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Based on a data set of dengue cases in the Brazilian city of Fortaleza, collected from
2011 to 2016, we study the spatio-temporal characteristics of dengue outbreaks to
characterize epidemic and non-epidemic years. First, we identify regions that show a
high incidence of dengue cases and mosquito larvae in different years and analyze
their corresponding correlations. We find that the characteristic correlation length of
the epidemic is at least of the order of the system size, suggesting that factors such as
citizen mobility may play a significant role in driving the spatial spread of the disease.
We also find that in epidemic years, spatial correlations are substantially higher with a
distribution skewed towards large values than non-epidemic years. Inspired by this
observation, we perform a mean-field estimation of the basic reproduction number
and find that the estimated values agree well with the values reported for other regions
in Brazil and other countries, pointing towards similar underlying spreading
mechanisms. These findings provide insights into the spreading characteristics of
dengue in densely populated areas and may be relevant for improving disease
containment strategies.
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1 INTRODUCTION

According to a recent report of the world health organization (WHO), over 40% of the world’s
population are at the risk of a dengue infection [1, 2]. Alarmingly, in the last half-century, a 20 to 30-
fold increase of dengue cases has been monitored world-wide [2]. As a vector-borne disease, the
transmission of dengue fever occurs from infected to susceptible humans through female Aedes
aegyptimosquitoes. Up to 12 days after symptom onset, infected individuals can transmit the virus to
mosquitoes, which can further transmit the virus after an incubation period of 4–10 days [1–3].
Mosquitoes can remain alive and infectious for at least 2 weeks [1]. Symptoms include high fever,
headache, vomiting, skin rash, andmuscle and joint pains [1].Aedes aegypti is also responsible for the
transmission of other severe vector-borne diseases such as yellow fever, chikungunya and zika whose
recent outbreaks are challenging health officials in different countries [4–6]. Vector-borne diseases
are responsible for the death of more than one million humans each year, disrupt health systems, and
obstruct the development of many countries [2]. As a consequence of the unavailability of vaccines
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and/or drug resistance, as is the case for many vector-borne
diseases, control measures such as personal protection, reduction
of vector breading habitats, and usage of insecticides are essential
to contain outbreaks [2, 7].

Recent studies have demonstrated the poor correspondence
between levels of infestation measured by entomological surveys
at national and local level [8–10]. The correlation between high
infestation, measured by larval entomological indicators, and risk
of dengue epidemic has been shown to be weak in the most
diverse scenarios [11–15]. Despite the evidence of the low
usefulness and incipient positive predictive value of these
larval surveys being extensively demonstrated, some countries
still consider the thresholds of infestation indices as a main
indicator of epidemic risk and trigger of spatially oriented
vector control actions [8, 9, 15].

In fact, there is some skepticism about the suitability of larval
indicators for the prediction of epidemics. Instead, several
authors have suggested the systematic use of pupal indices and
the direct measurement of the density of the adult mosquito, even
if these imply a radical reformulation in the routines of vector
control programs. They argue that the larval indices are no longer
able to fulfill their main objective, which is to anticipate the
transmission of the disease [8, 10, 13, 15–17]. Moreover, pupal
surveys and mosquito capture are of low cost-effectiveness and
inaccurate in low infestation scenarios where the mosquito has
high survival due to optimal climatic conditions and other factors,
increasing vector competence and causing sustained transmission
of the virus with low pupal and mosquito densities.

Urban mobility has become a central concept in studies on a
wide range of interests [18, 19]. In what concerns the
transmission of dengue fever, its importance is even
comparable to the levels of infestation and abundance of the
Aedes aegypti vector [20, 21]. Several studies point out the
importance of the human movement in the spatio-temporal
dynamics of urban arboviruses transmitted by Aedes aegypti,
in particular, dengue fever [22–24]. In 2019, the Pan American
Health Organization (PAHO) published a technical document,
based on the most diverse information available, reporting that
the risk stratification of transmission is the best path to achieve

efficient vector control [25]. Theoretically, mapping cities in
micro-areas with different levels of transmission risk could
make vector control strategies more effective, especially in
regions with limited human and financial resources [26–28].
However, human mobility patterns are still not subject to
accurate monitoring and can be crucial for the definition of
high-risk spatial units that should be prioritized by the
national and local programs for the control of urban
arboviruses transmitted by Aedes aegypti [8].

