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Viscoelastic fluids, such as polymers, paints, and DNA suspensions, are almost
everywhere and very useful in the industry. This article aims to study the significance of
ramped temperature in the dynamics of viscoelastic fluid. Magnetohydrodynamic (MHD)
effect is considered in the presence of Lorentz force. The flow is considered in a porous
medium using generalized Darcy’s law. Heat transfers through convection, and the fluid
near the plate takes heat in a ramped nature. Instead of the classical fluid model which has
certain limitations, a generalized model is considered with fractional derivatives of the
Atangana–Baleanu type. The well-known technique of Laplace transform was adopted to
obtain the solutions which are displayed in various plots with detailed discussion analysis.
From the graphical analysis, it is worth noting that the Atangana–Baleanu fractional model
shows a good memory effect on the dynamics of the viscoelastic fluid as compared to its
classical form.
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1 INTRODUCTION

Viscoelastic fluids (VFs) form a subclass of non-Newtonian fluids such as the blend of a solvent and
some polymer. Other examples include paints, DNA suspensions, some biological fluids, and other
products from the chemical industry. One of the well-known examples from the list of VFs is an
Oldroyd-B fluid (OBF). Due to the non-linear relationship between stress and rate of strain, OBF has
the same nature as that of a non-Newtonian fluid. The idea of OBF was introduced in 1950, in the
pioneering work [1]. The OBF has many applications in fluid dynamics. This model is the
generalization of the Maxwell model. Many researchers analyzed OBFs based on their real-world
applications: the authors in Ref. [2] studied unsteady OBF over a vertical plate in a porous medium.
The authors in Ref. [3] analyzed the influence of generalized OBFs using numerical simulations. The
authors in Ref. [4] developed analytical and numerical solutions of a two-dimensional multi-term
time-fractional OBF model. The authors in Ref. [5] considered generalized OBF flow between two
infinite parallel rigid plates and numerically simulated the results. In the literature, the flow of
Oldroyd-B is less investigated using ramped wall velocity and temperature. These fluids have many
applications in different practical situations and real-world problems [6]. Some researchers tried to
investigate ramped wall velocity and temperature in their studies. The authors in Ref. [7] examined
natural convection in polyethylene glycol-based molybdenum disulfide nanofluid under ramped wall
condition and other additional effects. The authors in Ref. [8] discussed ramped wall temperature
and ramped wall concentration with the Hall effect in an unsteadyMHD flow of a second-grade fluid
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through a porous medium. The authors in Ref. [9] developed a
general solution of MHD free convection flows over a vertical
plate with ramped wall temperature. The authors in Ref. [10]
examined entropy generation in MHD flow over a vertical plate
embedded in a porous medium. The authors in Ref. [11]
considered ramped wall temperature conditions and studied
irreversibility analysis in time-dependent flow past a plate
(vertical) with arbitrary wall shear stress. The authors in Ref.
[12] studied MHD flow over an inclined plate under a conjugate
effect and ramped wall temperature condition in a porous
medium.

Recently, many fractional derivative operators have been
used for different scientific reasons in the field of fluid
dynamics and in many other dynamical systems. Some of
these applications are found in fractional-order neurons for
parameter estimation, fractional viscoelasticity models,
fractional single-phase-lag models of heat conduction, and
the eigenproblem of molecular alignment, as discussed in Ref.
[13] and in many other references. Sene [14, 15] used
fractional derivatives and developed two different fluid
models. He obtained exact analytical solutions and plotted
results graphically with a detailed discussion analysis. In Ref.
[16], the authors studied fractional derivatives together with
their various applications in reservoir engineering problems.
In Ref. [17], the authors investigated radial basis functions
using a fractional derivative approach. In Ref. [18],the authors
applied fractional derivatives in the field of physics and
modern sciences. In Ref. [19],the authors discussed the
theory of fractional derivatives and its application in
mathematics, physics, chemistry, and engineering. In Ref.
[20],the authors introduced new fractional derivatives (AB
fractional derivatives) with non-local and no-singular kernel.
They presented some useful and important properties of the
new derivative with application in a fractional heat transfer
model. After that, this new idea was applied to several other
problems. In Ref. [21], the authors applied the
Atangana–Baleanu fractional derivative in the Caputo sense
to the convective flow of CMC-based CNT nanofluid in a
vertical microchannel. In Ref. [22],the authors studied the
magnetic field effect on the convection flow of Newtonian
viscous fluid past a moving plate such that its temperature is
constant at the boundary and its concentration depends on
time. The problem is modeled using the Caputo–Fabrizio time
fractional derivative. In Ref. [23], the authors used the Caputo
time-fractional derivative and examined the natural
convection flow through a vertical cylinder. In Ref. [24],
Sheikh et al. provided a comparative analysis of
Caputo–Fibrizio and Atangana–Baleanu derivatives for a
generalized Casson fluid model with heat generation and
chemical reaction.

