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The use of mid-circuit measurement and qubit reset within quantum programs

has been introduced recently and several applications demonstrated that

perform conditional branching based on these measurements. In this work,

we go a step further and describe a next-generation implementation of classical

computation embedded within quantum programs that enables the real-time

calculation and adjustment of program variables based on the mid-circuit state

of measured qubits. A full-featured Quantum Intermediate Representation

(QIR) model is used to describe the quantum circuit including its embedded

classical computation. This integrated approach eliminates the need to evaluate

and store a potentially prohibitive volume of classical data within the quantum

program in order to explore multiple solution paths. It enables a new type of

quantum algorithm that requires fewer round-trips between an external

classical driver program and the execution of the quantum program,

significantly reducing computational latency, as much of the classical

computation can be performed during the coherence time of quantum

program execution. We review practical challenges to implementing this

approach along with developments underway to address these challenges.

An implementation of this novel and powerful quantum programming pattern, a

random walk phase estimation algorithm, is demonstrated on a physical

quantum computer with an analysis of its benefits and feasibility as

compared to existing quantum computing methods.
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1 Introduction

Over the past decade, quantum computers have become

more advanced and accessible to users. Quantum applications

are theoretically capable of addressing a limited set of

computational challenges in an exponentially accelerated time

frame [1]. Quantum computing research has resulted in

hundreds of algorithms shown to function on near-term

quantum computing systems [2–4]. Recent work has shown

that these algorithms offer the potential for quantum

advantage over classical computing in specific domains [1, 5].

Progress towards quantum advantage has been hindered,

however, by significant challenges in the noisy intermediate-scale

quantum computing regime (a.k.a. NISQ) [2, 6]. Current

generation gate-model devices are restricted to a small

number of qubits, and can only execute a limited number of

instructions before “noise” or gate error dominates. To address

these limitations, creative algorithms such as VQE and QAOA

have been developed that take advantage of quantum and

classical devices working in tandem. In these hybrid

approaches, a classical computer program iteratively invokes a

quantum processor to execute a small part of the algorithm (with

some exponential speedup). Bits of problem data are passed to

the quantum processor and results returned to the classical

processor, which makes decisions about the next batch of

quantum instructions to execute and assembles a solution

from parts.

However, there is a fundamental limit to how well this

approach to hybridizing quantum and classical computing can

scale. Treating quantum and classical processors as disjoint

physical instruments, each with their own data transfer

pipeline and computational interface, constrains hybrid

algorithms to repeatedly switching between contexts and

exchanging intermediate data between devices. This high

latency means classical decisions can not be made to influence

evolution of quantum state before qubits decohere.

In this paper, we describe a new class of hybrid program in

which elements of classical computation are embedded directly

within the quantum program and execute in the same time

domain as the quantum operations. This approach delivers a

compelling advantage, reducing latency of data exchange by

orders of magnitude and providing flexibility in controlling

the quantum state during execution. We delineate the

characteristics of this new type of hybrid quantum/classical

computation, the hardware and software required to enable it,

and the opportunities it affords.

This capability requires a quantum computer that is able to

execute a series of quantum operations commingled with some

(classical) computation that uses the results of previous

operations to compute new results that may affect the next

iteration or series of quantum operations. The most important

aspect of this implementation is that the classical computation is

performed without terminating execution of the quantum

program and discarding the qubit state or returning to the

classical computer for those computations. Many small

classically driven adjustments to the quantum state can be

made based on measurements performed in the middle of the

program, resulting in a program that is adaptive in nature.

Unlike a classical computer with its programming constructs

such as variables, arithmetic computation and looping, a

quantum computer is typically implemented using highly

specialized hardware and firmware optimized to generate

complex sequences of high-resolution microwave or laser

pulses to manipulate sensitive and fragile quantum states.

These control systems have only a limited ability to perform

integrated classical computation under tight time constraints [7,

8]. We will discuss enhancements that may be necessary to fully

enable this new form of hybrid program.

This paper demonstrates a first step towards fully general, tightly

integrated quantum/classical processing, enabling new types of

quantum algorithms that have not been possible on prior

generations of hardware. This is not only an interesting capability

in and of itself, but also provides an impetus for the community to

fundamentally rethink what a quantum algorithm can look like and

to go beyond the limitations in current quantum algorithms.

The remainder of this paper is structured as follows. In

Section 2 we describe the context in which our work is

positioned relative to current quantum computing methods.

Section 3 introduces the software development methodology

that enables this new type of programming and the associated

hardware challenges. In Section 4 we outline two quantum

computing algorithms that are made possible with this new

capability. Finally, in Section 5, we present an early

implementation of one of the algorithms on a physical

hardware device and review the results of its execution and

associated trade-offs.

2 Background

We review here prior efforts on which our work is based.

First, we examine characteristics of an established hybrid

approach used in many algorithms available to users of

today’s quantum computers. We then consider algorithmic

enhancements that take advantage of recent hardware

advances such as mid-circuit measurement and reset along

with near-term implementations of real-time classical

computation. Taken together, these features of the current

and upcoming generations of hardware describe the current

state of existing hybrid quantum/classical computation.

