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Non-pharmaceutical interventions (NPIs) are essential for the effective

prevention and control of the COVID-19 pandemic. However, the scenarios

for disease transmission are complicated and varied, and it remains unclear how

real-world networks respond to the changes in NPIs. Here, we propose amulti-

layer network combining structurally fixed social contact networks with a time-

varyingmobility network, select the COVID-19 outbreak in twometropolitans in

China as case studies, and assess the effectiveness of NPIs. Human mobility,

both in relatively fixed places and in urban commuting, is considered. Enclosed

places are simulated by three different types of social contact networks, while

urban commuting is represented by a time-varying commute network. We

provide a composite framework that captures the heterogeneity and time

variation of the real world and enables us to simulate large populations with

low computational costs. We give out a thorough evaluation of the

effectiveness of NPIs (i.e., work from home, school closure, close-off

management, public transit limitation, quarantine, and mask use) under

certain vaccine coverage varying with implementation timing and intensity.

Our results highlight the strong correlation between the NPI pattern and the

epidemic mitigation effect and suggest important operational strategies for

epidemic control.
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Introduction

In the ongoing COVID-19 pandemic, more than

200 countries have reported 179,723,542 confirmed cases and

3,894,122 deaths by 25 June 2021 [1]. Most countries

implemented strict non-pharmaceutical interventions (NPIs)

for epidemic prevention and control. Mathematical modeling

has been widely used to study the impact of NPIs on the COVID-

19 pandemic [2–14] focusing on the impact of face mask use. The

study mentioned in references [7, 9, and 12] studied the influence

of the lockdown; the study mentioned in reference [10]

considered the effects of a range of different testing, isolation,

tracing, and physical distancing scenarios; the study mentioned

in reference [15] investigated the role of public health

interventions during the early COVID-19 epidemic in China;

the study mentioned in reference [16] studied the effects of

lockdown and medical resources; the study mentioned in

reference [11 and 17] estimated the impact of travel

restrictions, as well as travel duration; and the study

mentioned in reference [13] quantified the impact of physical

distance measures.

Compared to mean-field compartmental models, agent-

based epidemic models represent more detailed descriptions

of the epidemic spreading in the real world. Its ability to

model contact tracing allows for human mobility to be

studied in detail. Human mobility pattern is acknowledged as

one of the essential aspects of the epidemic spreading [17].

Relatively fixed places such as schools, workplaces, or

conferences and high mobility places such as subways, buses,

and airplanes are two essential types of locations for the

transmission of pathogens.

On one hand, human mobility in relatively fixed places

such as schools, workplaces, and communities has been

studied [18, 19]. To study these microscale policies being

used to respond to the COVID-19 pandemic, agent-based

influenza pandemic models have been commonly developed

to evaluate the impact of NPIs [ and 20 –22]. They studied

several lockdown policies in Singapore in the early spread of

COVID-19. Chang et al. [21] evaluated the impact of case

isolation, home quarantine, and social distancing with varying

levels of compliance, and school closures in Australia.

Kucharski et al. [10] simulated the effect of a range of

different testing, isolation, tracing, and physical distancing

scenarios in the United Kingdom. Isella et al. [22] studied

human mobility at a scientific conference and a museum

exhibition by a static interaction network.

On the other hand, human mobility in the urban

commuting demand between highly frequented locations is

also a key factor for pathogens transmissions. Based on

information from urban commuting, epidemiological

contact network models have been built as an alternative to

studying the impact of human mobility on epidemic spreading

[18, 23–25] and construct the time-varying vehicle social

encounter network with the help of public transport smart

card data. However, owing to the high computation cost of the

agent-based modeling method, the population size of the

agent-based model is limited. Also, some studies turn to

focus on one aspect of human mobility avoiding

computational limitations. A thorough study of the

epidemic spreading based on agent-based models, including

social contact networks, is worth studying.

Different from the mentioned studies, which focus on

repetitive social contact or urban commuting, we proposed

a multi-layer network that takes both of them into

consideration. Our work aims to model the real

epidemiological contact networks in detail with the mass

population. Our model considers different contact patterns

(i.e., repetitive social contacts and contacts through daily

transit), capturing the heterogeneity and time-varying

nature of human mobility. We use the agent-based model,

including three types of social contact networks for repetitive

social contact modeling and a time-varying network for

contact in urban commuting.