In this work, the idea of fractional derivatives
(Atangana–Baleanu fractional derivative in the Caputo sense)
is applied to develop a fractional model of OBF. The OBF is
considered as electrically conducting and passing through a
porous medium. The flow is considered over a vertical plate
with ramped heating, which sufficiently influences thermal
analysis and the flow itself due to the involvement of

convection term in momentum equation (25). This article is
arranged in the following sections. Section 2 includes the
mathematical modeling of the problem. The governing
equations are derived from the constitutive equations of OBF.
Initial and boundary conditions are defined. The next section
(Section 3) includes solution methodology with a basic definition
of the AB fractional derivatives. The solution of energy equation
is given in sub-Section 3.1, and the solution of momentum
equation is given in sub-Section 3.2. The results are computed
and plotted in Section 4with a detailed discussion analysis. At the
end, conclusion remarks are added in Section 5.

2 MATHEMATICAL MODELING

This report focuses on the dynamics of incompressible unsteady
OBF over a vertical plate. The flow is considered in a porousmedium
with the magnetic field applied in a perpendicular direction. The
equations of continuity and momentum are given as follows:

∇ · �V � 0, (1)

ρ⎡⎢⎢⎢⎣z �V

zt
+ ( �V · ∇) �V⎤⎥⎥⎥⎦ � divT + J × B + gρβT(T − T∞) +R. (2)

Here, �V is the velocity vector and T is the Cauchy stress
tensor T.

The velocity field (for one-dimensional and uni-directional
flow) is given as follows:

�V � [u(y, t), 0, 0]. (3)
The corresponding Cauchy stress tensor is given as follows:

T � −pI+S . (4)
Here, −pI and S represent the indeterminate stress tensor

and extra stress tensor, respectively. In addition, extra stress
tensor S is given by the following relation:

μ(1 + λR.D
Dt

)� S(1 + λ.D
Dt

), (5)

where μ, λr, and λ show dynamic viscosity, retardation time, and
relaxation time, respectively. Furthermore, material time
derivative D

Dt and Rivlin–Ericksen tensor A1 can be written as
follows:

DS
Dt

� zS
zt

+ u(zS
zx

) + v(zS
zy

) + w(zS
zz
), (6)

A1 � ∇. �V + (∇. �V)T

� [ 0 uy

uy 0]. (7)

In the given study, we have considered Oldroyd-B fluid;
therefore, modified Darcy’s law can be written in the following
form:

−μϕ
k0

(1 + λR
z

zt
). �V � (1 + λ

z

zt
)R, (8)
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where ϕ represents the porous medium and k represents
permeability of the porous medium.

From Maxwell equations,

�∇ · B � 0, (9)
�∇ × �E � −zB

zE
� 0, where E � 0. (10)

Here, E is the total electric field. By Ohm’s law (generalized form),

J � σ �E + �V × B( ) � σ �V × B( ). (11)
The cross product with the magnetic field gives

J × B � σ �V × B( ) × B B � B0 + b, (12)
Here, B0 is the applied magnetic field and b is the induced
magnetic field by polarization (perturbation produced by fluid
motion).

Eq. 12 further reduces to

J × B � −σ B × �V × B( ){ } � −σ (B · B) �V − B · �V( )B{ } (13)
J × B � −σ (B · B) �V − 0{ } � −σB2

0u. (14)
In view of Eqs 3–14, equations take the following form:

ρ(1 + λ
z

zt
) zu

zt
� μ(1 + λR

z

zt
) z2u

zy2
− σB2

0(1 + λ
z

zt
)u

− μϕ

k0
(1 + λR

z

zt
)u + gρβT(1 + λ

z

zt
)(T − T∞).

