role in tissue
morphogenesis and the development of organ shapes. With more than 90% of cancers being of
epithelial origin [1], there is an urgent need to uncover the principles of epithelial organisation and
understand the basis for epithelial integrity and homeostasis. Epithelia achieve their structural
function via their polarity (Figure 1A). On the outward-facing apical side, cells form a virtually
impermeable barrier via a cadherin-based adhesion belt and tight junctions, while, on their basal
side, they bind tightly to the basal lamina, a thin sheet composed of extracellular matrix (ECM)
proteins [2–5]. Additional cell-cell junction complexes along the lateral sides provide further
mechanical stabilisation. Recent advances in imaging provide insight into the physical principles
according to which cell connectivity is organised in epithelia, and how it changes during
morphogenesis and concomitant cell shape transitions.

3D Epithelial Cell Shapes
Since the advent of light microscopy, epithelial surfaces have been studied in great detail, and this has
revealed tight cell packing in polygonal lattices along the entire apical-basal axis [6–19]. As 3D
segmentation of cells has become possible only very recently [17, 18, 20–25], 3D cell shapes have long
been depicted as prisms, which retain the same size and neighbour relationship along the entire
apical-basal axis (Figure 1B). Cells in curved epithelial monolayers are commonly pictured as frusta
(also termed bottle cells) as the apical and basal areas must differ. Differences in neighbour
arrangements between the apical and basal side point to neighbour changes along the apical-
basal axis in a range of epithelia [26]. Prismatoids accommodate the neighbour change at either
surface. If the neighbour relationships change somewhere in between (Figure 1C), the cell shape is
reminiscent of that formed by beetle scutum, scutellum and wings (Figure 1D), which led to the new
term scutoid [15]. With up to 14 neighbour changes along the apical-basal axis [18], pseudostratified
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epithelial cells in developing mouse lungs, however, resemble
more the pancake rock formations in Punakaiki at New Zealand’s
west coast (Figure 1E) than the back of beetles (Figure 1D). This
novel complex geometry may therefore better be referred to as

punakoid (Figure 1F). The defining characteristics of punakoids
are 1) a quasi-polygonal surface, 2) a well-defined cell axis (in the
pseudostratified epithelia reviewed here, the apical-basal axis),
and 3) multiple neighbour changes along the axis. Like scutoids,

FIGURE 1 | 3D epithelial cell shapes. (A) Pseudostratified epitheliumwith cell boundaries wrapping aroundwider nuclei. (B) Schematic depiction of cell shapes. (C)
Cells alter their neighbour arrangements via T1L processes along the apical-basal axis. In a T1L process, two vertices that share an edge (orange) merge and decompose
in a different direction such that neighbour relationships change. (D) The term scutoid was coined based on the shape of beetle scutum, scutellum and wings. (E)
Pancake rocks at the beach of Punakaiki, NZ. (F) 3D segmented cells in the developing pseudostratified mouse lung epithelium (E12.5) resemble the Punakaiki
rocks. (G) 3D shapes of 6 cells and their nuclei in an E12.5 pseudostratified mouse lung epithelium. (H) Neighbour relationships change predominantly at the apical and
basal limits of the nuclei. (I) The lateral T1L processes are largely uniformly distributed along the apical-basal axis. Neighbour numbers tend to increase as cross-sectional
cell area variation increases, and vice versa. (J) 3D cell neighbourship extends further than apparent on the surface. (K) Time evolution of the contact areas between the
central cell (orange) and its neighbours in a patch of 15 epithelial cells (left) over 60 min of explant culture. (A, G–K) reproduced with modifications from [18], panel D from
[15], published under the Creative Commons Attribution Non-Commercial 4.0 International License (CC BY-NC 4.0; https://creativecommons.org/licenses/by-nc/4.0/).
Further reproduction of these panels would need to comply with the terms of this license.
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the faces of punakoids are not necessarily planar, the edges not
necessarily straight, and the entire shape not necessarily convex.
So far, punakoids were found in the embryonic mouse lung, and
their prevalence in other pseudostratified epithelia, although
likely, remains to be demonstrated.

As characteristic for pseudostratified epithelia [27], nuclei are
found distributed along the entire apical-basal axis (Figure 1G)
[18]. Neighbour changes occur mainly at the limits of the nuclei
(Figure 1H), where the cross-sectional area changes the most
[18]. An increase in the cross-sectional area correlates with a
neighbour increase, and vice versa (Figure 1I). If the number of
cells remains the same, neighbour relationships change via so-
called T1 processes [28] (also referred to as rosette formation if
more than four cells are involved [29]). We will refer to a
neighbour transition along the apical-basal axis as lateral T1
process (T1L for short) (Figure 1C). The potentially large
number of neighbour intercalations along their long axis lets
the cells be in physical contact with others that, on the apical or
basal surface, appear to be several cell diameters apart (Figure 1J).