2.1 Hybrid quantum applications

We first review two essential hybrid algorithms that

interleave classical and quantum processing to reduce
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resources such as overall circuit size, depth, and number of qubits

as a way to work around the limited coherence time and fidelity

of qubits today. However, the constraints of data transfer

between classical and quantum processors pose a barrier to

leveraging such schemes on sufficiently large devices. Below,

we highlight several specific challenges for practical use of these

hybrid algorithms.

2.1.1 Variational quantum eigensolver (VQE)
Estimating ground (and excited) state energies with accuracy

ε is at the core of many quantum applications in chemistry [9–11]

and materials science [12]. No efficient classical algorithms are

known that run in time poly (log (1/ε)), whereas a quantum

computer makes this possible in principle. With VQE, a

Hamiltonian describing a physical system is simulated using

iterative execution of a quantum circuit which prepares an

approximate wavefunction, the so-called “ansatz,” and a

variational algorithm is used to upper bound its ground state

energy [13]. By suitably grouping Hamiltonian terms, the family

of quantum operations U(θ) used in the ansatz and the circuit

that simulates Hamiltonian terms can be chosen to have a low

number of entangling gates, which is advantageous for execution

on near-term quantum devices.

VQE is inherently a hybrid algorithm, as classical code is used

to optimize the parameter vector θ in the ansatz U(θ) by applying

a classical method such as gradient descent, SPSA [14], or the

gradient-free Nelder–Mead method, while the quantum

computer is used to evaluate a cost function (the sum of

estimated Pauli expectations provides an approximate upper

bound of the minimum energy). Classical computations

alternate with quantum computations so that the quantum

state does not need to stay coherent while classical

optimization takes place. An advantage of this hybrid method

over other quantum algorithms is the trade-off of circuit size

against total number of repetitions necessary to reach a target

accuracy of ε.

2.1.2 Quantum approximate optimization
algorithms (QAOA)

Optimization problems such as MAX-CUT are among the most

important tasks addressed by classical methods. In order to find

solutions more efficiently with quantum computing, we can use

the QAOA algorithm [15] by expressing optimization problems

in terms of finding the highest energy configuration of a spin

Hamiltonian that is diagonal in the computational basis. A

variational algorithm is then used to optimize, with suitable

classical optimization methods, weights applied to a quantum

circuit consisting of alternating evolution under the problem

Hamiltonian and a non-diagonal mixing Hamiltonian used to

move amplitude between different configurations. An additional

parameter defines the number of rounds applied in the QAOA

scheme and impacts depth of the resulting circuit. For a large

number of rounds, the Trotter–Suzuki decomposition is a

limiting case, while for a small number of rounds the method

is not more powerful than classical methods [16].

Similar to VQE, this algorithm is hybrid as the classical code

used to optimize the parameter vectors is interleaved with

quantum processing used to evaluate the cost function. The

quantum state need not stay coherent while classical

optimization takes place. An advantage of this hybrid method

over approaches based on the Trotter–Suzuki decomposition is

to trade off depth of circuit size with quality of solution.

A common structural element of both of VQE and QAOA is

the alternating execution of classical optimization code with

quantum code. While this specific structure makes it possible

to perform these algorithms on the current generation of

quantum computers, it introduces significant challenges in

minimizing the total time to solution. Several solutions have

emerged to partially address these.

A non-negligible time is required to compose a quantum

circuit and modify its parameters prior to each iteration. Some

quantum software frameworks [17–19] support “parameter”

values as arguments to quantum operations. A quantum

circuit may be created using parameters instead of fixed

values and is compiled once with these symbolic values. Prior

to each execution, current parameter values are injected by a

second compiler pass or in the backend system, resulting in a

reduction in time consumed by program composition.

Compounding this is latency involved in initiating execution

of a quantum circuit and communication between the classical

and quantum computers [20], especially pronounced when using

a cloud computing service. Rigetti’s quantum–classical cloud

platform was one of the first systems to offer execution of

classical code on a system physically co-located with the

quantum system, considerably reducing data transfer latency

[21]. The Qiskit Runtime system [22, 23] and Quantum

Serverless [24] take this a step farther, co-locating the classical

and quantum systems, but also executing all iterations of an

iterative application as a single job, eliminating lengthy queuing

times introduced when many users share a single system.

Both of these approaches offer faster near-time execution,

albeit not real-time execution of classical code while the quantum

state remains coherent (terminology introduced by IBM

Research [25]); see Figure 1 for a schematic comparison

between near-time and real-time quantum execution. A

significant latency still remains in the time taken to initialize

the quantum circuit and the transfer of data between the classical

processor and the quantum processor. To bring execution times

down and get closer to real-time, more advanced methods are

needed.

