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There is a recent surge of interest and insights regarding the interplay of

quantum optimal control and variational quantum algorithms. We study the

framework in the context of qudits which are, for instance, definable as

controllable electromagnetic modes of a superconducting cavity system

coupled to a transmon. By employing recent quantum optimal control

approaches described in (Petersson and Garcia, 2021), we showcase control

of single-qudit operations up to eight states, and two-qutrit operations,

mapped respectively onto a single mode and two modes of the resonator.

We discuss the results of numerical pulse engineering on the closed system for

parametrized gates useful to implement Quantum Approximate Optimization

Algorithm (QAOA) for qudits. The results show that high fidelity (> 0.99) is

achievable with sufficient computational effort for most cases under study, and

extensions tomultiplemodes and open, noisy systems are possible. The tailored

pulses can be stored and used as calibrated primitives for a future compiler in

circuit quantum electrodynamics (cQED) systems.
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1 Introduction

Quantum information processing arbitrates controlled interaction of the Hilbert

space of a quantum system, for the purpose of generating a target probability distribution

expressed in a computational basis defined by an experimental measurement scheme. The

Hilbert space of a quantum system generally grows exponentially with the number of

degrees of freedom, but for the purpose of quantum information processing it needs to be

opportunistically partitioned in order to execute algorithms. The most common encoding

exploits a collection of qubits, two-level systems, and it is known that the dimensionality

of the Hilbert space is maximized when the states are arranged as a collection of qutrits,

three-level systems, for a fixed number of allowed quantum states [1]. Without loss of

generality, multiple qudits can be merged into the definition of a new qudit, and a qudit

can be mapped via binary encodings into a minimum of log2(d) qubits and viceversa. For

instance, the binary expansion
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would map the computational basis state of a ququart (i.e. a four-

level qudit) onto two qubits |0〉→ |00〉, |1〉→ |01〉, |2〉→ |10〉,
|3〉 → |11〉.

It is known since the beginning of quantum computing

architecture research that universal quantum computing could be

achieved by operating constructively on single-qubit and two-qubit

at a time [2] via the implementation of quantum gates temporally

arranged into quantum circuits. A similar result is known for qudits

of arbitrary dimension [3, 4], which can provide hardware-efficient

solutions [5] and lower-depth gate compilation and noise

improvement compared to qubit-based systems [6–10]. Of

particular interest in the current period of technological maturity

of quantum processors (the NISQ Era [11]) are variational

algorithms such as the Quantum Approximate Optimization

Algorithm (QAOA) and the Variational Quantum Eigensolver

(VQE) that might achieve some quantum advantage without the

fault-tolerance overhead of active error-correction [12]. Typically

the quantum circuits of these algorithms feature unitary gates

implementing a set of parametrized single-qudit rotations UM(β)

depending on some real angle β. For instance, let us consider the set

of SU(2) rotations around the X-axis of the Bloch sphere for qubit

systems, and the set of SO(3) rotations that leave invariant the |0〉 + |

1〉 + |2〉 state for qutrits. Their matrix representations U(2)
M (β) and

U(3)
M (β) are, respectively:

U 2( )
M ≡

cβ
2
−isβ

2
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Where cx, sx indicate cos(x) and sin(x) and the computational

basis states are ordered in the canonical ascending way. The

two-qudit gates of interest for QAOA/VQE ansätze are often

diagonal in the computational basis. For instance, the following two-

qudit and two-qutrit unitary gates UC(γ) introduce a phase shift by

the angle γ if the two qudits have the same computational state:

U 2( )
C ≡

eiγ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiγ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

U 3( )
C ≡

eiγ 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 eiγ 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 eiγ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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,

where the canonically ordered basis for the matrix representation

is used1. Note that for the most common case of qubits

U(2)
C ∝ exp(i(γ/2)σz ⊗ σz), where σz are the standard Pauli

matrices. For circuit quantum electrodynamics (cQED)

systems, note also that there are ways to find effective spin

models, which is generally used for encoding of quantum

heuristic algorithms [13].

