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In this study, we investigated the properties of entanglement of an optomechanical system
including two mechanical oscillators, where two mechanical oscillators are coupled with
the cavity field in different coupling modes: the interaction between one mechanical
oscillator and cavity field is first-order coupling, and the interaction between the other
and the cavity field is quadratic coupling. On the one hand, the entanglement between two
mechanical oscillators is studied. The influence of the frequency of the cavity field, themass
of mechanical oscillators, and the temperature of mechanical oscillators on the
entanglement between two mechanical oscillators are investigated. On the other hand,
for the given parameters of the system, we also obtained the entanglement between the
cavity field and the mechanical oscillator that has a quadratic coupling. Compared with the
entanglement between microscopic particles, the stable macroscopic quantum
entanglement between two mechanical oscillators has the characteristics of long
existence life and can be reused, and it also plays an important role in quantum
information processing and quantum network construction.
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1 INTRODUCTION

As an important resource of quantum information processing, quantum entanglement has always
been a research hotspot in the field of quantum physics. In recent decades, researchers have obtained
quantum entanglement in different physical systems [1–5], such as atomic system, ion trap system,
and photon system. People use quantum entanglement to realize quantum teleportation [6],
quantum dense coding [7], quantum remote state preparation [8], and construction of quantum
logic gate [9]. These applications fully show the importance of quantum entanglement in the process
of quantum information processing. In addition, quantum entanglement can also explore the basic
physical problems in quantummechanics, such as implicit variable theory and quantum non-locality
[10, 11]. In recent years, a new physical system, that is, a cavity optomechanical system [12], has
emerged in the field of the research of quantum information processing. The cavity optomechanical
system can effectively couple the degree of freedom of photon with the degree of freedom of the
mechanical oscillator, which can bring many novel physical phenomena [13–15]. People can use the
cavity optomechanical system to perform quantum precisionmeasurement [16], and they can couple
the atomic system [17] or quantum dot system [18] with a cavity optomechanical system to realize
coupling of more degree of freedom. In the coupling system with multi-degree of freedom,
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researchers can obtain the quantum nonlinear phenomena such
as optomechanical induced transparency [19] and optical
bistability [20].

At present, the manipulation of cavity optomechanics has
become a kind of quantum control technology, which has been
widely extended and applied. Vitali and his coworkers from Italy
realized the entanglement of the cavity field and mechanical
oscillator in the cavity optomechanical system [21]. This
research team also proposed the coupling among the optical
cavity, moving cavity mirror, and microwave cavity, and
entangled the optical cavity mode and microwave cavity mode
with the help of a mechanical oscillator [22]. For further research,
they extended to the multi-degree of the freedom coupling system
[23], and realized the entanglement among atom, moving mirror,
and cavity field by coupling the cavity field with atom and
mechanical oscillator at the same time. It is reported in nature
that the stable quantum entanglement between two mechanical
oscillators is realized by using this coupling [24]. The
experimental realization of this macroscopic superposition
state and macroscopic quantum entanglement state has
become a new important milestone in the field of quantum
physics. Since we know that the quantum entanglement of this
macroscopic steady-state system has the characteristics of a long
lifetime and can be reused, this plays an important role in
quantum information processing and quantum network
construction.

In this study, we consider an optical cavity containing the two
mechanical oscillators, where the two mechanical oscillators are
in cases of linear and quadratic coupling, respectively. When the
cavity is driven by a laser, we investigate the properties of
entanglement of the system. For the multibody system, the
values of the logarithmic negativity can determine whether the
system has entanglement. By calculating the logarithmic
negativity, we analyze the possibility of entanglement between
two oscillators in different cases where we choose different cavity
frequencies and different masses of oscillators. Compared with
the existing reported works, we also studied the entanglement
between a single oscillator and cavity field. The remainder of this
study is organized as follows. In Section 2, we show the
theoretical model of a dual-coupling optomechanical system

where the two mechanical oscillators are coupled with the
cavity field in different coupling modes. In Section 3, some
numerical results are shown, and we discuss the possibility of
entanglement for different physical parameters. Finally, the
results are summarized in Section 4.