2.2 Mid-circuit measurement

In a recent innovation, both IBM [26, 27] and Quantinuum

[28, 29] have shown ways to performmeasurement in the middle
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of executing a quantum circuit, with several benefits. One, a

measurement can be taken and qubit state reset afterwards,

effectively enabling the reuse of qubits. This facilitates the

implementation of algorithms that require fewer qubits by

using an ancilla that provides state that is carried forward. An

array of the individual measurements can be returned and

additional analysis performed by a classical driver program.

Two, each measurement can trigger branching to logically

different parts of a circuit. This permits more complex algorithms

to be encoded within a single execution of a quantum program.

However, the use of branching alone requires that all subsequent

computational paths be delineated in the circuit, either in code or

using a lookup table, an approach which can grow exponentially

with the number of branch points. While this offers an

improvement in program control, the benefit is lost with

larger problems. Nonetheless, there are a number of

algorithms, a few described below, that are able take

advantage of the mid-circuit measurement capability to

implement programs that have lower depth and require fewer

qubits.

2.2.1 Repeat-until-success methods (RUS)
Paetznick and Svore [30] introduced “repeat-until-success”

(RUS) circuits, a method that is useful for the ε-approximate

synthesis of unitaries over basic gate sets such as the Clifford + T

set. The targeted unitary is implemented with a probability p which

constitutes the “success” case and fails with probability 1 − p which

results in the given state being affected by a Clifford gate. This leads

to a branching on a classical bit indicating success: if the successful

branch is taken, the computation continues and the next gate is

applied, if unsuccessful, the affected Clifford gate is undone and

another attempt is made for the same gate (up to a maximum since

coherence time is limited). It has been shown [31, 32] that RUS

circuits can lower the expected cost of approximating Rz rotations

from 4 log2(ε) for deterministic methods [33, 34] to c log2(ε), where

the constant c is independent of the rotation angle and c ≈ 1. See also

Kliuchnikov et al. [35] for a recent overview of synthesis methods,

including probabilistic methods such as RUS.

2.2.2 Other iterative algorithms
Other quantum algorithms are iterative in nature and can

benefit from the interleaving of quantum/classical computation,

processing of mid-circuit measurements, or both. For example,

iterative phase estimation (IPE) functions with a smaller number

of qubits than quantum phase estimation, its non-iterative

equivalent. IPE measures and resets the state used to read out

phases along the way, relying on classical processing to compute

a result. The semi-classical Fourier transform differs from a

normal quantum Fourier transform in that a result

distribution is obtained using a single qubit that undergoes a

sequence of Hadamard operations, measurements and phase

corrections that depend on previous measurements [36]. This

provides a useful resource tradeoff between the number of qubits

required and the classical computation of phase corrections. Two

other examples use hybrid computing at the quantum algorithm

level: 1. the quantum sieving algorithm introduced by Kuperberg

[37] uses hybrid computing to cut down the time-complexity of

the dihedral hidden subgroup by re-grouping and further

processing quantum registers depending on mid-circuit

measurement results. 2. the quantum rejection algorithm [38]

uses hybrid computing to implement non-unitary operations

based on attaching auxiliary qubits followed by mid-circuit

measurements and branching on the outcomes. In addition,

there are phase estimation algorithms recently introduced that

use a novel technique known as the quantum singular value

transformation (QSVT) [39].

FIGURE 1
A schematic comparison between near-time hybrid programs (A) and the real-time hybrid quantum programs considered and implemented in
this work (B). Importantly, in the more advanced form we consider here, hybrid quantum–classical programs can make classical decisions based on
the results of quantummeasurements, and then use those decisions to condition and control future quantumoperations within the coherence times
of quantum registers.
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In all these cases, the quantum circuits make use of mid-

circuit measurement and reset to get more out of the quantum

processor, re-using qubits without exiting the program or using

branching to adapt the circuit to changes in the quantum state.

Combined with interleaving of classical and quantum processes,

this represents a second level of hybrid quantum programming.

However, this is only a small step towards taking full advantage of

the power of the quantum computer.

2.3 Real-time classical computation

There is another level of sophistication in hybrid algorithms

that is the subject of our work. Córcoles et al. [7] introduce the

concept that an adaptive version of iterative phase estimation,

exploiting dynamic circuits, could offer a substantial advantage

when noise and latency are low. They explore the effect of

conditional branching on qubit measurement and selection of

a new angle from a lookup table given the measurement result.

This is an important first step, as it is an improved form of

branching on measurement data. However, to achieve “real-

time” and scalable computation, we need a more efficient

solution that does not require programming of all branch paths.

Ideally, the results of one or more measurements could be

used as input to arithmetic operations that influence subsequent

processing. Rather than branch to specific hard-coded

subsequent operations, the rotation angles applied to gates

within the program can be the result of a computation in

which the angle values change every time. This is effectively

an adaptive quantum program, where variables are modified as

the execution progresses. Each iteration may perform a

progressively refined computation that converges to an

answer, re-using the set of parameterized quantum operations

embedded in the program.

