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We present a data-driven or non-intrusive reduced-order model (NIROM) which is capable
of making predictions for a significantly larger domain than the one used to generate the
snapshots or training data. This development relies on the combination of a novel way of
sampling the training data (which frees the NIROM from its dependency on the original
problem domain) and a domain decomposition approach (which partitions unseen
geometries in a manner consistent with the sub-sampling approach). The method
extends current capabilities of reduced-order models to generalise, i.e., to make
predictions for unseen scenarios. The method is applied to a 2D test case which
simulates the chaotic time-dependent flow of air past buildings at a moderate
Reynolds number using a computational fluid dynamics (CFD) code. The procedure for
3D problems is similar, however, a 2D test case is considered sufficient here, as a proof-of-
concept. The reduced-order model consists of a sampling technique to obtain the
snapshots; a convolutional autoencoder for dimensionality reduction; an adversarial
network for prediction; all set within a domain decomposition framework. The
autoencoder is chosen for dimensionality reduction as it has been demonstrated in the
literature that these networks can compress information more efficiently than traditional
(linear) approaches based on singular value decomposition. In order to keep the
predictions realistic, properties of adversarial networks are exploited. To demonstrate
its ability to generalise, once trained, the method is applied to a larger domain which has a
different arrangement of buildings. Statistical properties of the flows from the reduced-
order model are compared with those from the CFD model in order to establish how
realistic the predictions are.
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1 INTRODUCTION

Computational fluid dynamics codes can solve many complex
problems thanks to advances in computing power and numerical
methods. However, in order to obtain high-fidelity or high-
resolution solutions, days or weeks of computational time may
be required. Reduced-order modelling [1] is a popular technique,
introduced to reduce the computational cost of producing high-
resolution solutions albeit at the expense of generating these
models in the first place, which can be substantial. Projection-
based reduced-order models [2] have been widely used in
computational science and consist of a dimensionality
reduction stage (which identifies a suitable low-dimensional
subspace) and a projection stage [in which the discretised
high-fidelity model (HFM) is projected onto the low-
dimensional subspace]. The reduced-order model (ROM) is
then used to make predictions at a fraction of the cost of the
HFM. Also known by the broader term of data-driven ROMs,
non-intrusive reduced-order models (NIROMs) were then
proposed, which replace the projection of the discretised HFM
by interpolating between snapshots. Although classical
interpolation methods can be used, machine learning (ML)
techniques have become a popular choice for this task over
the last 10 years. As well as being important for the learning
the evolution of the solution, ML methods have also had an
impact on dimensionality reduction, with many journal papers in
the last 5 years reporting the use of autoencoders to identify the
low-dimensional subspace for the ROM, see Heaney et al. [3].
One issue for neural networks is their ability to generalise, that is,
to perform well for unseen data, and this is therefore also an issue
for ML-based NIROMs [4]. For example, considering flow past
buildings (the test case used here), if the shape, location or
orientation of the buildings varies, and several configurations
had been used to generate time-dependent snapshots, current
methods used naïvely would struggle to interpolate successfully
between different configurations of buildings in order to model
unseen layouts. In this paper we supplement a NIROM method
with a sub-sampling technique and a domain decomposition

framework, both of which increase the ability of the ROM to
generalise and solve problems based on unseen scenarios. We
demonstrate that the method can make predictions for different
configurations of buildings as well as for different-sized domains.

1.1 Related Work
The sub-sampling approach employed here was partially
explored in Heaney et al. [3], in which, for dimensionality
reduction, grids were randomly located within a pipe and
solution fields were interpolated onto these grids, thereby
generating data to train autoencoders. When generating data
for the network to be used for prediction or inference, no
randomly located subdomains were created and the solution
fields were interpolated onto a small number of regularly-
spaced subdomains. Being multiphase flow in a long, thin
pipe, the solutions were dominated by advection in one
direction, so a simpler approach could be used for that
application. The method described here is general and can be
applied to 2D and 3D flows, or indeed, 2D and 3D problems in
computational physics in general.

For identifying a low-dimensional space in which to represent
the snapshots, methods based on singular value decomposition
(SVD) have been widely used. Proper Orthogonal Decomposition
(POD) is one such SVD-based method and has been applied
successfully to many fields such as reactor physics [5], urban
flows [6] and fluid-structure interaction [7]. However, since 2018
there has been an explosion of interest in using autoencoders for
dimensionality reduction, see references 26, 28–44, 48–52 in [3]
and others in [8]. Due to the nonlinear activation functions, these
networks find a nonlinear map between the high- and low-
dimensional spaces, whereas with SVD-based methods, the
mapping is linear. As a result, in some cases, autoencoders can
find a more compact or a more accurate description of the
reduced space. We choose a convolutional autoencoder as
these networks have performed well in a number of studies for
advection-dominated flows [9,10].