2 THEORETICAL MODEL

Here, we consider a Fabry–Pérot optical cavity in Figure 1, which
is composed of two parallel mirrors separated by a certain
distance. The reflectivity of the mirrors is nearly unity. The
reflectivity of the left mirror is slightly lower than that of the
right mirror whose reflectivity is one, so the light is emitted from
the left. The stable standing wave can be produced in the optical
cavity when we use an incident light field to drive the optical
cavity. For the standing wave, its energy is not static but flowing
periodically to and fro between wave antinode and wave node.
Moreover, we know the change of energy of the wave node and
the wave antinodes have their own characteristics. In this study,
two partially transparent dielectric membranes are placed in the
optical cavity, and they can be looked as mechanical oscillators
under the interaction of radiation pressure. By analyzing the
changes of the standing wave, it is well known that the
optomechanical coupling between the mechanical mode of
oscillators and the optical mode is related to the position of
membranes [25]. If the membrane is placed in the vicinity of the
wave antinode of the standing wave field, then the dependence of
optomechanical coupling strength on position is mainly linear,
and the quadratic term and higher-order terms can be ignored. If
the membrane oscillates around the node, the quadratic term of
optomechanical coupling strength is much larger than other
terms. When the optical cavity is driven by a driving field
with amplitude E and frequency ωp, the Hamiltonian of the
total system can be expressed as follows:

H � ZΔ0a
†a + Zωm

2
(p2

1 + q21) + Zωm

2
(p2

2 + q22) − ZG1a
†aq1

+ ZG2a
†aq22 + iZE(a† − a), (1)

where we also perform a rotation transformation about frequency
ωp of the driving field. The first term of Eq. 1 describes the energy
of the cavity modes and gives the annihilation and creation
operators of the cavity modes a and a† ([a, a†] � 1), ωc and κ
are cavity frequency and attenuation rate, respectively, and Δ0 �
ωc − ωp is the detuning with respect to the frequency of the
incident driving field. The second and third terms give the energy
of the mechanical oscillator modes, which are modeled as a
harmonic oscillator with the same resonance frequency with
ωm and the effective mass m, and dimensionless positions and
momentum operators ql�1,2, and pl�1,2 ([ql, pl ] = iZ). The
couplings of harmonic oscillators with the cavity field
produced by the radiative pressure are shown in the fourth
and fifth terms, where the coupling constants G1 � ( ωc/L)������
Z/mωm

√
and G2 � ( ωc/L

2) × Z/mωm (L is dependent on the
effective length of the cavity geometry). Furthermore, we need to
state that one follows a first-order coupling about the position and

FIGURE 1 | Schematic diagram of a Fabry–Pérot optical cavity coupling
with two partially transparent dielectric membranes which can be looked as
two oscillators. The positions of membranes 1 and 2 in cavity are expressed as
q1 and q2, respectively.
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the other coupling is a quadratic coupling about the position. The
last term describes the interaction of the cavity field with the incident
driving laser with frequency ωp and amplitude E, where the relation
of the amplitude E with the laser power P is expressed as
|E| � ��������

2Pκ/Zωp
√

. As long as one drives only the single cavity
mode, the mechanical frequency ωm is much smaller than the
cavity free spectral range (FSR ~ c/2L). In this case, photon
scattering from the driving modes to other cavity modes can be
neglected.

Using the Heisenberg equation of motion, we can establish the
evolution equation of the system operators. In addition, the
dynamics of the total system also depends on the fluctuating
dissipative processes affecting the optical and mechanical modes;
that is, the corresponding damping and noise terms are also
added to the evolution equation. Finally, the quantum Langevin
equations of the system operators can be written as follows:

_q1 � ωmp1,
_q2 � ωmp2,
_p1 � −ωmq1 + G1a

†a − γmp1 + ξ,
_p2 � −ωmq2 − 2G2a

†aq2 − γmp2 + ξ,
_a � −iΔ0a + iG1aq1 − iG2aq

2
2 + E − κa + ��

2κ
√

ain,

(2)

where γm is the mechanical damping rate, ain is an operator of the
vacuum radiation input noise, and ξ denotes the Hermitian
Brownian noise operator. We can obtain correlation functions
satisfied by these noise operators: the non-zero correlation
function of ain is 〈ain(t)ain,†(t′)〉 � 〈δ(t − t′)〉 and the
correlation functions of and the noise operator ξ may be
expressed as 〈ξ(t)ξ(t′)〉 � γm