In this work, we study the spatio-temporal characteristics of
dengue outbreaks in Fortaleza from 2011–2016 to characterize
epidemic and non-epidemic years. Fortaleza, the capital of Ceará
state, is one of the largest cities in Brazil and is located in the North-
East of the country where dengue and other neglected tropical
diseases show a high prevalence [16, 29]. We show in Figure 1
that up to 1,000 dengue cases have been reported per day in Fortaleza
during 2011 and 2016. In our analysis, we identify regions that exhibit
a large number of dengue infections and mosquito larvae in different
years, and also analyze the corresponding correlations throughout all
neighborhoods of Fortaleza. We show that the characteristic length
scale of correlations between case numbers at different locations in
the system (i.e., the correlation length) is at least of the order of the
system size. This provides support to the hypothesis that factors such
as citizen mobility drive the spatial spreading of the disease.
Motivated by the observation that people interact across long
distances, we also use a mean-field model to compare the
outbreak dynamics of two characteristic epidemic years with
corresponding analyses made for other regions [30]. In particular,
we perform a Bayesian Markov chain Monte Carlo parameter
estimation for a mean-field susceptible-infected-recovered (SIR)
model which has been previously successfully applied to the
modeling of dengue outbreaks [30]. Our results provide insights
into the spatio-temporal characteristics of dengue outbreaks in
densely populated areas and may be relevant for making dengue
containment strategies more effective.

2 METHODS

2.1 Data Sets
In total, we use four data sets. The first one consists of spatio-
temporal information on dengue infections in the city of

FIGURE 1 | Temporal evolution of the number of dengue cases. Here,
we show the number of reported dengue cases per day in Fortaleza from 2011
to 2016.

TABLE 1 | Number of dengue cases reported in Fortaleza between 2011 and
2016. The processed subcolumn contains the original number of cases
reported after removal of cases of infected tourists and people who live in Fortaleza
metropolitan area.

Year Number of Cases Reported

original processed

2011 33,953 33,836
2012 38,319 38,197
2013 8,761 8,706
2014 5,092 5,029
2015 26,425 26,176
2016 21,736 21,596
Total 134,286 133,540
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Fortaleza from 2011 to 2016. These data have been provided by
the Epidemiological Surveillance Division of Fortaleza’s Health
Secretariat, and contains both the date when an infected person
reports a potential dengue infection to a physician and the
corresponding geographic location with a granularity of
approximately 200 m. Serology and clinical diagnosis were
used to confirm dengue infections. This dataset was duly
anonymized, epidemiological and clinical variables were
removed as well as those cases of infected tourists and
individuals who live outside the area of the city of Fortaleza.
The total number of dengue cases between 2011 and 2016 in our
data set after data processing is 133,540. Table 1 shows the
number of cases reported for each year. The second data set
contains information aboutAedes aegypti larvae measurements in
Fortaleza from 2011 to 2016. Measurement data is available in
intervals of 2 weeks from 2,701 strategic points (SP) (e.g., junk
yards, garages, buildings under construction, and warehouses)
that are monitored by health authorities of Fortaleza. A SP is said
to be positive ifAedes aegypti larvae have been found independent
of the actual amount. Data on Aedes aegypti infestation according
to each Strategic Point are available on the Fortaleza Daily Disease
Monitoring System 1 and were tabulated and consolidated by the
epidemiological surveillance team. Due to the influence of
precipitation on the mosquito population size [31], we also
consider data from three different rain gauges in Fortaleza
during 2011–2016. In addition to the temporal information on
dengue cases, we collected data about the geographical locations
of all infection cases. Additionally, in order to investigate the
influence on human mobility, we use a origin-destiny matrix
generated from electronic bus pass data of Fortaleza’s
transportation system for the year of 2015 [32–34].