For learning the evolution of the snapshots in the low-
dimensional space, classical methods were used initially

FIGURE 1 | Left: the star-shaped grid; centre: random placement of central subdomain of the grid (for obtaining data to train CAEs); right: random placement of the
star-shaped grid (for obtaining data to train the predictive adversarial network).

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9103812

Heaney et al. Generalisation Capabilities of Reduced-Order Models

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


[11–13] which have been largely supplanted by neural networks,
for example, Multi-layer Perceptron (MLP) [14], Long-Short
Term Memory (LSTM) networks [15,16] and Gaussian
Process Regression [17]. However, these networks can suffer
from inaccuracies when predicting in time which can lead to
the model diverging if the range of values of the reduced variables
exceeds that seen during training [18–22]. To address this, we use
an adversarial network. As the name suggests, adversarial
networks use an adversarial training strategy which originates
from generative adversarial networks (GANs) [23]. This type of
neural network attempts to learn a distribution to which the
training data belongs. Related networks are the adversarial
autoencoder (AAE) [24] and Variational Autoencoders
(VAEs). All three types of network set out to obtain better
generalisation than other networks by attempting to obtain a
smooth latent space with no gaps. Results in Makhzani et al. [24]
show that the AAE performs better than the VAE on the MNIST
digits. Imposing a prior distribution upon the variables of the
latent space ensures that any set of latent variables, when passed
through the decoder, should have a realistic output [24].
Currently, there exists only a small number of papers that use
GANs, AAEs, VAEs, or combinations of these networks, for
producing surrogate predictions of CFD modelling. Cheng et al.
[25] combine a VAE and GAN to model the collapse of a water
dam and Silva et al. [26] use a GAN to predict the spread of a virus
within a small, idealised town originally modelled by an
epidemiological model. Following Heaney et al. [3], we modify
an adversarial autoencoder to make predictions in time. An
alternative approach can be found in the work of Sanchez-
Gonzalez et al. [27], who use graph-based networks and
message passing to learn the system dynamics. Their networks
can generalise well, being able to make predictions for different
configurations (of ramps or barriers), although within the same
domain.

Reduced-order modelling has long been combined with domain
decomposition techniques. For example, for projection-based ROMs,
Baiges et al. [28] restricts every PODbasis function to one subdomain

of the partitioned domain. A similar method was used for non-
intrusive ROMs [29], and was later adapted to partition the domain
by reducing, as much as possible, the variation of the Reynolds
stresses at the boundary between subdomains [30]. In this paper, the
domain decomposition is associated with the prediction or online
stage, when the domain of interest is decomposed into subdomains
(that are the same size as those used in the sub-sampling procedure).
The sub-sampling and domain decomposition approachwe use bears
some resemblance to the method reported in Yang andGrooms [31],
which decomposes a domain into patches in order to facilitate the
training of a neural network. However, our motivation for using
domain decomposition is to make predictions for unseen scenarios
and for domains that are significantly larger than (or in some way
different from) those used in the training process.

Other approaches have been taken to build ROMs, such as
dynamic mode decomposition (DMD) [32] and sparse
identification of nonlinear dynamics (SINDy) [33]. DMD
identifies both spatial and temporal modes and is often used as a
diagnosis tool [34], however, examples do exist of DMD having been
used to make predictions [35–37]. As with other SVD-based

FIGURE 2 | The predictive adversarial network. The generator is represented by G; the blue line represents the adversarial layer (and is the output of G); the network
H maps the values in the adversarial layer to the output; the input to the discriminator D is either a (genuine) sample from the prior distribution (here N (μ, σ)) or a (fake)
sample from the output of the generator.

FIGURE 3 | Left: reduced variables associated with the five subdomains
(N, E,W, S, and C) of the star-shaped grid at future (k) and current (k − 1) time
levels, which, along with the reduced variables of the buildings (βg,C), form the
input to the neural network; right: the reduced variables of the central grid
at the future time level which form the output of the neural network.
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methods, DMD can struggle to capture symmetries and invariants in
the flow fields [4], which is one reason why we opt for a combination
of autoencoder (for dimensionality reduction) and adversarial
network (for prediction). SINDy aims to find a sparse
representation of a dynamical system relying on the assumption
that, for many physical systems, only a small number of terms
dominate the dynamical behaviour and has been applied to a
number of fluid dynamics problems, including flow past a
cylinder [8,38]. It can be difficult to compress accurately to a
small number of variables, and SINDy was not used here, because
we did not want to be restricted to using a small number of reduced
variables.