ωm
∫ dω

2π e
−iω(t−t′)ω[coth( Zω

2kBT
) + 1] (kB

is the Boltzmann constant and T is the temperature of the
oscillators). For solving Eq. 2, we can rewrite each Heisenberg
operator as a steady-state mean value of the c-number plus an
additional fluctuation operator around the steady-state mean value:

a � αS + δa,
ql � ql,S + δql, l � 1, 2,
pl � pl,S + δ pl, l � 1, 2,

(3)

where we only consider the first-order terms in the fluctuations in
Eq. 3. Substituting Eq. 3 into Eq. 2, we can obtain the equations
satisfied by steady-state mean values p1S � 0, p2S � 0, q1S � G1|αS|

ωm
,

q2S � 0, and αS � E
κ+iΔ, where Δ � Δ0 − G2

1|αS|2
ωm

represents the
effective cavity detuning. We also obtain the equations that
the first-order fluctuation operators obey:

δ _q1 � ωmδp1,
δ _q2 � ωmδp2,
δ _p1 � −ωmδq1 + GδX − γmδp1 + ξ,
δ _p2 � −[ωm + 2G2|αs|2δq2 − 2G′q2sδX − γmδp2 + ξ,

δ _X � ΔδY − κδX + ��
2κ

√
Xin,

δ _Y � −ΔδX − κδY + Gδq1 − 2G′q2sδq2 +
��
2κ

√
Yin,

(4)

where and stand for the effective optomechanical coupling
parameters. In the process of deriving Eq. 4, we assume the
power of the incident driving field is large enough, that is, so we
may neglect the nonlinear terms such as a† a and a q, and we only
retain linear terms in Eq. 4. Comparing the coupling parameters
as shown in Eq. 1, the effective optomechanical coupling

parameters and become larger. In addition, we introduce the
cavity field quadratures and as well as the corresponding
quadratures of Hermitian input noise operators and. The
existence of the driving field enhances the coupling between
the oscillators and the cavity field; that is, the effective
optomechanical coupling is helpful to produce significant
optomechanical entanglement. Here, we consider the case
where the system is in a steady state. We know that once the
system enters a unique steady state, it no longer depends on the
initial conditions since the quantum noise of the and is a zero
mean quantum Gaussian noise, and the dynamics is linearized. In
addition, the quantum steady state for the fluctuations can be
expressed as a zero mean bipartite Gaussian state, and it is fully
characterized by its 6 × 6 correlationmatrix, where is the vector of
the continuous variable fluctuation operator. Vector of the noise
is written as, and the coefficient matrix of Eq. 4 is given by

A �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ωm 0 0 0 0
−ωm −γm 0 0 G 0
0 0 0 ωm 0 0
0 0 −[ωm + 2G2

∣∣∣∣αS

∣∣∣∣2] −γm 0 0
0 0 0 0 −κ Δ
G 0 0 0 −Δ −κ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (5)

Equation 4 can be written in a compact form as
_u(t) � Au(t) + n(t). The solution of u(t) can be expressed as
u(t) � M(t)u(0) + ∫t

0
dt′M(t′)n(t − t′), whereM(t) � exp(At).

Matrix element Vij � ∑
k,l
∫∞

0
dt∫∞

0
dt′Mik(t)Mjl(t′)Φk,l(t − t′),

where Φkl(t − t′) � (〈nk(t)nl(t′)〉 + 〈nl(t′)nk(t)〉)/2 is the
matrix of the stationary noise correlation function. Thermal
noise ξ (t) has non-zero correlation function
〈ξ(t)ξ(t′) + 〈ξ(t′)ξ(t)〉/2 ≃ γm(2�nth + 1)δ(t − t′), where �nth �
(exp {Zωm/kBT} − 1)−1 is the average number of thermal
phonon number of the mechanical oscillators. According to
the calculation for the stationary noise correlation function, we
can obtain Φkl � Dklδ(t − t′), where D �
Diag[0, γm(2�n + 1), 0, γm(2�n + 1), κ, κ] is a diagonal matrix
and the correlation matrix becomes V � ∫∞

0
dtM(t)DM(t)T.