An early example of this capability was demonstrated in a

randomized benchmarking (RB) application in Reinhold [40]. In

that experiment, each shot, or repetition, of the RB circuit was

comprised of a different sequence of random gates. This sequence

was generated with an embedded classical co-processor, which

was programmed to calculate pseudo random numbers using a

linear-feedback shift register algorithm. These random numbers

were then used in real-time to choose which Clifford gate to apply

to the qubit. Such an approach to RB has an enormous advantage

over pre-computing the entire sequence of random gates prior to

execution [41] and highlights one powerful application of real-

time classical computation. In another example, Ofek et al. [42]

demonstrated the use of real-time feedback as a key component

in Quantum Error Correction (QEC).

There are many language and hardware-independent

approaches to quantum-classical programming, several of

which are reviewed in Smith et al. [20], McCaskey et al. [43].

One effort underway, relevant to our discussion of hybrid

quantum programming, is an enhancement of the popular

OpenQASM 2.0 specification for quantum circuit definition,

called OpenQASM 3.0 [44]. A quantum program defined in

OpenQASM 3.0 can include classical computations as part of the

definition of a quantum circuit.

Complementing this, the QIR Alliance [45] is working to

develop a Quantum Intermediate Representation (QIR) that can

represent such programs that may involve arbitrary interleaving

of quantum and classical computation within a single program.

While OpenQASM 3.0 is a human-readable representation of a

quantum program, the role of QIR is to provide a format that is

optimally machine-manipulable, compatible with many existing

languages and compiler tools. While many of these efforts are

early stage, the move to embedding classical computation within

a quantum program is an important direction for the future of

quantum computing.

3 Enabling a new form of hybrid
program

Advancing quantum/classical computational capabilities

requires an end-to-end stack where each layer has a clear and

distinct purpose, as well as an arsenal of tools that enables

integration with such a stack. Ideally, an application program

is written in a form that makes it easy for users to represent all

elements of the solution concisely and in a portable fashion. It

should also be easy for providers of backend systems to

convert the intermediate representation of the solution to

execute on specific hardware architectures. We propose that

both can and need to be accomplished by introducing a

compilation stage that targets a language and hardware

agnostic holistic program representation to a backend

specific profile.

Below, we examine the improvements necessary in the

software stack to support a comprehensive form of quantum/

classical computation [20]. This includes a discussion about the

proposed Quantum Intermediate Representation and a look at

challenges to implementation on backend hardware systems.

3.1 The quantum software stack

To our knowledge, applications executed on quantum

hardware so far have been limited by the inability to execute

classical computations while the quantum state remains

coherent. This is evidenced by the prevalence of algorithms

such as VQE and QAOA, outlined in Section 2.1. These

algorithms consist of an outer loop that alternates classical

optimization of parameters and execution of a quantum cost

function that uses those parameters, requiring the quantum state

to remain persistent only for the duration of an iteration. Even so,

the practicality of leveraging such algorithms is limited by the

added latency due to the required data exchange.
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Practicality can be improved by reducing compilation times

using symbolic representation of parameters or minimizing

latency by co-locating the classical and quantum processors.

In principle, advanced multi-processor systems could achieve

very low-latency communication between the classical computer

and the quantum control and readout logic. However, to go

beyond this and enable tightly integrated classical processing

within the quantum application requires additional support

throughout the entire hardware and software stack.

While several dedicated quantum programming languages

have been developed [44, 46, 47], the predominant approach

within the ecosystem largely relies on leveraging popular classical

languages such as Python to generate a quantum circuit [48–51].

Such code generation or metaprogramming frameworks rely on

the host language to provide the convenience and expressiveness

to concisely and comprehensively articulate the program intent,

and can present a comprehensive API to a quantum compiler.

The actual quantum circuit is defined by invoking API calls to

build a program abstraction in the form of a data structure. This

intermediate data structure can be transformed and optimized by

the framework before it ultimately generates native hardware

instructions to be executed by the targeted quantum processor, a

process that requires a significant amount of logic and

sophistication.

Another approach is to enhance the semantics of a high-level

language, such as C or Python, with syntax to specify that certain

loops, variables, and arithmetic computations are to be executed

within the quantum program that is produced. Recently, full-

featured languages such as Q# and extended program

representations such as OpenQASM 3.0 have emerged that

embed these constructs directly into the language so that a

user is able to program using a unified abstraction and the

compiler is able to perform the necessary transformations

seamlessly.

With any approach, support for classical processing while

qubits remain live requires representing the logic for data

exchange and processing within an integrated intermediate

program representation. Whether the quantum application is

expressed using a domain specific language or a

metaprogramming framework, both its program abstraction

and its intermediate representation must not be limited to

capturing merely quantum operations but need to include

classical computation and control flow as well.

3.2 Quantum Intermediate representation

Challenges related to maximizing utility of a dedicated

accelerator working in concert with a central processing unit

are not unique to quantum computing. The use of GPUs in

modern computing inspired strategies for data exchange between

different processors and for facilitating code portability and

integration with existing tools and technologies. Quantum

processors, however, are early in their development and to

promote and accelerate innovation it is crucial that we do not

standardize on a representation for quantum programs that is

specific to a particular backend or default to a least common

denominator approach to deal with diverse hardware

technologies.