(15)
Similarly, the temperature equation in the presence of thermal

radiation and heat generation is given as follows:

ρCp
zT

zt
� k

z2T

zy2
− zqr
zy

+H0(T − T∞). (16)

Here, ρCp, qr, k, and H0 are heat capacitance, radiation,
thermal conductivity, and heat generation constant,
respectively. Eq. 16 is the same as Eq. 8 in Ref. [24].

The radiative heat flux q′r is given as follows:

qr � −4σ1

3k1

zT4

zy
, (17)

Using the Taylor series expansion to linearized T4 given in Eq.
17, we get

T4 � 4TT3
∞ − 3TT4

∞ (18)
Substituting the result obtained in Eq. 18 into Eq. 17 yields

zqr
zy

� −16σ1
3k1

T3
∞

z2T

zy2
. (19)

Substituting Eq. 19 in Eq. 16 gives

ρCp
zT

zt
� k(1 + 16σ1

3kk1
T3
∞) z2T

zy2
+H0(T − T∞). (20)

The following constraints on the physical model are imposed.
Initially, when time t � 0, the fluid and plate were at rest at initial
temperature Tw. At time t> 0, both the temperature and velocity
are higher or lower than T∞ + (Tw − T∞) t

t0
and u0 t

t0
when t< t0,

respectively. This condition is also known as ramped condition
for temperature and velocity. But when t≥ t0, the temperature
and velocity remain unchanged. In other words, for small values
of time, the temperature and velocity are referred to as ramped
velocity and temperature, while for greater values of time, the
velocity and temperature are known as isothermal velocity and
temperature.

Under the aforementioned assumption, the following initial
and boundary conditions are defined:

u(y, t) � 0, T(y, t) � T∞, for y> 0 and t � 0,

u(y, t) � ⎧⎪⎪⎨⎪⎪⎩
u0

t

t0
if 0< t< t0

u0 if t> t0
, for y � 0 and t> 0,

T(y, t) � ⎧⎪⎪⎨⎪⎪⎩
T∞ + (Tw − T∞) tt0 if 0< t< t0

Tw if t> t0
, for y � 0 and t> 0,

u(y, t) � 0, T(y, t) � T∞, for y → ∞ and t> 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21)

The following dimensionless variables are used for
dimensional analysis:

η � u

u0
, ξ � u0y

]
, τ � tu2

0

υ
, τ0 � υ

u2
0

, Θ � T − T∞

Tw − T∞
, (22)

Introducing the aforementioned equation in Eq. 15, 20, the
following non-dimensional system is obtained:

(m0 + λ0
z

zτ
) zη

zτ
� (1 + λ1

z

zτ
) z2η

zξ2
−m1η + Gr(1 + λ0

z

zτ
)Θ
(23)

zΘ
zτ

� (1 +Nr

Pr
) zΘ

zξ2
+H1Θ, (24)

with transformed initial and boundary conditions

η(ξ, τ) � 0, Θ(ξ, τ) � 0 for ξ > 0 and τ � 0
ητ(ξ, τ) � 0, ηξ(ξ, τ) � 0 for ξ > 0 and τ � 0 (25)

η(ξ, τ) � { τ 0< τ ≤ 1
1 τ > 1 for ξ � 0 and τ>0

Θ(ξ, τ) � { τ 0< τ ≤ 1
1 τ > 1 for ξ � 0 and τ>0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (26)

and the non-dimensional parameters and constants are as
follows:

M � σB2
0]

u2
0ρ

, Pr � μCp

k
, Gr � gβT](Tw − T∞)

u3
0

,

1
K

� υ2ϕ

k0u2
0

, Nr � 16σ1
3kk1

T3
∞, λ0 � λu2

0

υ
, λ1 � λRu2

0

υ

H1 � H0υ2

ku2
0

, m0 � 1 + λ0M + λ1
K
, m1 � M + 1

K
.
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3 RESEARCH METHODOLOGY:
ATANGANA–BALEANU FRACTIONAL
DERIVATIVE
To transform the OBF classical model into the Atangana–Baleanu
(AB) fractional model of order β, it is required to first define the
Atangana–Baleanu fractional derivative as follows:

Definition: The Atangana–Baleanu (AB) time fractional
derivative in the Caputo sense, with fractional order β, is
defined as [20, 21]

ABDβ
τF(τ) �

B(β)(1 − β) ∫
τ

0

F′(χ)Eβ(−β(τ − χ)β
1 − β

)dχ, (27)

where B(β) is the normalization function, B(1) � B(0) � 1
and β ∈ [0, 1].