2.2 Correlations
The spreading dynamics of dengue in an urban evironment can
be better understood in terms of underlying spatio-temporal
correlations, namely, the cross-correlations between the time
series of dengue incidence calculated for different pairs of city
neighborhoods. We therefore now focus on spatio-temporal
correlations between dengue incidence time series of different
districts. In total, there are 118 neighborhoods in Fortaleza, and
for each neighborhood i we use NCt

i and POPi to denote the
number of reported dengue cases at time t and the corresponding
population, respectively. The disease incidence in neighborhood i
at time t is

pt
i �

NCt
i

POPi
. (1)

We characterize the spatio-temporal correlations of dengue
outbreaks between sites i and j by

cij τ( ) � 1
T

∑T
t�1 pt−τ

i − 〈pi〉( ) pt
j − 〈pj〉( )

σ1σ2
, (2)

where τ denotes a time lag, rij is the distance between
neighborhood i and neighborhood j, σ2i � T−1∑T

t�1(pt
i − 〈pi〉)2

represents the variance, and T is the length of the time series. In
our analysis, we consider two time intervals: (i) 4 weeks (i.e., a
series with T = 12 periods of 4 weeks) and (ii) 2 weeks (i.e., a series
with T = 26 periods of 2 weeks). Here a time lag of τ = 1 means
that the two time series are shifted by 14 days. We also compute
the cross-correlations in time between the number of dengue
cases, the rainfall, and the number of positive SP. In this way, the
correlation between any time series at and bt is defined by

c τ( ) � 1
T
∑
t−τ

t�1

at − 〈a〉( ) bt+τ − 〈b〉( )
σaσb

, (3)

where σ2a and σ2b are the variances of series at and bt. In what
follows, series at and btwill be a combination of the time series for
dengue fever cases, the positive SPs, and rainfall in Fortaleza.

3 RESULTS AND DISCUSSION

3.1 Dengue Outbreaks in Fortaleza
According to the Brazilian ministry of health and the health
administration of the City Hall of Fortaleza, the population of
Fortaleza had been at a high risk of a dengue infection during the
years 2011, 2012, 2015, and 2016, being therefore classified as
epidemic years [35]. The corresponding number of reported
dengue cases are given in Table 1 and shown in Figure 1
(right). Due to the equatorial location of Fortaleza, the mean
temperature over 1 year is 26.3 ± 0.6 °C and can be regarded as
constant with only limited impact on the local dengue spreading
dynamics 2. Considering the population size of 2.6 million 3, an
alarmingly high number of several hundred up to almost 1,000
new infections per day have been reported from 2011 to 2016.

We illustrate the geographical distribution of dengue cases in
Figure 2 from 2011 until 2016. If the total number of dengue
infections in a certain area is large over the course of 1 year, this
area appears in red. Areas with small numbers of dengue
infections are colored blue. In 2011 and 2012 the main
outbreaks occur in similar regions and cover almost the whole
city except some parts in the Eastern outskirts. In the non-
epidemic years 2013 and 2014, the overall dengue incidence is
clearly reduced. However, some parts in the city center in the
North-West that also exhibit large numbers of dengue cases in the
epidemic years are still at a high risk of dengue outbreaks. Also in
the epidemic years 2015 and 2016, some neighborhoods in the
south show a high dengue incidence.

In addition to the geographical location of dengue cases, we
also show a heat map of the spatial distribution of positive SPs in
Figure 3. Interestingly, and in contrast to the spatial distribution
of dengue cases, the majority of positive SPs are located at the
same places in Fortaleza regardless of the year. In particular, the

1Fortaleza Daily Disease Monitoring System (SIMDA). https://pt.climate-data.org/
america-do-sul/brasil/ceara/fortaleza-2031/, Retrieved 3 June 2020.