To address this challenge in quantum computing, and

specifically for the demonstration in this paper, we identified

these goals for an effective quantum intermediate representation:

1. Reduce and accelerate the development effort for software

frontends and hardware backends.

2. Permit application and library code to take advantage of novel

and unique backend capabilities while maintaining code

portability and interoperability.

3. Enable incremental progress in how different subprocessors

or processor components interact and communicate.

A quantum program written in a high-level language is

compiled to an intermediate representation that can be

executed on a variety of backend systems. While quantum

computing may be unique in many regards, a large part of

the required functionality to leverage advanced compilation

techniques is not. To accelerate advancement in quantum, our

efforts take advantage of the decades of experience at our disposal

on program and dependency analysis, powerful tools for code

transformations and optimization, as well as versatile

infrastructure for linking and machine code generation.

For these reasons, we chose to build on top of an LLVM-

based quantum intermediate representation (QIR). LLVM is a

mature collection of modular and reusable compiler and

toolchain technologies [52]. QIR is a language and

hardware agnostic format that allows for full

interoperability between quantum languages and libraries,

rewrite steps and optimization passes, and code generation

for quantum hardware. In particular, QIR builds on the design

goals of LLVM IR and extends those into the quantum

domain:

LLVM is a Static Single Assignment (SSA) based

representation that provides type safety, low-level

operations, flexibility, and the capability of representing

‘all’ high-level languages cleanly. It is the common code

representation used throughout all phases of the LLVM

compilation strategy [53].

Using a common intermediate representation allows the

software stack to support different source languages and

execution platforms without large amounts of redundant

development, to keep pace with a significant evolution of the

quantum processor architecture over time. To that end, QIR is an

integrated program IR representing not only quantum

instructions (e.g.: gate calls and measurements), but classical
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logic concepts such as branching, memory management and

variables.

As an illustration of QIR, Figure 2 shows a brief example of

how a simple program such as quantum teleportation can be

thought of as a flow through different blocks of quantum

instructions with classical branching on measurements (left

pane). To the right of this is shown the equivalent Q#

program and the QIR/LLVM code that is generated.

QIR specifies how to represent quantum subroutines

using a subset of the LLVM IR, following a similar

approach as the NVVM compiler IR [54], designed to

represent GPU compute kernels. A set of QIR profiles is

defined, each of which imposes additional rules that restrict

the IR to contain only those constructs that will be executed

on a specific QPU target.

Rather than require each frontend language to compile

into a processor specific profile, we introduce a compilation

stage which maps a QIR program to a targeted QIR profile. An

initial implementation for this stage is provided by the

Quantum Adaptor Tool (QAT) [55] with some custom

tooling to map the intermediate representation to a specific

backend architecture. This permits the development of

hardware-targeted capabilities without needing to specialize

quantum languages to depend on specific features of different

devices.

The QIR profile for a specific hardware device defines its

quantum gate set, its measurement capabilities, the control flow

constructs and classical computations that it can reasonably

support. Any program logic that cannot be reduced to

leverage only the supported profile will need to be executed as

pre- and post-processing steps much like the common practice

today. Programs that inherently require a unique hardware

feature can execute only on hardware that supports that

feature, yet the choice of representation does not add

portability constraints to those fundamental to the algorithm.

Conversely, a hardware feature that is not represented in the QIR

will not be accessible to users. A vital step towards making

quantum computing practical will require agreement in the

community about the operations supported in a QIR as well

as the transformations and optimizations applied at compile time

for both the quantum operations and the classical computations

within any program.

3.3 Hardware challenges

Any quantum program, written in a user-level

programming language, is typically converted to a

hardware-specific set of instructions that executes on a

quantum computer system. To enable quantum programs

that use a new form of hybrid quantum-classical

computation, we must account for the limitations that are

inherent in this generation of quantum computing system and

consider how these systems may evolve.

The quantum elements (or ‘qubits’) assembled into a quantum

computing system are manipulated using classical control

electronics to generate sophisticated sequences of microwave or

laser pulses depending on the technology used in the system. The

FIGURE 2
An example of compiling a simple Q# program toQIR (A) A schematic representing quantum teleportation as control flow between circuit-like
blocks (B)Q# implementation of quantum teleportation (C) The control flow graph for the QIR generated from the Q# source code. Note that the
conditional branching in the schematic at left and in the control flow graph at right is represented in the control graph as arrows between blocks of
quantum and classical instructions. Within each block, quantum gates such as __quantum__qis__x__body can be called using the call
instruction in QIR.
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nature of these quantum elements dictates that pulses on them are

defined on a nanosecond timescale, and the relative timing of pulses

on different quantum elements must be precisely coordinated.