The development of the COVID-19 vaccine and how the

NPIs influence the epidemic spreading in high-risk countries

with the availability of COVID-19 vaccines is a major concern for

national governments in the near future. We use the epidemic

data from a second wave in two metropolises in China

(i.e., Beijing and Guangzhou) as cases. Based on our multi-

layer network, we study the impact of school closure, close-off

community management, work from home, public transit

restrictions, mask use, and quarantine. In other words, we

examine the NPIs on account of mobility patterns both for

the government and individuals. We derive a series of

suggestions for slowing down epidemic spread from our

simulation results. The main contributions of our study are as

follows:

a) Propose a multi-layer network, where human mobility in

relatively fixed places and in urban commuting are both

considered.

b) Raise a simulation-based solving framework, which enables to

simulate epidemic to spread in a large population with low

computational costs.

c) Heterogeneous implementation of NPIs between tracks or

even between families is studied and the outcome of such

analysis can give a more diverse and detailed evaluation

of NPIs.

The rest of the study is organized as follows. In section 2, we

introduce the methodology of establishing the multi-layer

contact networks and modeling the dynamic of epidemic

transmission. In section 3, we analyze the NPIs using real-

world cases and study the effectiveness of each NPI. In

section 4, discussion and conclusion are made and policy

suggestions are offered.
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Material and methods

Agent-based model

We consider a population of n individuals resembling the

actual population structure of Beijing and Guangzhou according

to basic sociodemographic indicators (e.g., age structure,

household size, employment rates, workgroup distribution,

school size distribution, and commuting data). Our agent-

based model is based on FluTE [26], which is a publicly

available stochastic influenza epidemic simulation model. The

population is partitioned into a set of geographical administrative

districts D = 1, . . . , k, and each district is divided into several

communities Cd = 1, . . . , l. Each community is separated by

households of different sizes and ndc is the number of individuals

in the cth community. The household is the closest social contact

unit and the distance between individuals is organized as a

hierarchy that the contact rate decreases with the increase of

the social contact unit (i.e., household, household cluster,

community, and district).

Different from the social networks built by FLuTE, workers’

daily commute is considered and more detailed NPIs are

designed in our proposed multi-layer network. Details of our

model are described as follows. Daily contact is defined in four

settings, where influenza transmission occurs, namely

communities, schools, workplaces, and public transportation.

As shown in Figure 1, each layer represents one of the

settings and contacts that happen in school, workplace, and

household layers are relatively independent and in step with

each other. The links between nodes represent the possible

channels of disease transmission. Unlike the other three

layers, the community layer [described in section (c)], which

simulates contacts that happen in public transportation, is

asynchronous with other layers. In other words, social

contacts for the same individual can happen both in the

community layer and other layers in a time step. In the

community layer, nodes in the macroscopic diagram represent

communities, while in the microscopic diagram, each node

represents a person. Here, the amount of nodes in each

household is determined by sampling from the actual

household size distribution. An age group is associated with

each node following the actual age distribution by household size.

Referring to the multinomial distribution of schooling and

employment rates by age, each node is determined whether it

also participates in the school or workplace layer. Analogously to

what has been described for the household layer, the workplace

layer is composed of nw disconnected components, each one

representing a workplace. The number of nodes in each

workplace is sampled from the actual workplace size

distribution. Individuals in each workplace are further

subdivided into several workgroups, which are regarded as the

smallest contact units in the workplace layer. The school layer is

composed of ns disconnected components, each one representing

a school. The number of nodes in each school is sampled from the

actual school size distribution by school level (e.g., pre-school,

primary school, middle school, and high school). In addition, the

individuals only interact in the community layer during the

night.

FIGURE 1
Model structure. Visualization of the multi-layer network separating the day and night social contact structure. Note that individuals (the nodes)
transit between layers relies on the commute layer, which is interspersed among other layers.
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Disease dynamics

As shown in Figure 2, we describe the influenza transmission

process as a discrete-time susceptible–undiagnosed–infectious–

ascertained–removed (SUIAR) model with time step t

(corresponding to half of a day). The population is divided

into five classes according to the individuals’ state of disease:

susceptible (S, those who may come in contact with an

infectious person and enter the undiagnosed state before

being infected), undiagnosed (U, the asymptomatic or mildly

symptomatic infectious without hospitalization or isolation

who are not diagnosed and have the probability of

transmitting disease to susceptible), infectious (I, those who

are infected and diagnosed), ascertained (A, a transient state

between infectious and recovered state), and recovered (R,

those who have died or recovered would be removed from

the epidemic propagation process). Compared with the typical

SEIR model, there are two differences that need to be explained.

Firstly, the exposed state, which denotes those who have been

infected but cannot transmit it has been replaced by the

undiagnosed state, which is more similar to the infectious

state. This can be explained by the fact that virus such as

COVID-19 is highly infectious during the incubation period, so

the individuals in the exposed state play little role in our model.