Here, Eβ is the generalized form of theMittag–Leffler function,
which is defined as follows:

Eβ(−tβ) � ∑∞
n�0

(−t)βn
Γ(βn + 1). (28)

The Laplace transform (LT) of the AB fractional derivative in
the Caputo sense is given as follows:

L(ABDβ
τF(τ)) � sβL(F(τ)) − sβ−1F(0)(1 − β)sβ + β

. (29)

3.1 Solution of Energy Equation
The non-dimensional classical heat Eq. 24 is transformed into the
fractional form by incorporating the AB fractional derivative of
order β as given in the following:

ABDβ
τΘ(ξ, τ) � (1 +Nr

Pr
) z2Θ

zξ2
+H1Θ. (30)

Note that Eq. 30 is similar to Eq. 12 in Ref. [24]. The Laplace
transform is applied to Eq. 30, taking into account the initial
condition from Eq. 25, the following transformed equation is
obtained:

[ sβ(1 − β)sβ + β
] �Θ(ξ, s) � (1 +Nr

Pr
) z2 �Θ

zξ2
+H1

�Θ. (31)

Eq. 31 can be written in a more suitable form as follows:

sβN1

sβ +N2

�Θ(ξ, s) � (1 +Nr

Pr
) z2 �Θ

zξ2
+H1

�Θ. (32)

The solution of Eq. 32 gives

�Θ(ξ, s) � c1e
−ξ

     
PrD1(s)

√
+ c2e

ξ
     
PrD1(s)

√
, (33)

where N1 � 1
1−β, N2 � β

1−β , and D1(s) � [N1sβ−H1(sβ+N2)]
(sβ+N2)(1+Nr) .

Now using the boundary conditions from Eq. 26, Eq. 33 gives
the following solution:

�Θ(ξ, s) � [1 − e−s

s2
]e−ξ      

PrD1(s)
√

. (34)

After the Laplace inversion, Eq. 34 gives

Θ(ξ, τ) � Θ1(τ) ⊗ Θ2(ξ, τ), (35)
where

Θ1(τ) � L−1[Θ1(s) � [1 − e−s

s2
]];

Θ2(ξ, τ) � L−1[Θ2(ξ, s) � [e−ξ      
PrD1(s)

√ ]].
The ⊗ symbol shows the convolution product.

3.2 Solution of Momentum Equation
The fractional form of Eq. 23, after using the Laplace transform
method, reduces to the following form:

(m0 + λ0sβ(1 − β)sβ + β
)s�η(ξ, s) � (1 + λ1sβ(1 − β)sβ + β

) z2�η(ξ, s)
zξ2

−m1�η(ξ, s) + Gr(1 + λ0sβ(1 − β)sβ + β
) �Θ(ξ, s),

(36)
equivalently

(m0 + sβλ0N1

sβ +N2
)s�η(ξ, s) � (1 + sβλ1N1

sβ +N2
) z2�η(ξ, s)

zξ2
−m1�η(ξ, s)

+ Gr(1 + sβλ0N1

sβ +N2
) �Θ(ξ, s).

(37)
The aforementioned equation can be written in more

appropriate forms as follows:

(1 + sβλ1N1

sβ +N2
) z2�η(ξ, s)

zξ2
− (m0 + sβλ0N1

sβ +N2
)s�η(ξ, s) −m1�η(ξ, s)

� −Gr(1 + sβλ0N1

sβ +N2
)�Θ(ξ, s),

z2�η(ξ, s)
zξ2

− (m0 + sβλ0N1
sβ+N2

)
(1 + sβλ1N1

sβ+N2
) s�η(ξ, s) − m1(1 + sβλ1N1

sβ+N2
) �η(ξ, s)

� −Gr (1 + sβλ0N1
sβ+N2

)
(1 + sβλ1N1

sβ+N2
) �Θ(ξ, s),

z2�η(ξ, s)
zξ2

− [(m0(sβ +N2) + sβλ0N1)]s
(sβ +N2 + sβλ1N1) �η(ξ, s)

− m1(sβ +N2)
(sβ +N2 + sβλ1N1) �η(ξ, s)

� −Gr (sβ +N2 + sβλ0N1)
(sβ +N2 + sβλ1N1)

�Θ(ξ, s),
z2�η(ξ, s)

zξ2
−D2(s)�η(ξ, s) −D3(s)�η(ξ, s) � −GrD4(s)�Θ(ξ, s),

(38)
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FIGURE 1 | Influence of the AB fractional operator on velocity for ramped and isothermal wall temeprature.