Furthermore, to enable any useful control of a qubit,

programmable control flow that operates on the same timescale

is a requirement. Since a general-purpose CPU is not sufficient for

this, a quantum control system is often constructed with specialized

hardware such as an arbitrary waveform generator (AWG) or a field

programmable gate array (FPGA) that can be utilized to meet these

stringent requirements. At scale, a quantum computer is built with

many of these. Newer generations are becomingmore sophisticated,

for example, all on a single chip.

Unsurprisingly, the advantages of special purpose hardware

come with loss of general purpose computing features including

smaller instruction sets and less runtime memory. While specific

tradeoffs may be redressable, we describe here some possible

limitations when working with such specialized quantum control

systems.

Arithmetic operations performed on such systems may be

different from those of a general-purpose processor. To

minimize memory usage and execution time, fixed point

numerical representations are commonly used: an integer

of some number of bits with an implicit decimal point.

Other than division, basic arithmetic is fast, the periodic

2’s complement format provides an effective representation

of angles, and interpolation may be used to implement

operations such as sine and cosine. However, fixed point

representations are sensitive to both overflow and

underflow. When not used to represent periodicity, the

numeric range is quite limited, and for example,

multiplication by 0.5 results in the loss of 1 bit of precision.

The developer of a hybrid quantum program that includes

such arithmetic operations will need to be aware of any

constraints imposed by the target hardware system.

There is also a challenge in the generation of hardware level

instructions for a hybrid program that includes classical

computation. As long as the arguments to quantum gates are

known at compile-time, a transpiler can generate hardware-

specific code and pulse sequences to perform those operations

efficiently. However, to enable variable arguments to quantum

gates, the compiler must generate a more complex sequence of

code. A common way to implement support for variable

arguments on current architectures is to use a RZ basis gate

since it may be implemented virtually [56], i.e., as only a phase

change on subsequent pulses instead of as its own pulse. This

means it has effectively perfect fidelity and has zero run-time

cost. For this gate to be “virtual” but still accept variable

arguments at run-time, the classical processor must support

arithmetic and trigonometry.

There are many other challenges associated with this new

form of quantum program that adapts its execution to changes in

variable state. A program that executes a fixed series of operations

returns a dataset with a predictable structure, but if the paths are

modified during execution the structure of the return data can

vary across executions. Another complexity stems from the fact

that qubits are often manipulated in parallel, using what is

essentially a network of small classical processors, and the

bandwidth, latency, and connectivity of such networking

could be rate limiting factors at scale. In these early stages,

the introduction of classical computation to quantum

programs will be constrained by these multiple challenges.

Future generations of quantum control systems should take

these challenges into account.

4 The path to scalable and reliable
applications

With a quantum software stack that supports classical

computation and a portable intermediate representation, we

have the ingredients to enable a compelling advance in

quantum programming. Existing hybrid algorithms integrate

quantum and classical computation, but in a restricted and

disjoint fashion. We break new ground here by describing a

form of adaptive hybrid programming in which quantum and

classical computational primitives may be tightly interwoven,

rendering optional the need for quantum measurement data to

be repeatedly transferred across computer interfaces.

This capability inspires development of an entirely new

class of quantum algorithm, one in which reliability can be

improved and the breadth of applications extended. We

illustrate this idea with an example of a simple quantum

algorithm that uses both quantum and classical operations,

followed by a discussion of the range of features essential to

making this new capability complete. Later, we describe the

workings of an advanced algorithm that we execute on both a

quantum simulator and on quantum hardware (results

presented in Section 5).

4.1 Resetting a quantum system

To show how classical computation can be used to enhance a

quantum program, we highlight an algorithm designed to reset a

quantum bit from an unknown state in the shortest amount of

time required to achieve a desired “fidelity”. The probabilistic

nature of a quantum state makes it challenging to implement a

quantum reset protocol that has 100% certainty of success in a

single operation [57]. Several tutorial examples [8, 58]

demonstrate how multiple qubit reset operations are required

to achieve a high probability of success and how the number used

can affect the fidelity of the operation.

While this example is primitive, it serves to highlight the use

of program variables, classical loop execution, and simple

arithmetic during the time domain of quantum program

execution. Algorithm 1 describes its program logic.
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Algorithm 1. Active qubit reset.

The algorithm succeeds when it measures 0 twice in a row on

the qubit. If not successful after 4 measurements, the loop exits

and the reset has failed (not shown). Multiple variables are

defined and used within a classically controlled loop and a

counter is updated using simple classical arithmetic.

Operations such as these can be constructed using various

hardware-specific libraries [8] that support classical operations

and pulse control in the same program. However, OpenQASM-

level APIs used to develop portable algorithms and applications

typically permit branching on mid-circuit measurement but little

else that is classical in nature (Section 2.2). Our work is

specifically targeting general solutions with open

specifications, available for implementation across multiple

target platforms.

With classical computation embedded in the quantum

program, flow control logic and values applied to gate

operations may be computed “on-the-fly.” Performing an

arithmetic computation based on captured measurement

values to modify the current variable values results in a

program is “adaptive,” i.e. it changes its conditional behavior

in response to measurements of a continually changing quantum

state.