2[Dataset] https://pt.climate-data.org/america-do-sul/brasil/ceara/fortaleza-2031/,
Retrieved 5 December 2020.
3[Dataset] https://cidades.ibge.gov.br/brasil/ce/fortaleza/panorama, Retrieved 6
June 2021.
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city center and some parts in the North and South-West of the
town exhibit a large number of positive SPs. While according to
Figure 3, the regions of major outbreaks change substantially
between 2011, 2013, and 2015, the number of positive SPs does
not at all. Concerning the outbreak year of 2015, the recurrent
dengue outbreak and number of positive SPs seem to be even
anti-correlated, since the number of dengue cases are
concentrated at the southeast region of the city, a region with
low incidence of positive SPs. These observations confirm the low
usefulness of these larval surveys, as has been extensively
demonstrated before and suggest that an effective disease
intervention measure should target the neighborhoods which
exhibit recurrent dengue outbreaks instead of numbers of
positive SPs. In particular, the density of SPs is not
homogeneous, and in fact Figure 3 is mostly reproducing the
distribution of SPs, because it is common to find at least one
larvae during the year and thus it is likely that most SPs will be
identified as positive.

As shown in Figure 4, the number of reported dengue cases
starts to increase in January and February just shortly after the
beginning of the rain season and typically reaches its peak before
July. This shows that the corresponding climate conditions
facilitate the growth of mosquito populations. In addition, we
also show the time evolution of the number of positive SPs. The

data in Figure 4 indicates that the way the number of positive SPs
changes in time is similar to the rainfall, although their relative
amplitudes vary substantially from year to year.

In Table 2, we show the time lags τmax that correspond to the
maximum correlation, as defined by Eq. 3. In the case of
dengue occurrences and rainfall, we find a mean value of
�τmax(D, R) � 2.3(2) fortnights. This result agrees well with
findings of other studies [31] reporting that a maximum of
dengue cases will be observed a few weeks up to a few months
after the rainfall maximum. The largest correlation between
dengue cases and SPs indicates that the dengue incidence
reaches a maximum after �τmax(D, SP) � 2.2(8) fortnights
after a maximum of positive SPs has been found. This
result implies that the number of positive SPs may be an
appropriate early warning sign to estimate when the
number of dengue cases reaches its maximum.

Despite the very similar curve shapes, the results are less
conclusive in the case of correlations between rainfall and
positive SPs. In some years, the maximum number of positive
SPs is found after the rainfall maximum, whereas the opposite
situation occurs in other years. In any case, the time lag is zero
when averaged over the 5-years reporting period, suggesting that
both phenomena occur almost simultaneosly, but are subject to
strong fluctuations. This can be also observed by comparing the

FIGURE 2 | Dengue outbreaks in Fortaleza from 2011 until 2016. Heat maps of all dengue cases in Fortaleza from 2011 until 2016. Blue areas correspond to
regions with a low incidence of dengue cases whereas red ones indicate large dengue outbreaks. As depicted, the heatmaps show a clear the difference between
epidemic years (2011, 2012, 2015, and 2016) and non-epidemic years (2013 and 2014).
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time evolutions of rainfall and the number of positive SPs in
Figure 4.

A possible explanation for this result may be that a SP
measure, as provided by the health authorities of Fortaleza, do
not provide a quantitative measure for the amount larvae, but
only provides a binary indicator which is considered positive even
if only a small amount of larvae was found at the location. Due to
this qualitative nature of the SP, its positiveness indicates the
spatial extent of mosquitoes and not its concentration. Therefore,
correlations between rainfall and positive SPs have to be
interpreted with caution. Still, the similar shapes of the
positive SP and rainfall curves indicate that the spatial spread
of mosquitoes is correlated with the precipitation level. The
influence of climate conditions on dengue outbreaks in Brazil
has also been analyzed in Ref. [31].

3.2 Spatio-Temporal Correlations
Dengue outbreaks that occur in a certain region of the city may
lead to outbreaks in another more distant region due to human
mobility [21, 36, 37]. To analyze this effect and identify
characteristic correlation length-scales, we study the
correlation between the dengue incidence in neighborhood i
and in another neighborhood j located within a distance of rij,
which is measured in kilometers. Here, rij is the distance between
the barycenters of neighborhoods i and j extracted from their
geographical contours. Specifically, we study the correlations

between neighborhoods i and j, i.e. cij (τ, rij) as defined by Eq.
2, for different time lags τ and radii rij. According to the definition
of cij (τ, rij) in Eq. 2, a correlation length ξ smaller than our
considered system size would lead to an observable decay of cij (τ,
rij) for rij > ξ. In all considered years, the correlations cij(τ) only
vary slightly with the distance rij, as shown in Figure 5. Within
the error bars of our data, we do not observe a substantial decay of
cij(τ) for values of rij smaller than the system size of about 15 km.
We thus conclude that the characteristic correlation length ξ is at
least of the order of the system size.