Besides, the individuals in the undiagnosed state play an

essential role in virus spreading and need to be traced and

tracked carefully. Secondly, an ascertained state is added to our

model. Those who are infected and diagnosed (state I) need to

be reexamined and once confirmed, they would be in the

ascertained state. It should be noted that although the

infectious are contagious, they have already been isolated,

that is, the virus transmission channel between infectious

and susceptible individuals has been cut down.

We define Si,t, Ui,t, Ii,t, Ai,t, Ri,t as the Bernoulli random

variable that individual I would be in one state at time t. Here, Si,t
+ Ui,t + Ii,t + Ai,t + Ri,t = 1,

P(Xi,t) � pX
i,t, X ∈ S, U, I, A, R,ΣXpX

i,t � 1. The SUIAR disease

dynamic is described as a discrete Markov process with time

dependent transition probabilities. Susceptible (S) individual i

may be exposed by the undiagnosed (U) individual j with

probability λ, which is given by:

λi,j,t � θtl,i,jpi.prspj.pri ∀i ∈ S, j ∈ U , (1)

where pri and prs are two personal attributes. To be specific, the

former means the probability for undiagnosed individuals to

infect others, while the latter means the probability to be infected

by undiagnosed individuals. Here, prs is given:

i.prs � 1 − i.BVEs( )p 1 − VEspEFF γi[ ]( ) , (2)

where BVEs represents the baseline vaccine efficiency for

susceptible individuals, VEs means the vaccine efficiency for

susceptibility, and EFF [γi] represents the vaccine efficiency

associated with the age groups. Besides, θl,i,j is the contact

weight in layer l between individual i and j, l ∈ L = {c, s, w},

where L is the set of layers, c, s, and w represent communities,

school, and workplace, respectively. The value of θl,i,j is also

related to the contact place, the individual’s age group, and the

NPIs implemented in time t. For instance, if the contact infection

happens in the community layer, θc,i,j can be expressed as follows:

θtc,i,j � ~αc,ti pMipCRpcpcm γi[ ]p~αn,ti pω
∀i ∈ S, j ∈ U

, (3)

where Mi ∈ [0, 1] is the protection rate of mask the individual

worn, the smaller the rate is the more effective the protection is.
~αc,ti and ~αn,ti are indicator variables, the former one indicates

whether the individual i contacts the infected individual in layer c

and the latter means whether the work from home or school

policy implemented on individual i. ~αc,ti and ~αn,ti are random

variables, where ~αc,ti � 1 if the contacts between i and other

individuals exist in layer c and ~αc,ti � 0 otherwise. And ~αn,ti � 1

if the relative policies work on individual i and ~αn,ti � 0.5

otherwise. CR represents the community contact reduction

rate, γi is the age group individual i belongs to and cpcm [γi]

represents the probabilities for i to contact infected individual in

the community. Here, the contact probabilities are associated

with age group. Note that when j infects i at time t in layer l, all

the information are stored for that will be useful for the

computation of the reproduction number and final epidemic

size. And ω = 2, represents a causal multiplier, which means an

increased risk of infection in layer c when i is out of school

(school closure) or working from home.

Similarly, if the contact infection happens in workplace layer,

θw,i,j can be expressed as follows:

θtw,i,j � ~αw,ti pMipcpw γi[ ] ∀i ∈ S, j ∈ U , (4)

where cpw [γi] represent the contact rate between individual i and

j in the workplace for the age group γi. If the contact infection

happens in school layer, θs,i,j can be expressed as follows:

θts,i,j � ~αs,ti pMipcps γi[ ] ∀i ∈ S, j ∈ U , (5)

where cps [γi] represent the contact rate between individual i and

j in school for the age group γi.

FIGURE 2
Schematic of the disease dynamic. Individuals may be in five
states: susceptible (S) to the disease, infected but undiagnosed (U),
Infectious (I) but yet not ascertained, ascertained (A), and
recovered or dead (R).
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The probability of S→ U for individual i can be expressed as

λi = 1 −∏j∈U (1 − λi,j,t), where Σj∈Uλi,j,t ≤ 1. μ is the probability of

U → I. T1 and T2 are the time delay for I → A and A → R,

respectively. Based on Eqs 1–5, the one-to-one transmission

probability can be calculated. To give an overall

understanding of the dynamics, the epidemic transmission

process is summarized as the following system equations:

pS
i,t+1 � pS

i,t − Σj∈Uλi,j,tP Si,t � 1, Uj,t � 1( ) , (6)
pU
i,t+1 � pU

i,t + Σj∈Uλi,j,tP Si,t � 1, Uj,t � 1( ) − pU
i,tμ , (7)

pI
i,t+1 � pI

i,t 1 − 1
T1

( ) + pU
i,tμ , (8)

pA
i,t+1 � pA

i,t 1 − 1
T2

( ) + pI
i,t

1
T1

, (9)

pR
i,t+1 � pR

i,t + pA
i,t

1
T2

. (10)

Calculating p(Si,t = 1, Uj,t = 1) requires the joint distribution

of Si,t and Uj,t, which is usually unavailable. According to

individual-based mean-field approximation, we assume that

Si,t and Uj,t are independent. Therefore, this leads to

P Si,t � 1, Uj,t � 1( ) � pS
i,tp

U
j,t . (11)

It should be noted that Eqs 6–11 are only raised for

understanding the disease dynamics but not for model

realization.