4.2 Scaling up the software stack

Several enhancements to the software stack and target

hardware are required to enable this new form of hybrid

programming. To illustrate, we focus on a particular model of

integrated classical and quantum computation: a parameterized

series of quantum operations executed repeatedly, interleaved

with classical computation of the next set of variable values and

control flow, with some iterations occurring while the qubits are

kept coherent and the quantum state maintained. This is

sufficient to allow us to run algorithms such as random walk

phase estimation, described in Section 4.3 below.

To accomplish this, our implementation of a quantum/

classical hybrid program supports the following programming

constructs in addition to features already available:

4.2.1 Parameters and variables
In Section 2.1, we showed how existing hybrid algorithms

minimize latency of circuit composition through the use of

parameterization, by which angles used in quantum gates are

defined symbolically and the actual values supplied at the time of

execution. In these algorithms, the classical values provided at

initialization, the “parameters,” are used as constants and not

modified during execution.

In our advanced real-time hybrid programs, we support

classical values that may be changed during the course of

execution. These values, or “variables,” may be used as

rotation angles in some systems, but could also be used as a

loop counter or as computed values to be returned to a calling

program. The quantum firmware and hardware is sophisticated

enough to adjust the execution of the circuit to a new variable

value, and to perform this adjustment during the course of its

execution. Optimal performance can be achieved if the quantum

program does not need to exit in order for new values to be

provided.

4.2.2 Variable arithmetic
Computing new variable values within the quantum program

requires sufficient arithmetic computational capability in the

quantum firmware to calculate new values as a function of

mid-circuit measurement results or other variables, between

execution of quantum operations. The calculation, including

the routing of the measurement results, must happen quickly

enough so that the qubits don’t decohere in the meantime.

In current hybrid algorithms, the classical code used to

execute a quantum circuit and iteratively converge on a

solution is typically implemented in a high-level language like

Python, C#, or Julia. This will not work for arithmetic operations

that are to be executed within the context and time domain of the

quantum program. Instead, these instructions need to be

converted to low-level assembly or bit codes that can execute

in the control system (FPGA or other) and must be synchronized

with quantum code execution, requiring advanced control

features not exposed in most of today’s quantum computers.

4.2.3 Conditional looping
Running the parameterized circuit repeatedly (looping)

requires support in the high-level quantum software for

defining the body of the loop (which may include quantum

and classical parts) and specifying the loop exit condition (either

a variable or a direct measurement). The upper levels of the

software stack, such as the compiler and the intermediate

representation, must be capable of recognizing variables, loop

constructs, and arithmetic computations that will be executed

within the quantum control system, and generating the

associated low-level firmware instructions in the assembly

language specific to a target hardware system.
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Taken together, these features make possible a new class of

hybrid quantum/classical program that can exploit the full

potential of both types of computing hardware working in

tandem. The integrated quantum program used in our

demonstration below was implemented in the Q#

programming language [59] and made use of the Quantum

Intermediate Representation (QIR) described in Section 3.2.

The Q# compiler follows the approach described in QAT

documentation [55] to separate the classical and quantum

portions of the QIR and generate the instructions required by

the backend hardware. These represent the first set of

programming tools capable of representing this advanced

form of hybrid computation.

4.3 Random walk phase estimation

For our demonstration, we focus on the example problem of

quantum phase estimation. A variety of algorithms are available

to determine the phase inherent in a given quantum operation, as

shown in the summary in Figure 3. We contrast several of these

algorithms with our approach, the RWPE algorithm, that uses

the new form of hybrid quantum/classical computation

introduced in this paper.

Consider the problem in which have a particular quantum

subroutine U whose action is represented by the unitary U whose

eigenvalues we would like to learn. For instance, in quantum

chemistry, U may be a step in an algorithm to simulate the

Hamiltonian of a given chemical system such that the eigenvalues

of U represent energy levels of that system.

In the case that U = eiHτ for some Hamiltonian of interest H

and for some time interval τ, then one can naïvely approach the

problem of finding the minimum eigenvalue E0 of H by

rephrasing as a minimization problem

E0 � min
�x
〈ψ �x( )|H|ψ �x( )〉, (1)

for some parameterized set of state preparations | �x〉 known as an

ansatz. Approximating this expectation from measurements of a

quantum device yields the variational quantum eigensolver

(VQE) algorithm [13] described in Section 2.1.

VQE has a number of limitations that make it difficult to

apply for larger problems. In particular, the state preparation

ansatz must be called repeatedly as the measurement implied by

(1) consumes O (1/ϵ2) copies of the state prepared by the ansatz

operation at each iteration in order to reach an accuracy of ϵ [60].
On the other hand, if we can prepare a register of qubits in an

eigenstate |ϕ〉 of U with eigenvalue eiϕ, such as by using adiabatic

state preparation, then we can use phase estimation to learn ϕ.