Although much investigation has been carried out into
parametrised NIROMs, challenges do remain. Hasegawa et al.
[39] create a ROM consisting of an autoencoder and a LSTM
which can predict the flow past a bluff body. The profile of the
bluff body is controlled by 8 coefficients and a truncated
trigonometric basis. Hesthaven and Ubbiali [14] address both
geometrical and physical parametrisations with a NIROM based
on POD and MLP. They solve a lid-driven cavity problem for a
parallelogram-shaped domain which is defined by three parameters:
two edge lengths (both in the range [1,2]) and one angle [in the range
(30°, 150°)]. In both cases, the ROMs were able to predict well for
unseen scenarios. However, we wish to extend significantly the range
of unseen scenarios for which ROM is capable of making predictions.
For instance, our test case of flow past buildings consists of about
150 differently-sized buildings. To apply methods similar to those
developed by Hasegawa et al. [39] or Hesthaven and Ubbiali [14]
would be impractical in this case, due to the number of buildings.
Furthermore, not only do we wish to be able to solve for unseen
building configurations involving many buildings, we also want to be
able to solve for larger domains than used when generating the
training data.

In this paper we combine a sub-sampling technique with a
domain decomposition method in order to make predictions for
unseen scenrios. The sub-sampling technique essentially frees the
ROM from its dependency on the domain of the original problem
and enables it to make predictions for arbitrary domains. This
method focuses on capturing high-resolution detail around many
different buildings, rather than capturing the flow around one
particular configuration of buildings. The domain decomposition
method is used to partition an unseen domain into subdomains that
relate to the snapshots obtained in the sub-sampling process. A
convolutional autoencoder is used to compress the data and a
predictive adversarial network is trained to predict the reduced
variables representing the air flow around a group of buildings in
a subdomain. In the unseen domain, the subdomains are regularly
arranged, and predictions for the solutions in each subdoamin are
generated. An iteration-by-subdomain approach [40] is used to
achieve convergence of the global solution. The contribution of
this work is twofold: a method is proposed that constructs a
ROM using one configuration (of buildings) which is able to
predict for an unseen configuration; and the unseen configuration
can be associated with a larger domain than that of the original
configuration. This article presents results for flow past buildings, and
makes predictions on a domain that has over twice the area of the
original configuration and a different arrangement of buildings.

In the remainder of this article, Section 2 outlines the
methodology, Section 3 presents the results, and Section 4
draws conclusions and outlines future work.

2 METHODOLOGY

The generation of NIROMs or data-driven reduced-order
models typically consists of three stages: (1) solving the

FIGURE 4 | Greyscale regions indicate the area where we seek a solution. The coloured regions show the magnitude of the velocity of the imposed boundary
conditions. Left: Using the latest solutions of the four neighbouring subdomains (indicated in orange), and the previous solution in the central subdomain (shown in green)
and the buildings fields in the central subdomain, a prediction is made for the central subdomain. Right: move to the next set of five subdomains and predict for the next
central subdomain.
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HFM to produce the snapshots; (2) applying dimensionality
reduction to the snapshots to obtain a low-dimensional space
(Subsection 2.2); and (3) learning how the system evolves in
low-dimensional space (Subsection 2.3). The method
outlined in this paper has these stages, however, also makes
use of a sub-sampling technique (Subsection 2.1) and domain
decomposition in order to enable the reduced-order model to
make predictions for unseen scenarios (Subsection 2.4). This
frees the NIROM from its dependency on the original problem
domain and paves the way for the model to make predictions

for unseen scenarios including different building geometries
and locations, and different sizes of domain. We use a
convolutional autoencoder (CAE) for dimensionality
reduction and a predictive adversarial network for
prediction or inference as it is known in machine learning
terminology.

Throughout this section we refer to the test case used here, air
flow around buildings modelled in two dimensions (2D) using
adapted, unstructured meshes [41]. There are two solution fields
of importance for the reduced-order model: the velocity field and

FIGURE 5 | Plots to demonstrate the quality of the autoencoders. The (unseen) solutions associated with one subdomain are compressed and reconstructed. Left
column: results from the HFM; central column: reconstruction from the CAE; right column: pointwise difference. Top row: x − component of velocity; middle row: y −
component of velocity; bottom row: buildings field.
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a field which indicates where there is a building, referred to as the
‘buildings field’.