It is unlikely that disease vectors are responsible for such
correlation effects over distances of multiple kilometers due to
their limitedmovement capabilities. In particular, it is known that
the maximum flight distance reached by the Aedes aegypti from
its breeding location is of the order of approximately 100 m.
Humans, however, travel through densely populated urban
regions on a daily basis, and may transfer the virus to Aedes
aegypti mosquitoes at different locations. This virus transfer
mechanism is therefore compatible with the large correlation
lengths revealed in this study and also agrees well with recent
studies that suggest that human mobility is a key component of
dengue spreading [21, 36, 37].

We choose three time lags, namely, τ0 = 0 weeks, τ1 = 2 weeks
and τ2 = 4 weeks which are of the order of the transmission time
scale of 12 days [2]. The dependence of the correlations on
different time lags, distances, and years is shown in Figure 5

FIGURE 3 | Positive SPs in Fortaleza from 2011 until 2015. Heat maps of the larvae measurement outcomes in Fortaleza from 2011 until 2015. If larvae are found,
the SP measurement is said to be positive. Blue areas correspond to regions with a low number of positive SPs, whereas red ones indicate the opposite.
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(left). For no time lag, τ0 = 0 weeks, or a time lag of τ1 = 2 weeks,
we find that the correlations are substantially larger in the
epidemic years 2011, 2012, 2015, and 2016 as compared to the
non-epidemic years 2013 and 2014. However, in 2016 the
correlations are less pronounced compared to other epidemic
years since the outbreaks are widely distributed and their

densities rather small, as shown in Figure 2. For the larger
time lag, τ2 = 4 weeks, the average correlation 〈cij(τ2)〉 is
smaller than that obtained for time lag τ1. This behavior is
compatible with the fact that a time lag of 4 weeks exceeds the
dengue transmission period, and we expect to find smaller
correlations. In Figure 5 (right), we show the corresponding
distributions of P(cij) and find that they allow to clearly
distinguish between epidemic and non-epidemic years for no
time lag and a time lag of τ1 = 2 weeks. In the particular case of no
time lag, the distributions are strongly skewed towards larger
correlations in epidemic years compared to the non-
epidemic ones.

In order to better understand this result, we used an origin-
destination matrix between pairs of neighborhoods of Fortaleza,
made available in the mentioned Refs. [33, 34]. Precisely, this matrix
was built from an extensive dataset of human mobility in the city
collected during 2015, consisting of public bus validations records
with smart cards of passengers. As reported in Ref. [33], the average
flux of passengers fij between neighborhoods i and j is defined as,

FIGURE 4 | The number of reported dengue cases, positive SPs and rainfall as afunction of time from 2011 to 2016. For each year from 2011 until 2016, we show
the number of reported dengue cases, positive SPs, and the precipitation level as a function of time. One time interval (cycle) is one fortnight, starting from the first
fortnight of the year (cycle = 1). The number of positive SPs and the amount of rain in liters per square meter have been rescaled by a factor of 10. There is no larvae
measurement data available for 2016.

TABLE 2 | The time lags from 2011 until 2016. For each year from 2011 until 2016,
we compute the correlation between the number of reported dengue cases
(D), positive SPs and the rainfall (R) for different time lags τ. The value of τ = 1
corresponds to one fortnight. We show the time lags that correspond to the
largest correlation in the corresponding year. There is no SP data available
for 2016.