FIGURE 2 | Influence of Gr on velocity for constant and ramped temperature.

FIGURE 3 | Influence of Pr on velocity for constant and ramped temperature.
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FIGURE 4 | Influence of M on velocity for constant and ramped temperature.

FIGURE 5 | Influence of K on velocity for constant and ramped temperature.

FIGURE 6 | Influence of on velocity for constant and ramped temperature.
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where D2(s) � [m0(sβ+N2)+sβλ0N1]s
sβ+N2+sβλ1N1

; D3(s) � m1(sβ+N2)
(sβ+N2+sβλ1N1); and

D4(s) � (sβ+N2+sβλ0N1)
(sβ+N2+sβλ1N1).

The solution of the homogeneous part of Eq. 38 is

�ηc(ξ, s) � c3e
−ξ

    
D5(s)

√
+ c4e

ξ
    
D5(s)

√
, (39)

and the corresponding non-homogeneous part is

�ηp(ξ, s) � D6(s)−ξ
     
PrD1(s)

√
; D5(s) � D2(s) +D3(s);

D6 � 1 − e−s

s2[PrD1(s) −D5(s)].
(40)

Eqs 39, 40 give the total solution as

�ηc(ξ, s) � c3e
−ξ

    
D5(s)

√
+ c4e

ξ
    
D5(s)

√
−D6(s)−ξ

     
PrD1(s)

√
. (41)

With the help of the boundary condition given in Eq. 26, and
after finding constants, the final solution is

�η(ξ, s) � D7(s)e−ξ
    
D5(s)

√
+D6(s)e−ξ

     
PrD1(s)

√
;

D7(s) � 1 − e−s

s2
−D6(s).

(42)

The inverse Laplace transform of Eq. 42 is

η(ξ, τ) � D7(τ) ⊗ D8(ξ, τ) +D6(τ) ⊗ D9(ξ, τ) (43)
with

D6(τ) � L−1[D6(s)];D7(τ) � L−1[D7(s)];D8(ξ, τ)
� L−1[e−ξ     

D5(s)
√ ];D9(ξ, τ) � L−1[e−ξ      

PrD1(τ)
√ ].

FIGURE 7 | Influence of λ1 on velocity for constant and ramped temperature.

FIGURE 8 | Impact of the AB fractional operator on temperature.
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4 RESULTS AND DISCUSSION

This section provides the graphical analysis of OBF with MHD
and porous medium effects with ramped wall velocity and
temperature. The problem is formulated in terms of
Atangana–Baleanu fractional derivatives. To find the analytical
solutions, the Laplace transform technique is applied. All the flow
parameters are discussed by graphical analysis. The solutions

obtained for the Atangana–Baleanu fractional OBF model have
been discussed, and the influence of all parameters is shown. The
influence of Grashof number Gr, magnetic number M, Prandtl
number Pr, radiation number Nr, and Atangana–Baleanu β is
studied in various plots.

The influence of fractional parameters β on velocity profile is
highlighted in Figure 1. It is found that an increase in fractional
parameters results in a decrease in velocity for both cases of

FIGURE 9 | Impact of Pr on temperature (AB fractional model).

FIGURE 10 | Impact of Nr on temperature (AB fractional model).
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ramped and isothermal temperature. This figure clearly shows
that as β → 1, the fractional model reduces to the classical
OBF model.

The impact of Gr on velocity profiles is shown in Figure 2.
From this figure, it is clear that increasing Gr results in an
increase in the buoyancy force, which enables to speed up the
fluid motion, thus resulting in an increase in the velocity of
OBF. Figure 3 shows the influence of Pr on AB fractional
velocity profiles. From this figure, it can be seen that increasing
Pr results in a decrease in the OBF velocity. Note that the
Prandtl number variation is shown only to see its effect on
velocity, and its chosen values do not correspond to a specific
non-Newtonian liquid. The effect of magnetic parameter on
OBF fractional velocity is highlighted in Figure 4. The
influence of M on velocity in both cases of ramped and
constant temperature increases, resulting in a decrease in
the velocity. However, the variation in velocity profiles in
case of constant temperature is more visible. It is true
physically as increasing M leads to an increase in the
Lorentz forces, and as a result, the retardation force
increases and hence the fluid velocity decreases.