Implementing parametrized gates such as (2–3) starting from

the elementary interactions provided by a NISQ processor is a

non-trivial problem of synthesis [14], which often can be tackled

only via heuristic numerical approaches and online experimental

calibration [15]. In this work, we consider the problem of

synthesis of gates of the type (2–3) by driving with carefully

optimized time-dependent interactions in a system of interacting

states. More specifically, the Hilbert space we are considering is

spanned by a truncated set of anharmonic bosonic modes,

defined with second quantized operators am, coupled in a

density-density fashion. The corresponding many-body

Hamiltonians and their truncated diagonal first quantization

representations are:

Hm � ωma
†
mam + ξm a†mam( )2 (4)

∣∣∣∣∣∣nm → |0〉〈0| + ∑nm−1
n�1

ωmn + ξmn
2[ ]|n〉〈n|,

Hint
mm′ � ξmm′a

†
mama

†
m′am′

(5)

∣∣∣∣∣∣nm
nm′

→|00〉〈00| + ∑nm−1
n�1

∑nm′−1

k�1
ξmm′nk|nk〉〈nk|,

Where nm, nm′ are the number of levels considered for each

mode. In photonic implementations, ξm is called the self-Kerr

coefficient for mode m and ξmm′ is called the cross-Kerr

coefficient between modes m and m′.We are considering two

illustrative setups in order to describe how quantum information

could be manipulated in systems featuring Hamiltonians of the

type (4–5). In particular we consider that there is one “control

qubit mode” T whose Hilbert space is truncated to the first two

computational states:

HT � |0〉T〈0|T + ωT + ξT( )|1〉T〈1|T, (6)

and either one or two computational modes (C) interacting with

the control mode, respectively truncated to the first 8 and

3 computational states:

H A( ) � HT+Hm +Hint
Tm

∣∣∣∣
nT�2
nm�8

(7)

H B( ) � HT +Hl +Hm

+Hint
Tl +Hint

Tm

∣∣∣∣∣∣∣∣ nT�2nl�3
nm�3

,

1 |00〉, |01〉, |10〉, |11〉 for qubits, and |00〉, |01〉, |02〉, |10〉, |11〉, |12〉, |20〉,
|21〉, |22〉 for qutrits.
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Where the dependence over the ω and ξ parameters of the

Hamiltonians is implied. This setup is a specific case of a

generalized Jaynes-Cummings model [16]. Note that forH(B),
each C mode is naturally a qutrit, while as noted in Eq. 1, the

quantum occupation numbers of the cavity modes could be

directly associated to qubit registers via binary

expansion [17].

In Figure 1, we show the energy spectrum of two

specifications of H(A) and H(B) as well as a pictorial

representation of a possible experimental setup that could be

described by such effective Hamiltonians: A transmon circuit is

embedded into a multimode 3D superconducting cavity, driven

by the field of a coupled antenna. Indeed, our reference

Hamiltonians can be derived by considering the

superconducting transmon to be coupled with the cavity

resonator in a dispersive way, i.e., by considering the

effective interaction derived by perturbation theory assuming

that the ratio of the transmon-cavity coupling and the

difference between the transmon and the cavity fundamental

frequencies is small, and neglecting the small effective couplings

(i.e. cross-Kerr) between the cavity modes [16, 18]. The

quantum control drive can be introduced in the model by

adding a time-dependent term that allows to create and

destroy excitations of a mode m:

Hdrive
m t( ) � dm t( )am + �dm t( )a†m, (8)

where dm(t) are complex functions. This control Hamiltonian

could be related to the (comparatively slowly varying) field

generated by the antenna via phenomenologically justified

approximations [19].

Having introduced the main definitions and the systems

under study, we outline the rest of the paper. In Section 2 we

present the synthesis problem from a numerical point of view,

following the implementation of quantum optimal control

numerics in the open source package Juqbox.jl [20].

Subsection IIA will present results for the synthesis of

simple QAOA proof-of-concept circuits based on the

parallel execution of gates (2)–(3). Finally, in Section 3 we

will discuss future work, including improvements and

generalizations of our case study to larger and realistic

systems and what is needed for this method to be applied

in practice for compilation of variational quantum algorithms

in realistic bosonic quantum processors based on 3D cQED

technology.

2 Pulse engineering approach

The gate synthesis problem that we are facing could be

framed as the task of discovering the functions dm(t) that

allow the Schrödinger evolution for a time τ of H +Hdrive to

match as close as possible a target unitary operation U:

U ≃ U τ( ) � T exp − i

Z
∫
τ

0

dt H +Hdrive t( )( )⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (9)

In particular, as discussed in the previous section, we will be

considering Eq. 7 for H and Eqs (2-3) as target unitary

matrices. In order to solve synthesis numerically, the

problem is cast into an optimization challenge over a finite

number of real parameters, which can be tackled following the

theory of quantum optimal control (QOC) [21]. There are

multiple strategies currently implemented for gate sythesis via

QOC or machine learning, all with respective benefits and

tradeoffs. However, these methods are currently tested on

specific limited cases, and insights are difficult to generalize,

e.g. see [22–24]. In this paper we follow the techniques

described in Ref. [25], targeting specifically cQED models,

which we will now briefly review and contextualize for the

system under study.