Correlations Year

2011 2012 2013 2014 2015 2016

τmax(D,R) 5 3 2 2 2 0
τmax(D,SP) 2 2 1 3 3 −

τmax(SP,R) 2 1 −1 −1 −1 −
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fij � 〈 #number of bus trips from i toj
#number of bus trips from i to all neighborhoods

〉. (4)

where the brackets represent an average over 52 weeks. As shown
in Figure 6A, apart from small random fluctuations, the fluxes fij
show practically no dependency on the neighborhood distance rij.
Similarly, the Figure 6B shows that the average spatio-temporal
correlations cij remains practically invariant with fij. This result is
consistent with our finding that the correlation length of the
contagion process of dengue fever in Fortaleza between pairs of
distinct neighborhoods should be at least larger than the system
size. Furthermore, it also indicates that the human mobility at the
city scale has a more profound impact on the transmission of the
disease than expected since it connects the neighborhoods in such
an efficient way that even the largest distances between them are
too small to make a difference in the contagion process. It is

interesting to compare our findings with the results obtained by
Brockmann and Helbing presented in the Ref. [38], where the
network-driven contagion is investigated at larger scales, such as
the global viral epidemics of SARS in 2003, and MERS in 2009. In
these cases, the variability in the fluxes between different regions
play an important role on the disease spreading.

3.3 Estimating Disease Transmission
Parameters
As described in the previous section, the studied dengue
outbreaks in Fortaleza exhibit a correlation length ξ which is
at least of the order of the underlying system size. Based on this
observation, we can apply a mean-field epidemic model, as an
approximation, to further characterize the observed spreading
dynamics. In particular, we aim at comparing the disease

FIGURE 5 | Correlations for different time lags, distances and years and their corresponding distributions. The left panels show the average of the spatio-temporal
correlations 〈cij(τ)〉 as a function of the distance rij between neighborhoods i and j, and calculated for time lags of τ0 = 0weeks (A,B), τ1 = 2weeks (C,D), and τ2 = 4weeks
(E,F). As depicted, epidemic years (2011, 2012, 2015, and 2016) present a higher 〈cij(τ)〉 when compared to non-epidemic years (2013 and 2014). The right panels
show the corresponding distribution P(cij) of cij(τ). Epidemic years present a negative skewness of P(cij), while non-epidemic years have no skewness. The bars are
the standard deviation.
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transmission parameters of dengue outbreaks in Fortaleza with
the results of previous studies [30]. To do so, we consider the two
epidemic years 2012 and 2015 and perform a Bayesian Markov
chain Monte Carlo parameter estimation for an SIR model that
has been previously applied in the context of dengue outbreaks in
Thailand [30]. More details about the methodology are presented
in Supplementary Material.

We determine the basic reproduction number R0 of dengue
outbreaks in Fortaleza and compare it with the values of other
disease outbreaks. The basic reproduction number is an important
epidemiological measure and is defined as the average number of
secondary cases originating from one infectious individual during
the initial outbreak period (i.e., in a fully susceptible population) [39].
Different models exist to characterize and predict epidemic
outbreaks [39–43]. In the case of dengue, some models explicitly
incorporate amosquito population, whereas others take into account
such effects by using an effective spreading rate [30, 44]. According
to Ref. [30], an explicit treatment of vector populations just increases
the number of modeling parameters and may not lead to a better
agreement between model and data. We therefore do not explicitly
model a vector population and consider an SIR model with an
effective spreading rate which has been found to capture the essential
features of dengue outbreaks in Thailand [30]. The governing
equations are.

dS
dt

� μHN − β
I

N
S − μHS, (5)

dI
dt

� β
I

N
S − γHI − μHI, (6)

dR
dt

� γHI − μHR, (7)

where N = S + I + R is the human population size and S = S(t), I =
I(t), R = R(t) denote the numbers of susceptible, infected, and
recovered individuals at time t, respectively. The humanmortality
and recovery rates are denoted by μH and γH, respectively. The
term μHN in Eq. 5 corresponds to the birth rate and is chosen
such that the population size is kept constant. Furthermore, the
composite human-to-human transmission rate β accounts for
transitions from susceptible to infected. The relation

β ≈
mc2βHβV

μV
(8)

connects β with the mosquito-to-human transmission rate per
bite βH, human-to-mosquito transmission rate βV, number of
mosquitoes per person m, mean rate of bites per mosquito c, and
mosquito mortality rate μV [30]. The basic reproduction number
of the described SIR model variant is [39].