2.1 Sub-sampling to Obtain Snapshots
To obtain the snapshots used for training the neural networks,
a star-shaped structured grid (see Figure 1A), is randomly
located and orientated within the domain (see Figure 1C),
although some care is taken so that the grid is not too near the
boundary of the domain. Each grid consists of five
subdomains, four of which are neighbours of a central
subdomain. For the CAE, the velocity and buildings fields
are interpolated onto the grid at one randomly selected time
level, although only data from the central subdomain is used
(see Figure 1B). This is repeated for a total number of Ng

grids, resulting in Ng snapshots. Both sets of snapshots are
separated into training, validation and test datasets. For the
predictive network that we refer to as PAN (Predictive
Adversarial Network), the velocity field is interpolated onto

the grid at two successive randomly selected time levels. The
buildings field is also interpolated onto the grid at one of
these time levels (the buildings field is constant through
time). This is repeated for a total number of Ng grids. So,
instead of using the entire solution fields as snapshots, only
the part of the solution field that has been interpolated onto
the grid is used as a snapshot. To capture the behaviour of the
flows, many grids are used to generate many snapshots from
which the neural networks can learn about the flow

TABLE 2 | Left: architecture of the CAE for the velocity field. (The architecture of
the CAE for the buildings field is similar, but with an input of (50,50,1) and a
central dense layer of 30 neurons.) Right: architecture of the PAN.

CAE PAN

Input (50,50,2) input 280
Conv (50,50,32) Dense 256
MaxPool (25,25,32) Dropout 256
Conv (25,25,16) BatchNorm 256
MaxPool (13,13,16) Reshape (2,2,64)
Conv (13,13,8) Conv (Adversarial) (2,2,16)
MaxPool (7,7,8) UpSample (4,4,16)
flatten 392 Conv (4,4,32)
Dense 50 UpSample (8,8,32)
Dense 392 Conv (8,8,64)
reshape (7,7,8) UpSample (16,16,64)
Conv (7,7,8) BatchNorm (16,16,64)
UpSample (14,14,8) Conv (16,16,128)
Crop (13,13,8) UpSample (32,32,128)
Conv (13,13,16) BatchNorm (32,32,128)
Upsample (26,26,16) Flatten 131072
Crop (25,25,16) Dense 50
Conv (25,25,32) Discriminator
UpSample (50,50,32) Dense 64
Conv (50,50,2) Dense 100

Dense 500
Dense 1

TABLE 1 | Hyperparameter values used in the neural networks. Associated with
the optimiser, β1 and β2 are the exponential decay rate for the first moment
estimates and the exponential decay rate for the exponentially weighted infinity
norm respectively.

Velocity CAE Buildings CAE PAN

number of epochs 9,000 5,000 5,000
Optimiser Adam Adam Adam
learning rate 5 × 10−4 5 × 10−4 5 × 10−4

β1 0.9 0.9 0.98
β2 0.999 0.999 0.999
activation functions
main network elu elu elu
final layer sigmoid sigmoid sigmoid
Discriminator n/a n/a relu
batch size 32 32 128
latent variables 50 30 n/a

FIGURE 6 | The velocity magnitude at the 350th time level from the HFM (left) and the predictive adversarial network (right).
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characteristics without being tied to a particular
arrangement of buildings. This use of sub-sampling allows
the neural networks to learn about fine-scale features such as
eddies in the vicinity of buildings independently, to some
extent, of the entire domain.

2.2 Dimensionality Reduction
Having been shown to compress data well for advection-
dominated flows, we choose the convolutional autoencoder to
reduce the dimension of the problem and find the low-
dimensional subspace in which the HFM will be approximated.
The CAE has been widely applied to reduced-order models in
recent years andmore details about this type of network along with
schematic diagrams can be found in Gonzalez and Balajewicz [42],
Xu and Duraisamy [43], Wu et al. [44], Nikolopoulos et al. [45]. In
a nutshell, the CAE is a type of feed-forward neural network with
convolutional layers that attempts to learn the identity map [46].
When used for compression, the CAE has a central ‘bottleneck’
layer which has fewer neurons than the input and output layers.
The values of the neurons in this central layer are known as latent
variables or reduced variables. The outer layers of the network
consist of convolutional layers (which detect patterns or features in
the flow fields) and pooling layers (which reduce the dimensions of
the data), and at the centre of the network are fully connected
layers. The autoencoder can be split into an encoder, which maps
the input to the latent variables (compressing the data) and a
decoder which maps the latent variables to the output
(reconstructing the data). If fenc

u and fdec
u represent the encoder

and decoder of the velocity field respectively, then the output of the
autoencoder can be written as follows

urecon
g,C � fdec

u fenc
u ug,C( )( ), (1)

where ug,C represents the velocity field that has been interpolated
onto the central subdomain of structured grid g and is the input to
the autoencoder, and urecong,C represents the reconstruction and is
the output of the autoencoder. Once trained, the reduced
variables associated with a particular subdomain can be
written as

αk
g,s � fenc

u uk
g,s( ) where s ∈ N,E,W, S, C{ }. (2)

FIGURE 7 | The velocity magnitude at the 400th time level from the HFM (left) and the predictive adversarial network (right).