We leverage a key simplification of the QOC problem,

consisting in the decomposition of the dm(t) control functions

FIGURE 1
Top: System figure with colored waves representing different
cavity electromagnetic modes. Eigenspectrum for H(A) (left) and
H(B) (right). Systemparameters and resonant frequencies are given
in Section 2. Arrows indicate the transition frequencies.
Dashed (continuous) arrows represent transitions between
different energy levels with |0〉T and |0〉T (|1〉T).
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into a truncated basis spanned by a linear combination of Nb

B-spline quadratic polynomials, Sb(t), corresponding to wavelets

modulated with Nf resonant frequencies, i.e.

dm t( ) � ∑Nf

k

eiΩm,kWm,k t( )

Wm,k t( ) � ∑Nb

b

αm,k,bSb t( ),
(10)

where αs are complex coefficients, representing the unknowns of

the optimization problem. The choice of B-splines as a basis for

expansion is motivated by computational efficiency of

parametrization of the control functions. The resonant

frequencies Ωm,k are defined by considering the energy

differences between the states corresponding to the creation or

annihilation of a boson, leaving the remaining occupations

unchanged. Signals tuned at these frequencies initiate

transitions as it can be proven by first order time-dependent

perturbation theory.

We show in Figure 1 the resonant frequencies for our

illustrative systems: for H(A), we count 8 transitions related to

T-bosons and 14 transitions for C-bosons for a total of

22 resonant frequencies. For H(B), there are 9 resonant

frequencies in total that trigger T transitions, and

24 transitions related to the C modes. However, some

transitions are degenerate–only 17 different frequencies are

required.

We consider the following values of parameters, with

reference to a perspective reference cQED potential

implementation: ωT/2π = 5 GHz; ωm/2π = 3 GHz, ωl/2π =

4 GHz; ξm/2π = 0.6MHz, ξl/2π = 0.9MHz; ξT/2π = 200 MHz.

In line with our inspiration of a cavity-transmon systems in the

dispersive regime [26], we assign interaction parameters to be the

geometric means of the local self-interactions

ξTm/2π � 







ξm × ξT

√
/2π � 10.95 MHz and

ξTl/2π � 






ξl × ξT

√
/2π � 13.42 MHz. The parameters that we

used for H(A) and H(B) are inspired from expectations of

results that would be obtained applying black-box

quantization to Tesla-cavity systems [27] coupled dispersively

to transmons with coherence times ≃ 100μs [28]. Following that

inspiration, we assume small linewidth for the cavity mode

compared to their separations and we set the minimum

frequency difference between the transmon and cavity mode

frequencies to be of the order of the GHz, in order to justify

independent access of the control pulses to the transmon and for

each cavity modes.

Following Juqbox.jl [20], the pulse engineering algorithm

attempts to discover the best αm,k,b coefficients (i.e. 2 × Nf ×

Nb real parameters), which works as follows. Initially, a random

pulse is selected by initializing the vector of parameters using

random positive numbers uniformly distributed within [0,

0.2 MHz). Then, an objective function is calculated (see

Subsection IIA) and the pulse is iteratively updated by

computing the Schrödinger evolution and gradients efficiently

by symplectic time-integration of adjoint equations (29). Note

that due to the B-spline parametrization, the number of control

parameters does not depend directly on the pulse total duration τ.

However, the number of B-splines Nb defines the design of the

temporal structure of the pulses, so one needs to choose large

enough τ and Nb to allow the method to converge to a

numerically robust solution. In particular, the slowest

frequency resolution of the pulses is given by 1/τ. We choose

to vary τ in the 500–8000 ns range for our numerical experiments

on H(A) and H(B), allowing for a frequency resolution of

0.125–2 MHz. The B-splines vary on the time scale τ/Nb.

Hence we choose Nb = 10 to allow resolution at the scale of

ξTm, which controls multiple energy separations in the spectrum.

The values of ξl, ξm define the smallest resonant frequencies.