R0 � β

μH + γH
. (9)

For R0 > 1 there exists a stable endemic state, whereas the disease-
free equilibrium is stable for R0 ≤ 1. In addition to Eqs. 5–7, 10,
the cumulative number of reported dengue cases C = C(t) evoles
according to

dC
dt

� pβ
I

N
S, (10)

where p is the fraction of infected individuals that were diagnosed
with dengue and reported to the health officials. As mentioned
above, Fortaleza has a population of N = 2.6 million. We use a
mortality rate of μH = 1/76 y−1 in accordance with the latest
World Bank life expectancy estimates 4.

A parameter estimation based on Eqs. 5–7, 10 means that we
have to determine the parameters β, γH, p and the initial fraction
of recovered individuals r0 = R(0)/N that best describe the
observed dengue outbreaks. To do so, we use Bayes’ theorem
to determine the posterior parameter distribution

P θ|D( )∝P D|θ( )P θ( ) (11)
based on the likelihood function P(D|θ) (i.e., the conditional
probability of obtaining the data D for given model parameters θ)
and the prior parameter distribution P(θ). For more details on
the Bayesian Markov chain Monte Carlo algorithm, see
Supplementary Material.

FIGURE 6 | Spatio-temporal characteristics of human mobility between neighborhoods. (A) Average neighborhood-neighborhood flux 〈fij〉 as a function of the
distance rij between neighborhoods i and j for the year of 2015. As shown, the rate flux of bus trips between neighborhoods of Fortaleza is independent of the distance
between the neighborhoods. (B) The right panel shows the spatio-temporal correlations 〈cij〉 with τ = 0 as a function of the neighborhood-neighborhood flux fij for the
year of 2015. As presented, the spatio-temporal correlations of dengue cases have no significant dependence on fij. In both panels, the bars are the standard
deviations.

4[Dataset] https://data.worldbank.org/indicator/SP.DYN.LE00.IN, Retrieved 5
December 2020.
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To model one complete outbreak period, we use November as
the starting month in our simulations since the precipitation level
and case numbers then typically reach a minimum. In this way,
we can compare our results with those of Ref. [30]. In Table 3, we
summarize the inferred model parameters, median values, and
95% confidence intervals of the posterior distributions. In
addition, we also present the maximum likelihood (ML)
estimates which we use to compare the SIR model with the
actual dengue case data in Figure 7. We find good agreement
between the model predictions and the reported numbers of
dengue cases. Only the dengue outbreak peak between April and
June 2012 is difficult to capture due to an overwhelming number
of up to 1,000 new infections per day.

We now compare the obtained estimates with those of Ref. [30]
which focuses on dengue outbreaks in Thailand. In Ref. [30], the
number of reported dengue hemorrhagic fever (DHF) cases, a
more severe form of dengue fever, has been used, while we
considered the number of all reported dengue cases. The total
number of mentioned DHF cases in Thailand is roughly 75,000
with a total population size of 46.8 million in 1984 [30]. In contrast
to these results, the number of reported dengue cases in Fortaleza
in 2012 is almost 40,000 with a total population size of 2.5 million.
The attack rate in Fortaleza is thus about one order of magnitude
larger than that in Thailand. This alarming difference may be

partially a result of the different definitions of reported cases
(“DHF” versus “dengue fever”) as well as due to sub-
notification, but it also points out to the need of better control
measures to contain the outbreaks in Fortaleza. Overall, the
parameter estimation for the epidemic years 2012 and 2015
leads to values in a similar range compared to the results of
Ref. [30]. The ML estimates of the probability of reporting a
dengue case, p, and the initial fraction of recovered individuals,
r0, are by a factor 2–3 larger in our parameter estimation. On the
other hand, the ML estimates of β and γ are slightly smaller in
Fortaleza. According to our statistical analysis, the basic
reproduction number as defined in Eq. 9 (basically the fraction
of β and γH) is 1.44 (2012) and 1.50 (2015). TheseML estimates are
about 30–40% larger than the correspondingML estimate reported
for the aforementioned dengue outbreak in Thailand [30].