Cell-cell signalling can thus spread further than previously
anticipated, and cells can read and average morphogen
gradients over distances that were previously expected to
require cell protrusions [30–33]. Much as on the apical surface
[34], cell neighbour relationships further change dynamically
over time along the entire apical-basal axis [17, 18]
(Figure 1K), thereby further increasing the distance over
which signals can be sensed, exchanged, and averaged. But
what leads to these unexpectedly complex and dynamic 3D
cell shapes, and what determines cell neighbour relationships?

Surface Area Minimisation
Epithelial cells are often compared to soap bubbles. Soap bubbles
famously minimise their surface area and assume a spherical
shape in isolation. Motivated by the tight packing of soap bubbles
in foams, there has been a long-standing interest in optimal
packing solutions that minimise the overall surface area. In the
19th century, Lord Kelvin proposed that tetrakaidekahedra
minimise the overall surface area if all soap bubbles have the

FIGURE 2 | Phenomenological laws in epithelial cell arrangements. (A) Slicing through a mouse embryonic lung epithelium (shaded cells [18]) repeatedly along the
apical-basal axis reveals the complex shape and packing structure of punakoids. Even over short distances, numerous T1L transitions occur, leading to vastly different
cell neighbourships. Colours in the last column indicate cell identity, values are cross-sectional neighbour numbers. (B) The average neighbour number, �n, is (close to) six
in all epithelia, even though the hexagon fraction and the neighbor number distribution vary. (C) All quantified epithelial tissues follow Aboav-Weaire’s law. (D) All
quantified epithelial tissues follow either Lewis’ law (grey line), or the quadratic law (green line), or lie in between. (E) The hexagon frequency declines for increasing area
variability according to the magenta curve.
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same volume. Flattened 14-sided tetrakaidecahedra with
hexagonal apical and basal surfaces are found in the multi-
layered, stratified epidermis of the skin [22]. However, a more
efficient packing of equally sized cells has since been described
[35], and the complex shapes of cells in single-layered
pseudostratified epithelia (Figure 2A) certainly do not
minimise the overall surface area for the given cell volume.
What then governs their shape and neighbour relationships?

Striking Regularities in Cell Arrangements
The 3D cell neighbour relationships can be understood by
considering single 2D planes, perpendicular to the apical-basal
cell axis [18]. In the following, we will therefore first discuss the
neighbour relationships in these 2D planes (Figure 2).

Striking regularities that have long been known and that are
found on all apical and basal surfaces studied to date [6–16, 19],
have recently been reported also in all planes along the apical-
basal axis (Figure 2A), even though neighbour relationships
change between individual cells [18]. First and foremost, cells
in any 2D plane have on average (close to) six neighbours, albeit
the neighbour number distributions (Figure 2B) differ
significantly among epithelia and between planes. This can be
accounted to topological constraints in 2D contiguous polygonal
lattices, and follows directly from Euler’s polyhedron formula [10,
36]. If three edges meet at each junction, the mean neighbour
number in infinite lattices is exactly six, �n � 6. The average
declines as the number of edges per vertex increases, to �n � 4
if four edges meet in each junction. Locally, the average deviates
from six in epithelia (Figure 2C) and follows a phenomenological
relationship known as Aboav-Weaire’s law [37],

m � 1
n
∑n
i�1
ni � a + b

n
(1)

which relates the number of neighbours, n, of a central cell to the
average one of its neighbours, m (Figure 3C, inset). In epithelia,
the parameter values fall into the range a ∈ [4.5, 5.5] and b
∈[4.5, 9.5] [38]. Finally, the relative average apical area, An, of
cells with n neighbours with respect to the average area of all cells,
�A, linearly increases with n (Figure 2D, black line), a
phenomenological relation termed Lewis’ law [6],

An

�A
≈
(n − 2)

4
. (2)