2.1 Evaluation test case: QAOA

Our numerical prototype experiment is based on the

synthesis of QAOA-like quantum circuits, which in their basic

implementation consist of the layered alternated application of

phase-separation unitary gates and mixing gates [30]. With

reference to the known Max-k-Cut qudit mapping of QAOA

[31], where k corresponds to the dimensionality of the qudits, we

can craft the phase-separation layers using UC(γ)ij gates and we

have the freedom of designing the mixing layers using the UM(β)i
gates in Eqs 2-3, where i, j indicate the distinguishable qudits that

are targeted by the specific gate execution. Other choices would

also be appropriate [32]. For clarity, in Figure 2A, we show the

two toy-model circuits that we are going to synthesize,

respectively via pulse engineering on H(A) and H(B). For

completeness, the test circuit include the initialization

operation, which is usually taken to be a generalized

Hadamard gate (although it could be substituted by a mixing

over the |0〉⊗N state).

We note that quantum processor programmers have

formally the freedom to execute gates sequentially or in

parallel, and to exchange them in temporal execution order if

they commute. However, in a real world implementation, if the

processor is not fault-tolerant, under reasonable assumptions we

expect decoherence and dephasing errors to be roughly

proportional to execution time, so a compiler for NISQ

algorithms often tries to parallelize gate execution as much as

possible [33]. Moreover, considering the mapping of the

computational variables to the spectrum of the Hamiltonians

(Figure 1), the possible qudit identity assignments are

inequivalent with respect to pulse engineering, although it

would be inconsequential if the synthesis was perfect. SWAP

operations could restrict the number of active qudits, by

relegating some states to be just memory storage and not

participate in processing. However, these operations and
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controls for our Hamiltonians need to be synthesized as well,

increasing the complexity of the entire compilation significantly.

Bearing in mind these considerations, in our case study we

choose to implement the single-qudit gates in parallel when

possible, without implementing SWAPs but directly

synthesizing all required two-body interactions instead across

the entire Hilbert space. We will discuss in Section 3 the

scalability issues associated to this approach.

FIGURE 2
(A) Prototype circuits for the synthesis of Max-k-Cut QAOA algorithms. Single C-mode represent 8 computational states (equivalent to
3 qubits). (B) Illustrative Fourier spectrum of a high-fidelity engineered pulse via Juqbox.jl. Top row shows results for dT(t) while the bottom row
shows the control of the computational modes (dm(t) and dl(t)). Darker tones (black, blue, orange) indicate the pulses that synthesize mixing layers,
while light tones (gray, cyan, yellow) refer to phase-separation layers. (C) Fidelity for pulse engineered QAOA layers of the prototype circuits.
Black lines indicate themean across angles, individually plotted in gray. Each line is themean of 10 random restarts (20–80 percentiles across restarts
is plotted as shaded area). Leakage plots are presented in the Supplementary Material.
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Noting that in cQED implementations, the Hamiltonians in

Eq. 7 are defined on truncated versions of a physically infinite

Hilbert space, it is customary to include a few additional guard

states corresponding to high occupation of boson modes to help

the robustness of the numerical optimization, i.e., the following

parameters are renormalized nT → ~nT � nT + δnT, nm → ~nm �
nm + δnm and nl → ~nl � nl + δnl, where δn represent guard states

with values in Table 1.

Following [25], the optimization objective to be minimized is

chosen to be a sum of the infidelity and average leakage. The

infidelity is a measure of a similarity score between the

synthesized unitary matrix and the target, which can be

defined as OF � 1 − |Tr(U(τ)†U)/E|2, where E is a

normalization constant. The average leakage is defined as

OL � (1/τ)∫τ

0
Tr(U†(t)WU(t))dt, where W is a diagonal

matrix which is non-zero only on the indices

corresponding to the guard levels. The weights in W are set

to be 1.0 for the highest guard state and then decrease

exponentially in powers of 10 for each lower state. The

objective of the numerics is to minimize O = OF + OL by

solving the related optimization problem on the α parameters

by using the IPOPT L-BFGS optimizer [34] and using the

efficient Juqbox.jl numerical integration scheme to compute

the required O and ∇αO.

The optimization heuristics has a stopping condition based

on either the achievement of a target threshold fidelity (1-OF) or

the execution of a maximum number of iterations. As mentioned,

we perform multiple restarts initializing the optimization with

different random pulses (see Table 1 for a summary of some of

the parameters used for the numerical experiments).

Computations have been performed allowing an optimization

time in the order of days. See Supplemental Material for

computational details.