When the system reaches a steady state, we can let M(t � ∞)
be equal to zero. Steady-state correlation matrix V can be
obtained from the solution of the Lyapunov equation

VAT + AV � −D. (6)
Correlation matrix V is represented as six 2 × 2 matrices Km1,

Lm1m2, Lcm1, Km2, Lcm2, and Kc,

V � ⎛⎜⎜⎜⎝ Km1 Lm1m2 Lcm1

LT
m1m2

Km2 Lcm2

LT
cm1

LT
cm2

Kc

⎞⎟⎟⎟⎠, (7)

where subscriptsm1,m2, and c represent oscillator 1, 2, and cavity
field, respectively, and superscript T represents the transpose of
matrix. Km1, Km2, and Kc stand for the variances of the
mechanical oscillator mode 1, the mechanical oscillator mode
2, and the cavity field mode, respectively. Lm1m2, Lcm1, and Lcm2

represent the correlation between the mechanical oscillator
modes 1 and 2, mechanical oscillator mode 1 and the cavity
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mode, and mechanical oscillator mode 2 and the cavity mode,
respectively. In order to calculate quantitatively the entanglement
between two modes, we considered the amount of logarithmic
negativity EN , which may be expressed as [26, 27].

EN � max[0,−ln 2η−], (8)
where η− ≡ 2−1

2{−[Σ(V4 × 4)2 − 4detV4 × 4]1/2 + Σ(V4 × 4)}1/2,
where V4×4 is a 4 × 4 matrix. When we investigate the
entanglement between two of the three modes, we choose
matrix V4×4 from correlation matrix V, and then we
performed calculations on Σ(V4×4) and det V4×4 based on the
selected matrix. For example, if we want to discuss the
entanglement between the two oscillators, the 4 × 4 matrix
from correlation matrix V can be expressed as

( Km1 Lm1m2

LTm1m2
Km2

).

3 RESULTS AND DISCUSSIONS

In this section, we will talk about the properties of the entanglement
of the system. Here, values of physical parameters are based on Ref.
[21]. Some common parameter values include Planck’s constant
h � 6.6260689633p10−34 J · s, Z � h/2π, the speed of light in
vacuum c � 299792458m/s, Boltzmann’s constant
k � 1.380649p10−23 J/K, the power of incident light
P � 5p10−2 W, the center wavelength of incident light
λ � 8.1p10−7 m, the length of cavity L � 1p10−3 m, the damping
rate γ

2π � 100Hz, the center frequency of incident light
ω0 � (2pπpc)/λ, the mean thermal excitation number
�n � (exp {Zωm/kBT} − 1)−1, the decay rate of cavity
κ � (πpc)/(FpL), and the frequency of mechanical oscillator
ωm
2π � 107Hz. First, we investigated the properties of the

entanglement of the two oscillators based on the logarithmic
negativity. Logarithmic negativity EN is plotted as a function of
the normalization detuning Δ/ωm for the different cavity frequencies
ωc in Figure 2, where the values ofmass of oscillators and the optical
finesse are the same as those in Ref. 21: the mass of the oscillator
m � 5p10−9 kg and the finesse F � 3.4p104̂. For a solid line,
ωc � 3pω0; for a dash line, ωc � 3.5pω0; and for a dotted line, ωc �
4pω0.

From Figure 2, we know that logarithmic negativity EN is
greater than zero when the values of the normalization detuning
are in a certain range; that is, the entanglement between the two
oscillators exists in these specific ranges. Beyond the range,
EN � 0, which means the entanglement between the two
oscillators will vanish; that is, for the given oscillators, the
realization of entanglement requires strict control of the
frequency of the incident field. For different cavity frequencies,
we can also know that the maximum values of the logarithmic
negativity EN are different and the maximum values appear near
the place where the normalization detuning is equal to 1. In
addition, by changing the cavity frequencies, we can make the
peak of the logarithmic negativity become larger, and the
variation range of the maximum values is between 0.6 and 0.7.
We also find the peak shifts slowly to the right with the increasing
of the cavity field frequency.

Next, we show logarithmic negativity EN against temperature
T of the system temperature for different frequencies of cavity in
Figure 3, where we let Δ/ωm � 1; the values of other parameters
are the same as those mentioned in Figure 2. The entanglement
between the two oscillators can be obtained within a certain
temperature range. The overall trends of the logarithmic
negativity EN against the temperature T tell us that the
entanglement between the two oscillators becomes weak with
the increase in system temperature T, so a low temperature is a

FIGURE 2 | Logarithmic negativity EN is plotted as a function of the
normalization detuning Δ/ωm for different cavity frequencies ωc. The solid line
refers to ωc � 3pω0, the frequency corresponding to the dash line is 3.5pω0,
and for the dotted line, ωc � 4pω0. The temperature is T = 0.4.