Initially, Lewis’ law has been accounted to entropy maximisation
[36], but this has subsequently been ruled out [39, 40]. Many
other hypotheses have been explored to explain epithelial
organisation. According to topological arguments, sequential
cell division results in the observed frequencies of neighbour
numbers (Figure 2B) [10, 41]. However, this argument does not
explain the emergence of cells with less than five neighbours, and
predicts proliferative epithelial tissues to have about 45%
hexagons. The hexagon frequencies, however, decrease with
increasing variability in the cell cross-sectional areas
(Figure 2E), and reported values range from 30 to 80% [14].
Contrary to the assumptions of the topological model, cells
rearrange their boundaries until they reach a mechanical

equilibrium [9]. By altering the relative cell-cell adhesion
strength and cortical tension, the full range of neighbour
relationships can be reproduced in vertex models and similar
model setups [9, 14, 41–46]. In a small subset of the parameter
space, Lewis’ law emerges [9, 43, 44]. Lewis’ law and the entire
range of measured neighbour frequencies can be reproduced also
using Voronoi tessellations, but again only for the subset of the
parameter space that yields the right level of tessellation
irregularity [13, 47]. So, why do all epithelia follow those two
phenomenological laws?

Minimisation of the Lateral Cell-Cell
Contact Energy Determines Cell Neighbour
Relationships
As cells reach the mechanical equilibrium quickly (in less than a
minute [9]), the polygonal lattices that one observes when cutting
the epithelium in any plane (Figure 2A) represent a mechanical
equilibrium, i.e., a state of minimal energy. At first sight, the
highly irregular shapes of epithelial cells may appear inconsistent
with surface energy minimisation, as observed in foam. However,
by following Lewis’ law and Aboav-Weaire’s law, epithelial cells
still minimise the lateral surface area for the given irregular cell
volume distribution [14, 38]. Thus, in each plane along the apical-
basal axis (Figure 2A), cells minimise the total perimeter for the
enclosed cross-sectional areas.

As regular polygons have the smallest perimeter per enclosed
area, a lattice composed of regular polygons will have the smallest
total perimeter. If all cells had the same cross-sectional area, a
regular hexagonal lattice would be most favourable. However,
cellular processes constantly alter the cross-sectional areas, and
the combined cell-cell contact surface energy is lower with mixed
cross-sectional cell areas [14]. Even the hexagonal ommatidia in
the Drosophila eye are each composed of 21 differently-sized
apical cell areas, which are predominantly not hexagonal [48].
The arrangement into hexagonal ommatidia relies on the careful
adjustment of cell adhesion, cortical tension, and cell dilation
[49–51]. As mixed cross-sectional cell areas are most favourable,
epithelial cells easily disperse from a clone with smaller cells,
while they remain clustered without such a cell size difference
relative to the surrounding tissue, potentially facilitating the
spreading of tumour cells [16].

For the distribution of cross-sectional cell areas found in
epithelial tissues, perfectly regular contiguous lattices cannot
form. By following Aboav-Weaire’s law, the internal angles of
the polygons are closest to those of a regular polygon while still
adding up to 360° at each junction [38]. By following Lewis’ law,
the side lengths are most similar [14]. Equal side lengths are
obtained if the cross-sectional cell areas follow a quadratic
relation (Figure 3D, green line) of the form

An

�A
≈
n

6
tan (π/6)
tan (π/n) ≈ (n

6
)2

. (3)

The quadratic relationship, however, emerges only at a high area
variability, as found on the apical side of embryonic lung tubes
[14, 18]. Finally, a novel relationship that all epithelia follow
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emerges from the drive to the most regular polygonal shape, and
relates the fraction of hexagons to the apical area variability,
measured by the coefficient of variation (CV = std/mean)
(Figure 2E) [14]. Interestingly, even puzzle cells in plants,
which derive their name from their highly irregular shape,
reminiscent of puzzle pieces, follow Lewis’ law [52]. This is
still consistent with a minimisation of the cell perimeter
because the puzzle shape emerges in an effort to minimise
stress in large cross-sections only after the cells have stopped
dividing and the neighbour relationships have been fixed by the
rigid cell walls [53]. In summary, the minimisation of lateral cell-
cell contact energy defines the polygonal shape of each cell cross-
section, and thus the cell neighbour relationships. Changes in the
relative cross-sectional areas along the apical-basal axis or over
time drive cell neighbour changes [14, 18]. But why do the cross-
sectional areas change–or differently put, what defines the 3D cell
shape?

Impact of Tissue Curvature on Cell
Neighbour Relationships
If the two principal curvatures of the tissue surface change
differently along the apical-basal axis, such as in sufficiently
thick epithelial tubes, then the cell aspect ratio changes along
the apical-basal axis. To maintain a regular polygonal cross-
sectional cell shape, neighbour relationships have to change. This
curvature effect has been proposed to result in scutoid cell shapes
in epithelial tubes [15]. Curvature-driven T1L processes should
then on average occur more frequently, i.e., for lesser curvature
fold-changes κ2/κ1, the higher the cell neighbour number, n, in
local cross sections [18]:

κ2
κ1

(n) � (1 − α (2 + cos α)
n sin α (1 + 2cos α))

±π
2

, α � 2π
n
. (4)

In the tubular embryonic mouse lung epithelium, no such
systematic n-dependency is observed [18]. Moreover, in planar
monolayers and in spherically shaped epithelia, where the
principal curvatures change equally, T1L transitions are
nonetheless still found [15, 18, 19]. Effects other than tissue
curvature must thus dominate in these epithelia.