FIGURE 8 | Here we plot all the nodes within the 6 by 6 domain. The
nodes within the building appear as blue and those outside of the building as
red. We also show four points within the domain, in black, where we plot the
histograms, or probability density functions, of the x − and y −

components of velocity.
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FIGURE 9 | Here we show histograms for the 6 by 6 test case at points 1, 2, 3 and 4 (see Table 3) in rows from top to bottom respectively. The first column of
graphs show the x − component of velocity and the second the y − component. We compare in these graphs the histograms (or probability density functions) of the
velocity components of the HFM in blue, and NIROM in orange.
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A second CAE was trained to compress the buildings field, using
data fromNg snapshots. The reduced variables associated with the
buildings field can be written as

βg,s � fenc
b bg,s( ) where s ∈ N,E,W, S, C{ }. (3)

where bg,C is the buildings field of subdomain s of grid g.
Figure 1B shows three such subdomains, randomly located
and orientated within the domain, and superposed on the
velocity field of the test case at a particular time. Although we
could have used data from all the subdomains to train the
autoencoders, we found this not to be necessary and only used
data from the central subdomains. We do, however, obtain the
reduced variables for any subdomain (N, E, W, S or C) with the
trained encoder.

2.3 Prediction in Time
In this work, we follow [3] by modifying the adversarial
autoencoder so that it can predict in time, and refer to it as
a “Predictive Adversarial Network” (PAN). The adversarial
autoencoder [24] uses an adversarial strategy to force the
autoencoder’s latent space to follow a prior distribution
(Pprior) whilst the output aims to replicate the input as
closely as possible. Thus, in addition to the encoder-decoder
networks of a standard autoencoder, the adversarial
autoencoder has a discriminator (the adversarial network)
which is connected to the central layer of the encoder-
decoder. The discriminator is trained to distinguish between
samples from the prior distribution (true samples) and
samples from latent space (fake samples). The modifications
made to the adversarial autoencoder include: the inputs and
outputs no longer have the same dimension (as is required for
autoencoders that learn the identity map); the width of the
layers does not fall below the width of the output layer
(preventing additional compression to that already
performed in the dimensionality reduction stage); and the
loss function no longer minimises the difference between its
input and output, rather the output and the desired output. A
schematic diagram of the PAN can be seen in Figure 2, where
G represents the generator, H maps from the adversarial layer
(in blue) to the output of the network, and connected to the
adversarial layer is the discriminator D. The prior distribution
chosen here is the normal distribution (or Gaussian
distribution) with a mean of zero and a variance of one.
This choice of distribution for the latent variables (z) does
not affect the distribution that the output of the network can
have. The loss function for the predictive adversarial network
is given by

min
G,H

E ‖αk
g,C − ~αk

g,C‖2( )+
min
G

max
D

Ez~Pprior logD z( )[ ] + Eα~Pdata
log 1 −D G α( )( )( )[ ]( ), (4)

where ~αkg,C are the reduced variables predicted by the network
(H◦G) for the central subdomain of grid g at time level k, z ~
Pprior is a sample from the desired distribution and α ~ Pdata is a
sample of the reduced variables that have passed through the

generator. The first term represents the error in the prediction of
the reduced variables, and the second and third terms are the
regularisation terms arising from the adversarial training which
attempt to bring the posterior distribution of a hidden layer close
to the prior distribution. During training, there are therefore
three separate steps per mini-batch. First, the weights of G andH
are updated as a result of minimising the error in the output of
network; second, the weights of the discriminator network are
updated so it can better tell apart the genuine samples from the
generated samples; finally, weights of the generator are updated
so it can better deceive the discriminator network.

For the prediction network, data from all five subdomains
is used for training and inference, as shown in Figure 3. The
star-shaped grid is used, as, when predicting in time, it is
beneficial to have information from neighbouring regions.
The input to the network consists of the reduced variables
associated with the four neighbouring subdomains at the
future time level (tk) (see Figure 3(left)); the reduced
variables associated with the central grid at the current
time (tk−1) (see Figure 3(left)); and the reduced variables
associated with the central subdomain that describe the
buildings. The output of the network is the reduced
variables associated with the central subdomain at the
future time level (see Figure 3(right)). If the predictive
adversarial network is represented by f, this can be written as

αk
g,C � f αk

g,N, α
k
g,E, α

k
g,W, α

k
g,S, α

k−1
g,C , βg,C( ). (5)

2.4 Prediction for Unseen Scenarios
In order to increase the generalisation properties of the
reduced-order model, in addition to using a sub-sampling
technique to obtain the snapshots (as described in Section 2.1,
we pose each new scenario within a domain decomposition
framework.