FIGURE 3 | Plot of logarithmic negativity EN as a function of temperature
T of the system temperature. Normalization detuning Δ/ωm � 1.0, and the
other parameters have the same values as those in Figure 2. The three curves
correspond to different frequencies: for different cavity frequencies ωc.
The solid line refers to ωc � 3ω0, the frequency corresponding to the dash line
is 3.5ω0, and for the dotted line, ωc � 4ω0.
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necessary condition to realize the entanglement of two thin
dielectric membrane oscillators. A perfect entanglement
requires the temperature of the oscillator to be close to 0 k;
consequently, the cooling mechanical oscillator has become an
important research field, which becomes the precondition of
realizing entanglement and precise measurement in the cavity
optomechanical system. From Figure 3, for ωc � 3pω0, 3.5pω0,
and 4pω0 , the entanglement between the two oscillators vanishes
when the temperature of the system is T> 1.95 K, 2.55 K, and
3.10 K, respectively.

In Figure 4, we plot the three curves that can show that
logarithmic negativity EN changes with the normalization

detuning Δ/ωm for different masses of oscillators (where we
assume that the two oscillators have the same mass). Here, the
mass of oscillators is equal to m � 5p10−9 kg, 10p10−9 kg, and
15p10−9 kg, respectively, ωc � 4pω0, and the values of other
parameters are the same as those in Figure 2. These curves
tell us that the masses of oscillators can affect the entanglement
between two oscillators. For more massive oscillators, the
maximum value of logarithmic negativity EN approaches 0.52.
For the light oscillators, the maximum value of logarithmic
negativity EN can reach 0.68, which means the entanglement
can be easily realized for the light oscillators. Figure 4 also shows
the entanglement only appears in a certain range of the
normalization detuning. The maximum values of the three
curves show that the maximally entangled case requires the
value of the normalization detuning to be close to 1; that is,
for the given cavity frequency and oscillators with a given mass,
the realization of entanglement has high requirements for the
control of the frequency of the incident field. The changes of
entanglement with the temperature of the system are shown in
Figure 5 for different masses of oscillators (concrete values of the
parameters are indicated in Figure 5). For the light oscillators, we
can obtain the entanglement in a wider range of temperature. For
the mass of oscillators, m � 5p10 ^(−9) kg, 10p10 ^(−9) kg, and
15p10 ^(−9) kg, and the entanglement between the two
oscillators vanishes when the temperature of the system is T>
3.10 K, 1.80 K, and 1.25 K, respectively.

Finally, we investigate the entanglement between the oscillator
and cavity mode. By calculating the correlation matrix, we can
obtain the logarithmic negativity EN about the cavity mode and
one of the oscillators. For comparing with the results published,
we first consider the entanglement between the cavity mode and
the oscillator that has a linear coupling with the cavity mode. The
plot of logarithmic negativity EN changing with the normalized
detuning for two different masses of the oscillator 5 and 50 ng is
shown in Figure 6, where the values of other physical parameters

FIGURE 4 | Logarithmic negativity EN as a function of the normalization
detuning Δ/ωm for different masses of oscillators. The solid line refers to
m � 5p10−9 kg, the mass corresponding to the dash line is m � 10p10−9 kg,
and for the dotted line, m � 15p10−9 kg. The temperature is T = 0.4 K.

FIGURE 5 | Logarithmic negativity EN as a function of the temperature
for different masses of oscillators. The solid line refers to m � 5p10−9 kg, the
mass corresponding to the dash line is m � 10p10−9 kg, and for the dotted
line m � 15p10−9 kg. The normalization detuning is Δ/ωm = 1.

FIGURE 6 | Logarithmic negativity EN as a function of the normalization
detuning Δ/ωm for different masses of oscillators. The solid line refers to
m � 5ng, and the dash line stands for m with 50 ng. The temperature of the
system is T = 0.4 K.
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are the same as those in Ref. [21]. These curves show that the
entanglement between the cavity mode and the oscillator can be
realized, and the entanglement is most easily obtained when the
value of the normalized detuning is close to 1. It was also found
that the oscillator with light mass can produce entanglement with
the cavity mode in a wider frequency range. Based on the same
physical parameters, our research results are similar to those in
Vitali’s works [21]. We also investigated the dependence of
entanglement between the cavity and single oscillator on the
temperature of the system in Figure 7. For the light mechanical
oscillator, we can achieve the entanglement between oscillator 1
and the cavity mode in a wider range of temperatures: for m =
5 ng, the temperature ranges from 0 to 23 Kelvin, while the