Commute network

The commute network is constructed by the Erdős-Rényi

model Erdos et al. [27], which is based on approximately Poisson

degree distribution. Each undiagnosed individual has the

opportunity to infect other susceptible individuals through

social contacts, which are organized in non-chronological and

arbitrary order. The commute network is probabilistic breadth-

first traversal and it maintains four types of node lists: i.

Susceptible, ii. Newly-undiagnosed, iii. Currently-undiagnosed,

and iv. Infected. The epidemic dynamic based on the node list is

described in Algorithm 1. For initialization, a fixed number of

nodes will be placed into the currently-undiagnosed list, while

the rest of the nodes remain in the susceptible list. In each time

step, the following procedures may occur if there are exposed

commuting workers at time t, otherwise, the commute

simulation would be skipped. Here, T means the probability

for S state individuals to be infected by their infected neighbors.

1) For nodes in the currently-infected node list, a randomly

generated number between 0 and 1 is allocated for each edge

connecting to the neighbor of susceptible nodes. The state of

the susceptible neighbor would transmit to “Undiagnosed” if

the random number is smaller than the transition probability

in the commute network (α mentioned in Supplementary

Material). And it would be deleted from the susceptible list

and added to the end of the newly-undiagnosed list.

2) After all the nodes in the currently-undiagnosed list have been

checked in the procedure (1) for disease transmission, the

nodes in the newly-infected list are moved to the currently-

infected list.

3) For nodes in the currently-infected node list, the infection

time for each node would be calculated and once the infection

time is longer than the individual’s virus latent duration, the

node would be moved to the infected list.

Algorithm 1. Epidemic dynamic in commute network.

Here, the commute network could not predict the real chains

of the transmission, since infections happen in cohorts and the

sequence of transmission events is in arbitrary order. To reduce

the computational costs, the state of nodes the in commute layer

would be returned to the agent-based model and the chain of

transmission would be tracked in the agent-based events.

In terms of the conversion of the node types, the commute

flows are randomly reconnected in each time step, while

retaining the connectivity between commute workers

(mentioned in “Algorithm 1” in Supplementary Material). The

random reconnect procedure is constructed as follows: 1) shuffle

the susceptible node list, 2) choose a fixed number of nodes in the

susceptible node list in order and break all the related edges, and

3) randomly reconnect all the broken edges and check the

completion of commute network. This process randomly

reconnects the commuter flows, which represents the changes

in commuter routes in the real world.

Simulation-Based Solving Framework

In the previous agent-based models [24, 26, and 28], the

social contacts of each agent are included, which are time-

consuming, especially for contacts in urban commuting.

Different from them, the proposed multi-layer network with a
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time-varying commute network overcomes two difficulties.

Firstly, the agent-based model, considering one-to-one

contagious behavior with heterogeneous networks, is time-

consuming for modeling transit contacts. Secondly, the agent-

based modeling method is highly dependent on data granularity.

However, the commute network varied from second to second,

which deals with a large quantity of data. For example, for an N

commuters network, the commute data are sampled n times per

half day. At each time step t, the one-to-one contact probability is

considered for each person in state S, where the complexity is

O(N2n). For a T time intervals simulation, the total time

complexity is O(N2nT). Besides, the network structure and the

state for each node need to be stored at each time step, hence, the

space complexity is O(N2nT). Such time and space complexity

restricts the simulation scale and is hard to scale up population

size at the city level. Our solving framework (Supplementary

Material, Algorithm 1), which can be regarded as a sparse

network effectively simplifies the simulation. Only strong

edges between susceptible nodes and exposed nodes rather

than the entire contact network are considered. And the

mutual contacts in a commuter are constructed as a network,

in other words, the commute network is relatively fixed in a time

interval. Based on this way, the time complexity can be reduced

to O (kNT), where < k> represents the average degree of the

commute network. And the space complexity can be reduced to

O(N2T) for each node state that needs to be stored per time step.