2.4.1 Combining Subdomains to Model an Unseen
Scenario
Having trained neural networks to be able to predict flows
within a subdomain given the flows in neighbouring
subdomains and the layout of the buildings, a new (and
therefore unseen) domain can be constructed from a non-
overlapping union of these subdomains. Initial conditions for
both the velocity and buildings fields are required, which are

TABLE 3 | The coordinates of the points at which the probability distributions are
generated for both the 6 by 6 case and the 9 by 9 case.

Point x-coordinate y-coordinate

6 by 6 test case 1 1.2 1.7
2 1.175 1.55
3 3.4 2.4
4 3.85 2.45

9 by 9 test case 1 2.45 5.45
2 2.6 2.6
3 5.4 5.4
4 6.15 3.15
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then encoded by the convolutional autoencoders. This
provides a starting point from which to evolve the reduced
variables in time. At a given time level, a prediction is made
for the subdomains one-by-one (see Figure 4), with the
variables being updated as and when the solutions are
available in the manner of Gauss-Seidel iteration. An
iteration-by-subdomain approach is used until convergence
of the global solution is reached at that time level, and the

process continues to find the solution at the next time level. In
this manner, the solution of the NIROM is marched forward
in time from an initial condition. Figure 4 is a schematic
diagram that shows how domain decomposition can be used
to form an array of subdomains, and how the PAN is used with
iteration-by-subdomain to solve for the global solution. This
approach for prediction of flows for an unseen arrangement of
buildings is summarised in Algorithm 1.

FIGURE 10 | Velocity magnitude across the 9 by 9 domain at time level 250. Top left: HFM, and top right: prediction by the ROM. Bottom left and right: velocity
vectors over a 3 by 3 region [1,4]×[4,7] of the 9 by 9 domain, for HFM and NIROM respectively.
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Algorithm 1. An algorithm for finding the solution for the
reduced variables in a subdomain and sweeping over all the
subdomains to obtain a converged solution over the whole
domain. The algorithm marches forward in time from the
initial condition to time level Ntime.

3 RESULTS

The methods described previously are now tested on flow past
buildings modelled in 2D. Assuming an incompressible viscous
fluid, the conservation of mass and the Navier-Stokes equations
can be written as

∇ · v � 0, (6)
ρ

zv
zt

+ v · ∇v( ) � −∇p + ∇ · μ ∇v + ∇Tv( )( ) − σv, (7)

where t represents time, v represents velocity, p represents
pressure, μ is the dynamic viscosity, ρ is the density and σ is
an absorption term that is zero outside the buildings and 106

inside the buildings. The boundary conditions that we use in
conjunction with Equations 6 and 7 are defined as follows. At the
inlet we specify the normal velocity component which we set to
unity. The tangential components at the inlet boundary on the left
of the domains (see, for example, Figure 6) are set to zero. We
also set a zero normal velocity boundary condition to the top and
bottom boundaries of this domain along with a zero shear stress
condition. At the outlet we set the normal and shear stress
components to zero which effectively sets the pressure to near
zero at the outlet. Equations 6 and 7 together with the boundary
conditions are discretised using a finite element representation
for velocity and a control volume representation of pressure [47]
combined in a P1DG-P1CV element [48,49]. An unstructured
mesh is used which adapts through time, and an adaptive time
step is also used. For more details of how the governing equations
are discretised and solved, see Obeysekara et al. [48].

For ease of setting up this test case, we represent the areas
occupied by buildings as a sink in the velocity field (through
an absorption coefficient which acts on the velocity field,

which can be seen in the term involving σv in Eq. 7). By using
adaptive meshes (adapting to σ and the velocity field), we
obtain a sharp boundary between the buildings and the
outside air flow, although this would be sharper if the
building had been modelled explicitly. In any case, we
believe that the CFD results are a good enough
representation of flow past buildings to be used in this
proof-of-concept paper.

The numerical solutions were found for two domains, one
measuring 6 by 6 and the other measuring 9 by 9. These domains
were populated with randomly located and orientated buildings.
The lengths of both edges of each building were chosen randomly
from the interval [0.1, 0.4] and a minimum gap of 0.075 was
enforced between the buildings. A gap between the domain
boundaries and the buildings was maintained. In practice the
number of buildings for the 6 by 6 and 9 by 9 case is about 150 and
340 respectively.