temperature ranges from 0 to 2.3 Kelvin for m = 5 ng. Beyond
these ranges, the entanglement vanishes. The optomechanical
entanglement of cavity optomechanics with linear coupling has
been reported in Vitali’s works [21]. From Figures 6, 7, we
restudied the previous work about entanglement between two
different modes. At the end of our study, we want to investigate
the entanglement between oscillator 2 and the cavity mode.
Logarithmic negativity EN changing with the temperature of
oscillator is shown in Figure 8, where the mass of oscillator is
10 ng and the normalized detuning is equal to 1. The dash line
and solid line correspond to ωc � 0.5pω0 and ωc � 1pω0,
respectively. From Figure 8, we know that appropriate
parameters can make the entanglement be produced between
the cavity mode and oscillator 2. On comparing with Figure 3, in
the ideal condition (temperature T = 0 K), logarithmic negativity
EN can reach 1, which is greater than the value in Figure 3, where
its value is 0.8. Figure 9 shows the plot of logarithmic negativity
EN as a function of temperature of the system for the different
masses of oscillators, where ωc � ω0, the mass of oscillator with
10 ng is for the solid line, and m = 100 ng is for the dash line. In
comparison with Figures 5, 7, logarithmic negativity EN in
Figure 9 has a larger value in an ideal condition. Based on
Figures 8, 9, we found that we can realize the entanglement
between the cavity mode and oscillator 2 in a wider temperature
range. For oscillator 2, it has a quadratic coupling with the cavity
field. This kind of nonlinear effect is helpful in realizing the
entanglement between the cavity mode and oscillator 2.

4 CONCLUSION

In summary, we have proposed to investigate the properties of
quantum entanglement of the optomechanical system including
two mechanical oscillators, where the two mechanical oscillators
are coupled with the cavity field in different coupling modes: the

FIGURE 7 | Logarithmic negativity EN as a function of temperature of the
system for different masses of oscillators. The solid line refers tom � 5 ng, the
mass corresponding to the dash line is m � 50 ng, and the normalization
detuning Δ

ωm
� 1.

FIGURE 8 | Logarithmic negativity EN as a function of temperature of the
system for the different frequency of cavity field. The mass of oscillator is
10 ng, the normalized detuning is equal to 1. The dash line and solid line
correspond to ωc � 0.5pω0 and ωc � 1pω0, respectively.

FIGURE 9 | Logarithmic negativity EN as a function of temperature of the
system for different masses of oscillator. When ωc � ω0, the mass of oscillator
with 10 ng is for the solid line, and m = 100 ng is for the dash line.
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interaction between mechanical oscillator 1 and the cavity field is
first-order coupling, and mechanical oscillator 2 and the cavity
field has a quadratic coupling. We mainly studied the
entanglement between two mechanical oscillators with
different coupling modes. The influences of the frequency of
the cavity field and the mass of mechanical oscillators on the
entanglement between two mechanical oscillators are
investigated. We analyze in detail the characteristics of
logarithmic negativity EN changing with the normalization
detuning or temperature under the condition with given
values of physical parameters. Our results show that the
realization of entanglement requires the value of the
normalization detuning close to 1; that is, we need to
accurately control the frequency of the driving field. We also
found that the realization of entanglement also has strict
requirements on temperature. Beyond a certain temperature
range, entanglement will disappear. On the other hand, for
given parameters of the system, we also obtained the
entanglement between the cavity field and the mechanical
oscillator that has a quadratic coupling. The nonlinear effect is
helpful for producing entanglement. We know that the amount of
entanglement quantified by the logarithmic negativity is strongly
dependent on the temperature of the oscillators. For the
experiment, the choice of physical parameters is very
important. The choice of our physical parameters is based on
Ref. [21], where a concrete and a feasible experimental scheme is
proposed. In addition, some cavity optomechanical experiments
have been realized, and our choice of parameters is close to those
of recently performed experiments [28, 29]. So we think our
scheme has feasibility based on the current experiment about

cavity optomechanics. Compared with the entanglement between
microscopic particles, the stable macroscopic quantum
entanglement between two mechanical oscillators has the
characteristics of long existence life and can be reused, and it
also plays an important role in quantum information processing
and quantum network construction.
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