Model Calibration

The model is calibrated to reproduce the COVID-19 during

the 2020.02 COVID-19 outbreak in Beijing (supplemental

material) and the 2021.05 outbreak in Guangzhou. It is noted

that the epidemic in Beijing studied in our work is a case without

an available vaccine, while the epidemic in Guangzhou is

simulated with certain vaccine coverage. So far vaccines are

available in most of the countries, we mainly focus on the

question of how the NPIs work on epidemic prevention, and

the simulation for the 2020.02 outbreak in Beijing is used for

model validation presented in the supplemental material. The

epidemiology parameters are referred to in the literature [3, 6,

and 29], and the mobility data are obtained from Qian et al. [30].

The officially reported cases are based on for Disease Prevention

and Control [31,32], and the data for population structure is

captured from [33 and 34]. Based on the census, the population is

divided into five groups by age (0–4 year old, 5–18 year old,

19–29 year old, 30–64 year old, and 65 and older). The mobility

rate, contact probability, and viral load vary in different age

groups. Population in Beijing and Guangzhou are divided into

16 and 11 tracts according to the number of administrative

districts.

We calibrated the model by the daily reported cases for

Disease Prevention and Control [31 and 32]. The NPIs that

governments had implemented are also considered in model

calibration. Note that about 50% of working-age citizens have

already been vaccinated before the second outbreak of COVID-

19 in Guangzhou. To simulate cases, where vaccines are available,

our model takes the vaccine efficiency, inoculation coverage, and

individuals, who are allowed to be vaccinated into account. We

take as a reference the vaccination applied in Guangzhou, the

reported clinical trial results of CoronaVac [35] and identify the

vaccination-related parameters through available data.

The Guangzhou government imposed strict lockdown

measures after the first was case confirmed on 21 May 2021.

Schools and workplaces inmedium and high-risk areas are closed

and social contacts in related communities were also reduced by

strict entry and exit control policies. Besides, restrictions on

public transport (e.g., bus routes and subway stations within the

prevention and control region were suspended, and limiting the

public transport capacity) were taken to slow down the spread of

the virus. We accounted for the effect of mobility restrictions by

setting the coverage and duration of the NPIs according to the

publicity available data from the Chinese government. To

provide quantification of the extent of NPIs that would be

needed to prevent the second wave of COVID-19, several

parameters are introduced to model NPIs (Supplementary

Material, Section 1; Table1). In the calibrated model we use

the reported policy-related data as well as the quantified

parameters according to the actual situation to model the

NPIs enforced by the Chinese local government.

Specifically, the probability of duration for the incubation

period in days is taken from Lauer et al. [29], and the basic

production number is estimated by Read et al. [36]. The values

of contact probability are estimated by fitting the daily

evolution of reported infections in COVID-19 in

Guangzhou and Beijing (Supplementary Material Table S2).

These contact probabilities are in general agreement with

other simulation models for Disease Prevention and

Control [31]. Figure 3 presents the output of the calibrated

model and the reported real-world data. We did an automated

search for the optimal values of the number of the per-contact

layer-dependent disease transmission probabilities and the

contact probabilities within or without groups that minimized

the sum of squared differences between the model’s estimates

of confirmed cases. The simulation is carried out 100 times

under each parameter setting and takes its average output as

the result for model calibration. The randomness of the model

is reflected in the set of the random seed. The random seed is

selected randomly in each round of the simulation, which

ensures the randomness of the simulation. In Figure 3, the

blue shading represents the 95% confidence interval, which is

calculated by the results of 100 times simulation under

different random seeds. And the blue curve represents the

mean value of the results.

Note that our model adopts a commute layer to capture the

potential social contact by daily commute. In order to disentangle
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the contribution of commute in halting the COVID-19

spreading, we block the channel of virus transmission through

the commute and compare the increasing trend of diagnoses and

the final scale of the outbreak with the output of the original

calibrated model. As shown in Figure 4, about 8.5% of cumulative

infections decrease when the virus transmitted by daily commute

is cut down. There is no denying that the model without a

commute network layer can also be calibrated to fit the reported

epidemic data. However, the contact probabilities in other places

such as schools, workplaces, and households in the model

without commute network layer can be overestimated for the

virus transitions through daily commute are miscategorized into

other human activities. Our results suggest that the commute

network can be an essential mediate in the spread of the virus for

the spread of epidemic slows down when the commute-based

virus transmission is cut down.

Results

We evaluate the impact of NPIs on both the government level

and individual level by comparing the final epidemic size as well

as the epidemic duration. Here, we regard 7 days without new

cases as the passing of the wave of an epidemic outbreak. The

NPIs enforced by the government evaluated in our study can

further be classified into two kinds: human mobility restrictions

and individual activity restrictions. Specifically, human mobility

is limited through adjusting the public transit system operation

and individual activity is reduced through school closure, work

from home, closed-off community management, and quarantine.