Determinants of 3D Cell Shape and
Neighbour Relationships
The shape of cells in single-layered epithelia can range from a
cuboidal to highly elongated columns with large aspect ratio, and
apical or basal constriction can further affect the cell shape [20,
21, 54]. In highly elongated cells, the diameter of a spherical
nucleus would be larger than the diameter of a cylindrical cell.
Accordingly, both the cells and the nuclei deform [55]. The cell is
wider where the nucleus is present, and the remaining part of the
cell is necessarily much thinner (Figure 1G). At the apical and
basal limits of the nucleus, there is a sharp change in the cell
cross-sectional areas, and most changes in neighbour
relationships are found in this transition zone (Figure 1H).
Epithelia with an average cell diameter smaller than the

maximal nuclear diameter can thus be expected to have many
more neighbour changes than those with wider cells.

Given the narrow columnar shape, there is insufficient space to
accommodate all nuclei simultaneously in the same plane.
Accordingly, the nuclei of neighbouring cells are found at
different positions along the apical-basal axis (Figures 1A,G)
[18], a configuration referred to as pseudostratification [27]. As
mitosis is restricted to the apical side [27, 56], nuclei actively move
towards the apical side during the G2 phase, and are pushed towards
the basal side as the cell exits mitosis, in a process called interkinetic
nuclear migration (IKNM) [55, 57, 58]. As the nuclei translocate
between the apical and basal side during the cell cycle, the cell cross-
sectional areas and connectivities continuously change (Figure 1K).
An increase in the cross-sectional area increases the chance of a
neighbour increase and vice versa (Figure 1I). Neighbour changes
are less frequent close to the basal surface of tube segments, where
cells remain wider throughout the cell cycle, but are otherwise
uniformly distributed along the apical-basal axis [18]. Consistent
with a stochastic basis to the 3D organisation of epithelial cells, the
number of T1L per cell is Poisson-distributed [18].

But why would epithelial cells adopt such an elongated cell
shape? Independent of the increased number of dynamically
changing cell contacts, a smaller cell diameter can increase the
precision of morphogen-based patterning [30]. Interestingly,
several diffusible morphogens and growth factors, including
Fibroblastic Growth Factor (FGF), Sonic Hedgehog (SHH),
Bone Morphogenetic Protein (BMP)/transforming growth
factor-beta (TGF-β), and WNT, have been observed to affect
cell height, presumably via an effect on cell tension and/or cell-
cell adhesion [59–65]. Epithelial pseudostratification may thus
have evolved to enable higher developmental patterning precision.

Discussion: Towards 3D Cell-Based Tissue
Simulations of Epithelial Dynamics
As the complex, dynamic 3D organisation of cells in growing
epithelia is governed by simple physical concepts, computer
simulations present powerful tools to understand the emergent
properties of epithelia [66], including IKNM and its effects
[67–71]. Cellular Potts models, which represent a
generalisation of the Ising model to cells, have long been used
to simulate complex 3D cell shapes [72–74]. Vertex models have
been developed to specifically represent epithelia in 3D, but
without resolving the complex irregular shapes of epithelial
cells [64, 75–77]. In 2D, several vertex-based models with
higher cell boundary resolution have been developed to enable
more complex cell shapes [78–82], and to represent individual
cell boundaries and the interstitial volume [83–86]. A recent
hybrid version between a spheroid and a vertex model allows for a
3D vertex model with an intermediate vertex that enables a
neighbour transition along the apical-basal axis [87]. To make
full use of the available 3D imaging data, efficient, high-resolution
vertex-based simulation frameworks are now required. A first
such simulation framework that represents cells by individual,
deformable meshes has recently been developed [88, 89]. In
combination with quantitative 3D imaging data, this now paves
the way to a more detailed understanding of epithelial cell
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dynamics in development and disease. Vice versa, cell shape data
can be used to infer force fields and to predict bias in cell division as
cells divide perpendicular to the longest axis of their apical surface
[41, 90–94]. With such tools at hand, it may become feasible to
address open questions regarding the maintenance and loss of
epithelial integrity and cell polarity, for instance in tumour growth
and mesenchymal-to-epithelial transitions.
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