A Reynolds number of 300 was used in both the simulations,
and was based on the unity inlet velocity and minimum building
edge length. The actual time step size was controlled by the
Courant number, chosen to be 0.5, and the solutions were saved
every 0.008 time units, giving the NIROM a time step size of
0.008. For a regular array of 17 square cylinders, Shams-ul Islam
et al. [50] observed chaotic flows for Reynolds numbers greater
than 125. In our case, we believe that Re = 300 is more than
sufficient for the flow to be chaotic and therefore to present an
interesting modelling challenge.

FIGURE 11 | Here we plot all the nodes within the 9 by 9 domain. The
nodes within the building appear as blue and those outside of the building as
red. We also show four points within the domain, in black, where we plot the
histograms, or probability density functions, of the x − and y −

components of velocity.
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FIGURE 12 | Here we show histograms for the 9 by 9 test case at points 1, 2, 3 and 4 (see Table 3) in rows from top to bottom respectively. The first column of
graphs show the x − component of velocity and the second the y − component. We compare in these graphs the histograms (or probability density functions) of the
velocity components of the HFM (not seen in training), blue, and the prediction from NIROM in orange.
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3.1 Dimensionality Reduction
The solutions from the 6 by 6 test case were interpolated onto
central subdomains of size 0.5 by 0.5 for every time level. 95,000
snapshots were created in total for the velocity CAE (by selecting
95,000 randomly located and orientated grids, at a randomly
selected time levels): 76,000 snapshots were used for training data
and the remaining 19,000 snapshots were used as validation data.
For the buildings field, a similar procedure was used to generate
95,000 snapshots. However, as the buildings do not change in
time, there was no random sampling in time. After optimisation
of both networks simultaneously, the chosen hyperparameter
values are shown in Table 1 and the architectures can be found in
Table 2. Figure 5 shows the velocity and buildings fields from the
HFM (unseen example) and the reconstruction from the
autoencoders for one subdomain. The velocity components are
very well reconstructed and the buildings field is captured well.
The pointwise error of the latter is confined to an extremely small
region around the edge of the buildings.

3.2 Prediction for the 6 by 6 Test Case
The solutions from the 6 by 6 test case were interpolated onto the
star-shaped grids (see Figure 1), within which, each subdomain is
of size 0.5 by 0.5 (one 12th of the domain size and thus 144
subdomains fit into the 6 by 6 domain). To form an input-output
pair for training, two successive time levels were chosen at
random (from time levels 50 to 349) and the velocity fields
associated with both time levels were interpolated onto the
grid in order to have all the variables required by the PAN,
see Eq. 5. The buildings field was interpolated onto the central
subdomain of the grid. 75,000 snapshots were created in total for
the PAN: 50,000 input-output pairs were used for training data
and the remaining 25,000 input-output pairs were used as
validation data. Hyperparameter optimisation was performed,
revealing the optimal values for the PAN which are shown in
Table 1, and the architectures in Table 2.

Once trained, themethod is tested by predicting in time. An initial
condition is used, based on the HFM results at time level 50, and the
method described in Algorithm 1 and the accompanying text is used
to march forward from time level 50 up to time level 400. Figures 6
and 7 show the prediction of the adversarial network for two
particular time levels beyond the training dataset but for the same
buildings configuration as the training dataset. The ROM captures
the velocity magnitudes well. It has managed to capture the areas
where there are high velocities, in comparison to the HFM, although
its resolution is reduced. Impressively, it is also able to capture many
of the eddy structures that result from the interaction of the fluid with
the buildings. Again we assume the truth is the HFM simulation
when comparing the two images. This NIROM simulation would be
expected, eventually, to deviate from the HFM as it is a chaotic flow
and small velocity deviations will build up, potentially changing the
flow structures significantly.

In Figure 8 we plot all the nodes within the domain, with the
nodes inside buildings appearing as blue and those outside the
buildings as red. Thus we can see the position of the buildings
and the density of the mesh at this instance in time, which
corresponds to the results shown in Figure 6. We also show four
points within the domain, in black, where wewill plot the histograms,

or probability density functions, of the x − and y − components of
velocity, taken over time level 50 to time level 400. These histograms
are shown in Figure 9 and the coordinates of the points are given in
Table 3.We see a qualitative agreement in terms of the statistics of the
fluctuations and the range of velocities between the HFM and the
NIROM. The narrower the histograms, the smaller the magnitude of
the fluctuations in the velocity components. Thus, generally speaking
the NIROM tends to fluctuate less than theHFM, probably because it
has a little less resolution than the HFM. It also (again because of
reduced resolution) has less frequently occurring large values of the
velocity. However, given the complexity of the flows, the NIROM
does remarkably well, even though there are some histograms that do
not compare quite so well, such as the x − component of the velocity
at point 4.