On the other hand, individual preventative behavior refers to

mask use in our study. The enforcement of NPIs enacts on the

day that the first cases are confirmed. The caveat is that the

impact of each NPI is not studied alone but evaluated under the

TABLE 1 Different types of quarantine policies. “Home” means home-based quarantine and “institution” means institution-based quarantine. Five
types (A–E) of quarantine policies are studied.

Contact pattern Quarantine type

A B C D E

Close contacts institution home home institution institution

Secondary close contacts Home home none institution none

FIGURE 3
Calibration. Blue curve illustrates the predictions from themodel and red curve is actual cumulative infections data. The blue shading represents
the 95% CI for the simulation results.
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case that other NPIs also be enforced with a certain intensity.

However, most countries did not adopt such strict NPIs as the

Chinese government. To adopt a general case that is feasible for

most countries, we ease the policies acted by the Chinese

government, in other words, the implementation of NPIs in

the baseline cases is slightly loose than in the calibrated cases and

the essential parameters for baseline case are listed in

Supplementary Table S2. Benefit from the baseline case, a

more obvious impact of the variation of NPIs can be observed

in a realistic case. Instead of the value of epidemic size, we are

concerned about the relative change the NPIs bring about, hence,

the ease of policies is acceptable for this study. It should be

FIGURE 4
Output of model with and without commute layer. Blue curve shows the predictions from the model with commute layer and red curve is the
output of model without commute layer. The blue (red) shading represents the 95% CI for the simulation results.

FIGURE 5
Effect of close-off community management. Higher proportion or longer duration of commute contact restriction denotes more severe NPIs.
We take the total number of infections (A) and the duration of the epidemic (B) as an evaluation index.
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mentioned that the NPIs are implemented reactively after the

first case is confirmed.

Closed-Off Community Management

We start by investigating the effect of community-wide

activities reduction. The caveat is that the closed-off

community management includes but is not limited to

reducing the number of available entrances, limiting

residents to go outdoors, and banning non-residents from

entering. We account for the effect of close-off management

by varying the community contact reduction probabilities

from 0 to 1 and the duration of the NPI from 10 to

40 days Figure 5 shows the final epidemic size and the

duration of the outbreak in different scenarios. We observe

that the epidemic size reduces with the increase in policy

intensity. When the NPI duration is shorter than 15 days, the

effect of contact reduction is limited even with a high

reduction probability. Specifically, the effect of close-off

management becomes significant when its proportion is

higher than 0.5 with a relatively long implementation time

(more than 25 days). Moreover, it should be stressed that the

duration and intensity of community contact reduction are

equally important for the NPI can hardly work under a

duration of less than 15 days. Here, the 100% community

contact reduction is an ideal scenario, which is difficult to

achieve for community contacts that guarantee people’s daily

life are required during the epidemic outbreak. Besides the

impact of contact reduction on the duration of the outbreak

shows a similar trend to the epidemic size.

School Closure

School closure is another NPI for reducing human activities

especially juvenile activities. We estimate two types of closure

policies: 1. Classes of schools in medium to high-risk areas are

suspended, while others in low-risk areas remain open, 2. Close

all schools in the city as long as there is a confirmed case. Also, we

consider the cases without a school closure policy as a

comparison. Notably, the result (Figure 6) indicates that the

impacts of two school closure scenarios are similar and a 15 days

duration of NPI can cut off the channels of transmission between

students efficiently. Although school closure policy effectively

reduces the number of contacts within the specific age group and

hence, cuts down the onward transmission, the NPI can cause

harm to workers’ ability to go to work, disrupt students’ path of

learning and reduce economic productivity [19]. Therefore,

closing schools by track is more effective than closing all

schools in reducing virus transmission, and about 15 days

duration is recommended.

Work From Home

As for workers, individual mobility and collective

interactions in the workplace are both strongly connected

with the transmissions of pathogens. Focusing on the workers’

social contacts, NPIs both for commute restrictions and

interaction restrictions in the workplace are considered in our

model. Collective interactions in the workplace are reduced by

the work-from-home policy and the workers’ mobility is

restricted by shutting down the public transit systems.

FIGURE 6
Effect of suspending classes of schools. Longer duration of school closure denotes more severe NPIs. Light blue pillars represent policies
enforced by the tract, red pillars represent policies enacted by all tracts and blue pillars represent the case without school closure. We take the total
number of infections (A) and the duration of the epidemic (B) as an evaluation index. The error bars represent the 95% CI for the simulation results.
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Similar to the evaluation for other NPIs, a set of different

options for the proportion of workers who work from home

and the policy execution time are considered. The results

(Figure 7) suggest that the effect of workers’ collective

interaction restriction becomes significant (about 12.6% of

cases be averted compared with the baseline) when the

proportion of workers working from home reaches an

intermediate level (0.4–0.6). Besides, the results indicate

that working from home for more than 20 days can achieve

the desired effect if enough workers have been enforced to

work at home on time.