To give a sense of the resulting control signals that generate

the QAOA circuit layers, we show the resulting Fourier

transform of one engineered dT(t), dm(t), dl(t) functions in

Figures 2B, for one random seed and pulse time τ = 8000 ns,

which in retrospect we know guaranteeing high fidelity of the

synthesis. The angle parameters β and γ have been set to a fixed

arbitrary value of π/5 for illustration but the qualitative features

of the pulses that we are describing are preserved for different τ

and angles. As evident from the plots, the scheme and parameters

described above clearly generate peaks around the identified

resonant frequencies corresponding to the single-boson

transitions in Figure 1. In particular, for the dT(t) controls,

the highest peak corresponds to ωT while the other

equispaced peaks are centered among multiples of ξTm, ξTl or

integer combinations of the two energy values for the H(B)

system. For the C-mode controls, the peaking frequencies are

topped by ωm, ωl and generally ξTm, ξTl plus multiples of ξm, ξl
respectively. Clearly, each reported spectrum corresponds to a

real-time microwave combination of pulses that can be crafted

via an arbitrary waveform generator (AWG) in an experimental

setup.

In Figures 2–c, we provide the aggregated performance of the

pulse engineering approach, plotting the fidelity between the final

pulse U(τ) and target circuit layers (phase separation and

mixing) and Hadamard gates, for different pulse times. We

show the mean fidelity, estimated averaging 10 random

initializations, i.e. restart of the L-BFGS optimizer (the default

optimizer for Juqbox.jl), for QAOA layers parametrized with

11 different γ and β (from -π to π in fractions of π/5). As

expected, notwithstanding outliers, the statistics is sufficient to

indicate that the method can reach the target 0.99 fidelity if the

pulse is allowed to be sufficiently long.

3 Discussion and outlook

In the previous section, we described a proof-of-concept of

numerical synthesis for simple quantum circuits describing the

building blocks of Max-k-Cut QAOA algorithms using qubits

(mapped onto qudits) and qutrits, on bosonic quantum

processors. The main question that is left to be addressed is if

the synthesis approach we employed is sufficiently robust to be

applied at application-scale. We break down the question in a

discussion of three scalability challenges: Computational effort,

realistic implementation, and circuit fidelity.

3.1 Computational effort

As mentioned, the computational effort required by

numerical packages to obtain high-fidelity in our case study is

already very significant and scales both with the Hilbert space size

and with the pulse duration. This means that the proposed

methodology will most certainly not be viable if

straightforwardly applied to systems at large scale, although

larger synthesis can be achieved if the code is optimized to

leverage GPU clusters. The envisioned practical synthesis of

larger circuits will necessarily need to be broken down in

modules, each of which working on a subspace of the entire

Hilbert space. The requirement for this modularization is that the

TABLE 1 Parameters used for prototype (See Figure 2).

Parameter H(A) H(B)

B-splines Nb 10 10

carrier frequencies Nf 22 17

T guard states δnT 3 3

C guard states δnm, δnl 2 2

max iterations 100 30–150

number of restarts 10 10

target fidelity 1-OF 0.99 0.99

Frontiers in Physics frontiersin.org06

Özgüler and Venturelli 10.3389/fphy.2022.900612

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.900612


gate synthesized numerically in a system with few modes will

have to be applied in a system with several modes and levels. The

optimal gate from numerics should ideally act as an identity on

the degree of freedoms that were not considered in the synthesis

in order not to cause the crosstalk problem [35]. Scaling up the

single-mode caseH(A) that we used will not likely be viable, since
the non-local mapping onto qubits would require any gate to

address the entire level structure independently from the locality

of the gates, which is why we opted to synthesize the entire phase-

separation circuit as opposed to the individual two-qubit gates

independently. However, it is envisionable to generalize theH(B)

system adding more C-modes, i.e., considering the Hamiltonian

H B( )
multi N[ ] � HT +∑N

j�1
Hmj +Hint

Tmj
[ ], (11)

which is H(B) for N = 2. If the ξ parameters of each C-mode are

sufficiently separated, the peaked frequency structure of the

engineered pulses suggests that it is possible that none of the

peaks in the final pulses would correspond to resonances with

single-boson excitations that we don’t want to trigger, whichwould

likely induce very small leakage outside the two-mode target

computational space. This needs to be verified theoretically or

numerically in future work. Ultimately, frequency crowding will be

an issue and more sophisticated numerics or frequency spacing

and bandwidth engineering will be required.
It should be noted that if the modularization works as

expected, the computing time spent synthesizing algorithmic

primitives would be an offline una tantum cost to be paid to

populate a lookup table (LUT) that would be accessed at

runtime by the perspective user of the quantum solver.