3.3 Prediction for the Unseen 9 by 9 Test
Case
Now an unseen configuration of buildings is used and the domain is
increased from 6 by 6 to 9 by 9. The HFM is solved in order to have
boundary conditions for the ROM. In the future, alternative methods
to generate boundary conditions will be explored, including methods
based on using the training data from the HFM [3], but also methods
based on generative networks, which will ensure that the ROM is
independent of the HFM in this regard. The initial condition for the
NIROM is taken from time level 50 of the HFM. The domain is now
split into 324 subdomains (of size 0.5 by 0.5). The predictive
adversarial network is used to generate a solution for each
internal subdomain (i.e., each subdomain that does not share an
edge with the boundary). All internal subdomains are swept through
until the global solution converges. Time-marching is applied to solve
from the initial condition at time level 50 to time level 250, as outlined
in Algorithm 1. Within each time step, the number of iterations
needed for convergence is approximately 20, about 4 more than for
the previous 6 by 6 problem. Convergence is assumed when the
difference between latent variables associated with compressed
velocity (outputs of the PAN in each of the 324 subdomains) is
less than e− 4 given that themagnitude of the latent variables isO(1)
as z ~ N (0, 1). Predictions from the NIROM of the velocity
magnitude at time level 250 can be seen in Figure 10. The
regions of high speed (shown in red) are picked up by the ROM
and promising agreement is obtained between the HFM and ROM.
The two lower plots in Figure 10 show the velocity magnitude and
velocity vectors for the HFM (left) and the NIROM (right) over
[1,4]×[4,7]. The NIROM captures the flow path and some of the
larger eddies, but does miss some of the smaller ones. The magnitude
of the NIROM’s velocities is generally slightly less than those of the
HFM. The detail in the velocity vectors suggest chaotic flow. One
would not expect the CFD and the NIROM to produce exactly the
same results, because of the chaotic nature of these flows. Finally, in
Figure 11 we plot all the nodes within the 9 by 9 domain, with the
nodes inside buildings appearing as blue and those outside the
buildings as red. We also show four points within the domain, in
black, where we will plot the histograms, or probability density
functions, of the x − and y − components of velocity taken over
time level 50 to time level 250. These histograms are shown in
Figure 12 and the coordinates of the points are given in Table 3.
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Again, we see a qualitative agreement in terms of the statistics of the
fluctuations and the range of velocities between the HFM and the
NIROM. As for the 6 by 6 domain, generally speaking the NIROM
tends to fluctuate less than the HFM, probably because it has a little
less resolution than the HFM. However, given the complexity of the
flows and the fact that this is an unseen domain with an unseen
configuration of buildings, the NIROM does extremely well.

4 CONCLUSIONS AND FURTHER WORK

Here we have presented a data-driven or Machine Learning (ML)
based non-intrusive reduced-order model (NIROM) which is
capable of making predictions for a significantly larger domain
than the one used to generate the snapshots or training data. This
is a unique development and one which we hope paves the way to
develop ML-based NIROMs that can make good predictions for
unseen scenarios. Ultimately these methods could complement
Computational Fluid Dynamics (CFD) codes when solving flow
fields in urban environments as well as other CFD applications.
This development relies on the combination of a novel way of
sampling the training data [which can free the reduced-order
model from the restriction of the domain of the high-fidelity
model (HFM)] and a domain decomposition approach (which
decomposes unseen geometries in a manner consistent with the
sub-sampling approach).

The main conclusions are that: (1) one can predict (with the
NIROM) the chaotic transientflowswithin the 2Dproblems, although
sometimes the resolution is reduced in comparison to the CFD
simulations; (2) the adversarial layer of the prediction algorithm is
important in order to form stable solutions that remain within the
distribution of the training data; (3) a convolutional autoencoder is
able to compress the velocity and buildings fields to a high degree of
accuracy; and (4) the approach was applied to make predictions for a
domain of over twice the area and over twice the number of buildings
as in the HFM used to generate the training data.

Future work will involve: (1) extending the problem domains
to 3D and using more realistic building profiles; (2) generating
boundary conditions with a generative network rather than using
the CFD code, resulting in a method fully independent of the

high-fidelity model; (3) using the residuals of the differential
equations within the training procedure (Physics-Informed
methods, for example, see [51]) and forcing the equation
residuals to zero within the prediction step by using a method
similar to the Residual DEIM approach [52].
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