The impact of porosity parameter is shown in Figure 5. It is
found that velocity increases with larger values of porosity
parameter. The impact of K on the fluid velocity is same as
expected. With increasing porosity, the retardation impact
decreases to a more permeable surface, and hence the velocity
increases. Figure 6 shows the influence of relaxation time λ0 on
the velocity profile for OBF AB fractional velocity. It is found that
by increasing λ0, the magnitude of velocity profile increases. The
influence of retardation time λ1 is highlighted in Figure 7. From
this figure, it is found that by increasing λ1, the magnitude of the
velocity profile decreases.

The influence of the AB fractional operator on temperature
distributions is highlighted in Figure 8. From this figure, it is

clear that with the increase in the fractional parameter in the
case of the AB derivative, the temperature of the OBF
decreases. It is worth noting that for β → 1, the temperature
goes to the classical form, which provides a comparison
between the classical and fractional forms. Figure 9 shows
the influence of Pr on temperature distribution. From this
graph, it is clear that with increasing Pr, the temperature of the
fluid decreases. The influence of Nr on temperature is
highlighted in Figure 10. From this figure, it is found that
with the increase in the values of Nr, the temperature of the
fluid increases. Figure 11 shows the influence of H1 on the
temperature profile. It is found that an increase in H1 results in
an increase in OBF temperature.

5 CONCLUSION

This study aimed to investigate the dynamics of OBF flowing over
a vertical plate with ramped heating and time-dependent velocity.
The effect of MHD is considered under the Lorentz force.
Additional effects of porosity, thermal radiation, and heat
generation are also considered. The fractional model of OBF
was first developed using Atangana–Baleanu fractional
derivatives and then the well-known technique of Laplace
transform was adopted to obtain the solutions, which are
displayed in various plots with detailed discussion analysis.
The significance of rising ramped temperature on the
dynamics of the unsteady viscoelastic fluid subject to Lorentz
force is concluded with the following main points.

• Atangana–Baleanu fractional parameter β reduces OBF
velocity in both isothermal wall temperature and ramped
heating; however, in ramped heating, the velocity profiles
are closer than in the isothermal heating case.

FIGURE 11 | Impact of H1 on temperature (AB fractional model).
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• Increasing Gr, K, and λ0 , the OBF velocity increases in
both isothermal wall temperature and ramped heating.

• Increasing M, Pr, and λ1 , the OBF velocity decreases in
both isothermal wall temperature and ramped heating.

• The greater values of H1 and Nr increase the OBF
temperature in both isothermal wall temperature and
ramped heating.

• The greater values of β and Pr decrease the temperature of
the fluid in both isothermal wall temperature and ramped
heating.
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NOMENCLATURE

S Extra stress tensor (Kgm−3)
Cp Specific heat (pressure constant) (JKgK−1)
Cf Skin friction coefficient (−)
T Cauchy stress tensor (−)
D
Dt Material time derivative (−)
A1 Rivlin–Ericksen tensor (−)
k1 Mean spectral absorption coefficient (−)
K Permeability (m2)
Nr (� 16σ1

3k1
T3

κ ) Radiation number (−)
Pr (� μCp

κ ) Prandtl number (−)
qr (� 4σ1

3k1
zT4

zy ) Radiative energy flux (−)
s Transform parameter (−)
T Temperature (K)
T∞ Temperature away from the boundary (K)
Tw Temperature at the boundary (K)

u Velocities along the x-axis (ms−1)
u0 Uniform velocity (−)

(y, t) Co-ordinates (space and time) (m, s)
g Acceleration due to gravity (ms−2)
H0 Heat generation coefficient in the dimensional form (−)
H1 Heat generation coefficient in the non-dimensional form (−)
Gr Grashof number (−)

Greek letters
β Fractional parameter (−)
βT Volumetric coefficient of thermal expansion (K−1)
λr Retardation time (ms−2)
λ Relaxation time (s)

κ Thermal conductivity W/(mK)
μ Dynamic viscosity (kg/ms)
] (� μ

ρ) Kinematic viscosity (m2s−1)
ρ Density of the fluid (Kg/m3)
σ1 Stefan–Boltzmann constant (Wm−2K−4)
η Non-dimensional velocity (−)
Θ Non-dimensional temperature (K)
ξ Non-dimensional space variable (-)
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