Shut Down of Public Transit System

To explore the pattern of repeated encounters on the public

transit system, we use the commute network layer to measure the

number of workers being infected during commute between

consecutive encounters of paired individuals. Like the

assessment of work-from-home policy, we simulate the

application of public transit system restrictions with different

degrees of intensity and time duration. We assume that the

suspension of public transportation service is a sign of workers’

mobility restrictions on the corresponding transportation routes.

FIGURE 7
Effect of work fromhome policies. Higher proportion or longer duration of commute contact restriction denotesmore severe NPIs. We take the
total number of infections (A) and the duration of the epidemic (B) as an evaluation index.

FIGURE 8
Effect of suspension of public transportation service. Higher proportion or longer duration of suspension of public transportation service
denotes more severe NPIs. We take the total number of infections (A) and the duration of the epidemic (B) as an evaluation index.
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Values of restriction proportion vary from 0 to 0.6 and the

implementation time ranges from 10 to 40 days. The heat maps

in Figure 8 illustrate the impact of shutting down the different

percentages of a public transit system. A more than 50%

reduction in public transit systems can be effective in

preventing the spread of an epidemic, while a low degree of

public transit system reduction has a limited effect on epidemic

spreading. Our assessment corresponds to Wu’s statement Wu

et al. [37] that a 50% reduction in inter-city mobility in Wuhan

has a negligible effect on the COVID-19 epidemic dynamics.

However, the epidemic size is less sensitive to shutting down

public transit systems than other NPIs discussed in our study.We

believe that this is due to the fact that the workers’mobility relies

heavily on the work at home policy and the shutting down of the

public transit system should match up with the implementation

of the work at home policy. Besides, the duration time for

mobility restriction is equally important with the reduction

rate, in other words, the mobility restrictions produce benefits

only if applied strictly enough and only if paired with sufficient

execution time.

Quarantine

Furthermore, quarantine for potentially infected people is

also a crucial means of disease control. Here, two types of

measures are modeled including institution-based quarantine

and home-based quarantine. The former is modeled after China,

with the quarantine of close contacts in specialized facilities

cutting down further onward within-household transmission.

While the latter requires close or secondary close contacts

quarantine at home, which cuts down contact with others

except with family members. Dickens et al. [38] studied these

quarantine methods by the effect of different combined

quarantine scenarios. Overall, we simulate five typical

scenarios (Table 1), arranging different types of quarantine

according to the risk level of the close contacts. Results in

Figure 9 suggest that scenarios B and C lead to worse

conditions than other scenarios, which adopt the institution-

based quarantine, indicating that the institution-based

quarantine is more effective than the home-based quarantine

in cutting down the viral loads between mild infections and

susceptible individuals. Similar dynamics are observed from

other scenarios (A, D, and E) that the larger the quarantine

policy covered the smaller the final epidemic size is. As a result of

scenario, scenario A has a neglectable difference from scenario D,

we believe that quarantine for the secondary close contacts can be

appropriately eased, while the close contacts adopt a stricter

quarantine policy. Crucially, the institution-based quarantine

obviated most of the risk of within-household transmission,

which is a commonly seen viral load. In contrast, home-based

isolation, which relies on self-consciousness, will probably lead to

increased infections. Therefore, we recommend policymakers in

countries with limited medical resources consider institution-

based quarantine for close contacts as well as for mild infections

when facing a second COVID-19 wave.

FIGURE 9
Effect of different types of quarantine policies. The correspondence between the type number and its detailed description is presented in
Table 1. Blue pillars represent cumulative cases and red pillars represent the epidemic duration. The error bars represent the 95%CI for the simulation
results.
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Mask Use

NPIs investigated above are almost carried out by

governments and public health departments. However,

there has been limited international consensus on the use

of face masks among the public. The use of masks as an

infection control measure is now common in East and

Southeast Asia and was recommended early in the

pandemic by the Chinese government. In contrast, Western

countries have been slower to encourage any adoption of

masks, although there is a growing recognition that this

should be part of public health policy for mitigating the

spread of COVID (Eikenberry et al., [2]; Worby and Chang

[8]). In our study, we estimate the role of face masks used

among the public on the spread of COVID-19. We simulated

outbreaks under a variety of mask use coverage rates

associated with an assumption of 50% mask effectiveness

and identified the resulting total numbers of infections and

the duration of the epidemic (Figure 10). Consistently, we find

the reduction in total infections increased with the expanding

coverage of face mask use. The impact of scaling up the

proportion of mask-wearing to the final epidemic size and

the epidemic duration is generally linear based on current

parameter settings. It is worth noting that increasing the

coverage of face mask use makes great contributions to the

control of the epidemic process, nevertheless, face mask use

alone cannot be sufficient to mitigate epidemic outbreaks.