4 CONCLUSION

The re-emergence of dengue and other neglected tropical diseases
is a major threat to public health in different countries. Various
factors such as environmental conditions and human mobility
affect the spread of dengue [21, 31, 36, 37], making it difficult to
contain an outbreak [45, 46].

TABLE 3 | Posterior parameter estimations. Based on uniform prior SIR parameter distributions, the corresponding posterior distributions for the dengue outbreaks in 2012
and 2015 have been obtained using Bayesian Markov chain Monte Carlo sampling. For both years an additional maximum likelihood (ML) parameter estimate is given.
The posterior distributions are characterized by their median values and their 95% confidence intervals (CI).

Parameter ML Median 95% CI

β (d−1) Composite transmission rate 0.1453 (2012) 0.1648 (2012) (0.1409, 0.2138) (2012)
0.1518 (2015) 0.1606 (2015) (0.1453, 0.1966) (2015)

γH (d−1) Human recovery rate 0.1011 (2012) 0.1121 (2012) (0.1005, 0.1650) (2012)
0.1009 (2015) 0.1064 (2015) (0.1004, 0.1299) (2015)

p Probability of reporting a dengue case 0.0368 (2012) 0.0432 (2012) (0.0348, 0.0609) (2012)
0.0218 (2015) 0.0234 (2015) (0.0206, 0.0291) (2015)

r0 Initial fraction of recovered individuals 0.0594 (2012) 0.0769 (2012) (0.0066, 0.2928) (2012)
0.0618 (2015) 0.0636 (2015) (0.0045, 0.2609) (2015)

R0 Basic reproduction number 1.4367 (2012) 1.5384 (2012) (1.2184, 1.9584) (2012)
1.5039 (2015) 1.4904 (2015) (1.3471, 1.7396) (2015)

FIGURE 7 | SIR model fit for the epidemic years 2012 and 2015. The maximum likelihood fits of the SIR model (black solid lines) as defined by Eqs. 5–7, 10 for the
epidemic years 2012 (A) and 2015 (B). The cumulative number of reported dengue cases according to our data set is indicated by green dots.
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We analyzed recent dengue outbreaks in Fortaleza, one of the
largest Brazilian cities, and identified regions which exhibit a large
number of dengue infections and Aedes aegypti larvae over
different years. Our results show that the characteristic length
scale of correlations between the number of cases at different
locations is at least of the order of the system size. Using data from
bus transportation between pairs of neighborhoods in the city, we
propose that a plausible explanation for this observation is that
the human mobility can affect the dissemination of the virus.
Indeed, human movement seems to be a factor in the
transmission dynamics, particularly in large tropical cities
where successive dengue epidemics have been recorded.
Interestingly, there is an extensive literature on the
investigation of spatial correlations of events in urban areas in
terms of clustering and percolation transition (see, for example,
Refs. [47, 48]). In these studies, the correlations between pairs of
sites usually decay with their geographical distance. In the present
case, due to urban mobility, the correlation length of the
contagion process is at least of the order of the system size,
leading to the observed flat behavior of the correlations with
distance.

We also compared the disease transmission characteristics of
dengue outbreaks in Fortaleza with those reported for Thailand
[30]. The inferred basic reproduction number of dengue
outbreaks in Fortaleza is about 30–40% larger than the ML
estimate reported in Ref. [30]. Moreover, we classified epidemic
and non-epidemic years based on an analysis of spatio-temporal
correlations and their corresponding distributions. We found
that for non-epidemic years the distribution of spatial
correlations is strongly skewed towards strong correlations in
epidemic years. This means that in an epidemic year, spatial
correlations are typically of the same size, pointing towards
recurrent connections between neighborhoods. By comparing
spatial correlations between epidemic and non-epidemic years,
we found that in epidemic years spatial correlations are higher
by a factor of about three as compared to non-epidemic years.
This shows that during an epidemic the outbreaks do not occur

independently in different neighborhoods but affect each other.
Using spatial-correlation analyses may also allow to predict at
an early stage if a year tends to be epidemic or not.
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