Indeed, similarly as in other domains, it is envisioned that

the LUT would be computed for a large grid of parameters

(angles γ and β in our QAOA example) and then machine

learning algorithms would learn and return an interpolation

of the engineered pulses if the compiler is called for a

parameter that was not pre-computed, or would use nearby

known points to initialize a fast optimization round to

engineer a new pulse on the fly [36].

3.2 Realistic implementation

While the described technique is generically applicable to any

bosonic interacting system, our case study has a specific 3D

cQED implementation in mind, as illustrated in the inset of

Figure 1.

It should be noted that the general framework that we

employed, pulse engineering via QOC, while proven powerful

[37] is not the only known approach to achieve universal

synthesis of unitary quantum gates defined in the Fock space

for these kind of systems. For instance, the use of selective

number-dependent arbitrary phase (SNAP) protocol [38, 39]

or echoed conditional displacement [40] are strong candidates

for the universal control of a single-mode system. Qudits have

potential to be affected by noise less so than qubits [7] but

working with large photon-number states comes with

additional complications in terms of decoherence, which

are still theoretically not entirely understood [41].

The multiqudit system (Eq. (11)) could be viable but its

practical implementation will likely suffer from the

aforementioned quantum and classical crosstalk problems

whose handling is currently one of the main active research

topics of the 3D multimode cQED domain [42]. Even assuming

that the bandwidth of the control pulses and the level spacing has

sufficient resolution, there is a need for the co-design of a NISQ

cQED architecture that would allow two-mode gates to operate

in large Hilbert space with a controllable effect over spectator

modes that are subject to an always-on interaction [43]. Theory

results on quantum adiabatic protocols [44, 45] on bosonic

systems could provide an initial reference point to be

generalized [46, 47].

3.3 Fidelity

The fidelity target we used in our prototype (0.99) is in line

with the fidelity of native gates in industrial grade quantum

processors but it is of course somewhat arbitrary. In accordance

with conservative models of uncorrelated errors, we could

estimate the final fidelity of the entire circuits in Figures 2–a

as the product of the fidelities of each synthesized layer, which

means that ultimately the fidelity decreases exponentially with

the number of layers. Hence, quantum-volumetric tests [48]

would fail rather fast if we were to scale our circuits beyond

few variables. However, it should be noted that for quantum

optimization algorithms of the variational type, it is not clear if

high fidelities are required, considering that the underlying

computational principle is preserved for Lindblad evolution

[49]. The degree of freedom of parameter setting might

contribute to mitigate the misspecification of the gates due to

poor synthesis. The non-requirement of exact synthesis is

intuitive, since for optimization tasks we are not necessarily

trying to reproduce a quantum process but rather to drive the

system towards a probability distribution, which might be

achievable also with partially coherent systems or in the

presence of spurious unknown interactions that give rise to

systematic coherent errors. So, as long as the nature of the

errors is not specifically adversarial against the optimization

tasks, there is still reasonable hope that a low-fidelity circuit

could deliver speedup in the NISQ era. An important

contribution that we are considering to improve the fidelity

would be to generalize the technique of Juqbox.jl to open

systems, and fit the experimental noise to solve for a more

realistic model. Fortunately, there has already been active

development in that direction, including enabling quantum
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optimal control and pulse-level programming in XACC [50, 51]

with QuaC plugin [52], and a recently released open-source

package for high-performance optimal control, Quandary [53].

In conclusion, we investigated the application of quantum

optimal control techniques to design unitary gates for a class of

physical systems that could be programmed to act as qudit-

based quantum computers. We used variational algorithms

such as QAOA for qubits (mapped onto a single qudit) and

qutrits as targets for our case-study. Our current results, similar

to other applied quantum computing works for multimode

cQED [54], are still limited on small proof-of-concept models,

due to limitations in computational effort, realistic

implementation and achievable fidelity. While we identified

pathways to overcome such limitations, we should note that for

the purpose of variational optimization there are multiple

recent attempts to employ co-designed digital-analog

approaches that are directly related to QOC as optimization

algorithms [14, 55, 56], and might not require the burdens of

high-fidelity gate synthesis. We envision that our work could

also contribute to those innovative methods that have already

been delivering promising results.
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