Instead, a masks policy would need to be combined with other

NPIs to reduce COVID-19 transmission efficiently.

Discussion

So far vaccines are available for theCOVID-19 pandemic, and the

impact of NPIs needs to be further evaluated. We proposed a multi-

layer contact network that combines structurally fixed social contact

networks with a time-varying mobility network, capturing the real-

world features of individual daily interactions, and an abstract

commute network, capturing human mobility patterns. Note that

our model makes computation less expensive than the pure agent-

basedmodels since the commute network as a whole can bemodeled,

instead of tracking each individual agent. Based on the characteristics

of the given metro contact networks (MCNs) [30], we obtain the

aggregated commute network, which is time-varying by partially

reconnecting the nodes in each time step. Benefit from the

computational cost, the proposed multi-layer network can be

occupied in cases with tens of millions of agents in several

minutes, which can be a challenge for most agent-based models

[28]. For most agent-based epidemic models that cannot take into

account contacts both in enclosed places and through spatial

transmission, our proposed framework can be used as a viable

tool to fill this gap.

As the Chinese Center for Disease Control and Prevention

reported that breakthrough infections happen with all vaccines

[39], both the government and the individual could not relax

vigilance and NPIs should be studied to make arrangements on

implementing regular epidemic prevention and control measures as

well as advancing economic and social development. Based on our

model, two types of NPIs (restricting human mobility in relatively

fixed places and in daily commute) are evaluated for the case of the

FIGURE 10
Effect of different proportions of mask use. We take the total number of infections and the duration of the epidemic as an evaluation index. Blue
curve indicates the predictions of epidemic duration and red curve is the cumulative infections. The error bars indicate the 95% CI for model output.
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second wave of COVID-19 outbreak, where relative vaccines are

available. Specifically, we elucidate six types of NPIs enforced both by

the government and the individual, including closed-off community

management, school closure, work from home, shut down of the

public transit system, mask use, and quarantine. Note that the public

transit system restriction, aiming at reducing human mobility, is

evaluated by the time-varying commute network. Here, we calibrate

themodel by the reported cases of Chinesemetropolitan cities’ second

wave of the epidemic.We apply different coverage ratios and duration

of NPIs denoting their intensity and regard the relative size of

cumulative confirmed cases and the duration of the epidemic as

evaluation indexes.We derive a series of conclusions on how to apply

NPIs to fight against COVID-19. First, our results indicate limitations

in the implementation of these NPIs. Their public health value could

be limited, while the NPIs are enforced with severe intensity for this

could destroy the order of regularwork and life.Moreover, we observe

that suspending classes of school by track is recommended rather

than closing all classes for closing down all classes does not show

obvious effects compared with closing school by track. Furthermore,

our study discovers that the institution-based quarantine is more

effective than individual-based quarantine in epidemic control and

prevention and these methods can both be carried out based on the

possibility of infection of the susceptible individuals. Lastly, it is worth

noticing that mask use plays an essential role in disease prevention

and is a highly recommended NPI in the face of the second wave of

outbreaks. However, other NPIs are also required to reduce the

epidemic more efficiently.

It is noted that our model has the generalization ability. By

leveraging the generality of our multi-layer network, the NPIs can

further be studied under different backgrounds and more forms of

NPIs can be pursued. First, the hierarchical organizational model

structure allows us to implement NPIs by tracks or even by smaller

units (i.e., household cluster and household). In this vein, school

closure policies could be enforced at a local level instead of the whole

city. Similarly, quarantine types could be arranged according to the

level of intimacy between close contacts and infections. Second,

human mobility and individual interaction are both considered by

the multi-layer network structure. Therefore, NPIs aim at restricting

spatial mobility or human interactions can both be assessed. Third,

we set an interface for the population census, geographic information,

data about the commute, and the NPIs’ related data (i.e., starting or

ending point, coverage rate), offering access to further research.

Our study is affected by limitations. First, we analyze the effect of

NPIs by specific factors varying from 0 to 1 representing the degrees

of NPIs implementation. More detailed information for NPIs is

needed to quantify the implementation of policies. Second, the type

of strain is not considered. Our model needs to preset viral load,

which varies from age group, degree of closeness, and infection

status. In future work, information about strains can be added and

our model can be adapted to more types of epidemic spread.

In conclusion, we proposed a multi-layer network including

three types of social contact networks for repetitive social contact

modeling and a time-varying network for contact in urban

commuting. NPIs aiming at controlling and preventing the

second wave of the epidemic, especially for the vaccine available

cases are studied and notable suggestions are given according to the

model output.
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