In particular, quantum phase estimation (QPE) uses the inverse

quantum Fourier transform (QFT) to prepare a register in the state |

b0b1 . . . bn−1〉 where ϕ = 0. b0b1 . . . bn−1 is an expression of ϕ as a

fixed-point binary number using n classical bits [61]. To avoid the

need for an additional register of n auxiliary qubits, iterative phase

estimation (IPE) methods improve uponQPE by estimating ϕ using

one classical bit at a time [62, 63, 67]. Critically, the ideal action of

each IPE measurement leaves the eigenstate |ϕ〉 invariant, such that
initial state preparation can be reused between iterations up to the

extent allowed by noise.

Algorithm 2. Iterative PE (single iteration).

By contrast with VQE, both QPE and IPE use O (1/ϵ) time to

estimate ϕ, roughly corresponding to the difference between the

standard quantum and Heisenberg limits for metrology. This

quadratic advantage together with the ability to reuse state

preparations allows for PE methods to be much more efficient

at estimating eigenvalues than VQE.

In practice, however, noise in near- and medium-term

devices can make running IPE challenging due to the large

gate depths introduced by calling U for a variety of different

evolution times while qubits remain coherent. To mitigate this,

one can consider resetting the eigenstate register when needed;

making this decision online, however, requires an online estimate

ϕ̂ of ϕ to detect when inconsistent measurement results are

FIGURE 3
A taxonomy of various phase estimation algorithms.
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observed. The problem of estimating a parameter conditioned on

a partial data record is a natural fit for Bayesian inference [64],

such that we consider Bayesian PE methods in this section.

Adopting a Bayesian approach also allows extending

adaptivity to include online experiment design as well as the

heuristics used by dynamic phase estimation [7].

If we consider a single IPE iteration of the form listed in

Algorithm 2, then the probability of getting a 1 at the end of the

iteration is given by Pr (1|ϕ; t) = cos2 (ϕt/2). This forms a likelihood

function, such that we can use Bayes’ rule to compute Pr (ϕ|d0, d1, . . . ,

dn−1) from a sequence ofmeasurements {d0, d1, . . . , dn−1} collected at

evolution times {t0, t1, . . . , tn−1} [68]. The expectation value over this

distribution thenminimizes the error in our online estimate of ϕ [69].

Performing exact Bayesian inference can be prohibitively

expensive, however, especially within qubit lifetimes. Online

approximation methods such as particle filtering [64, 70] can

reduce Bayesian inference to a Markov chain conditioned on

experimental measurements, diminishing the cost for Bayesian

PE. Rejection filtering phase estimation (RejF PE) [65] further

reduces costs by using rejection sampling to implement a reduced

form of particle filtering, allowing adaptive resets to be performed

with fewer classical arithmetic operations.

Recently, the random walk phase estimation (RWPE)

algorithm [66] was introduced to allow for computing online

estimates using only a few arithmetic expressions per iteration,

making it practical to use PE methods that are iterative on near-

and medium-term devices subject to noise.

Algorithm 3. Basic random walk phase estimation algorithm of

Granade and Wiebe [66].

Critical to the execution of RWPE is that the update of μ and

σ happens during execution so that the new values of each

variable can be used as inputs to U. This requires us to not

only branch based on measurement outcomes, but to maintain a

continually changing program state without returning to a

remote classical processor. This is the advantage of the hybrid,

adaptive algorithm of this type.

In contrast, to implement the equivalent program logic with

existing methods (no classical computation inside the quantum

code), one would re-write Algorithm 3 to use lookup tables rather

than floating-point variables—in particular, if we know the

whole history of quantum measurements made throughout an

RWPE run, then we can reconstruct μ and σ. This table grows

exponentially in size with the number of measurements made,

however. Practical applications may require between 20 and

60 iterations of RWPE (yielding respective relative accuracies

of 10–2 and 10–6), requiring the storage of prohibitively large

lookup tables.

The RWPE algorithm is a clear example of the methods

available to a developer with access to this new form of hybrid

and adaptive quantum programming. In the following section,

our efforts were focused on demonstrating the practical viability

of the approach by executing the RWPE program on a specific

quantum computing system.

5 Execution on quantum computing
systems

For this work, we executed the RandomWalk Phase Estimation

program in Section 4.3 on both a quantum simulator and a physical

quantum computing system.We discuss how this was accomplished,

focusing on the interpretation of the intermediate representation

RWPE program and the specific parameters used in the program to

control its execution. Execution of this program was performed on a

quantum simulator enhanced with classical computation capability

and a next-generation quantum computing system provided by

Quantum Circuits Inc (QCI) [71, 72]. The QCI system is one of

the first quantum computers designed with a control system that

provides the novel capabilities integral to the enhanced hybrid

quantum-classical programming model and necessary for

execution of the RWPE program that was selected as the primary

example.

5.1 Compiling RWPE and interpreting QIR

The quantum intermediate representation (QIR) discussed in

Section 3.2 enables the abstract definition of an advanced quantum

program in a form that is independent of any specific target system.

The QIR can be produced from a variety of higher-level

programming languages. For this demonstration, we chose to

define the RWPE program in the Q# language (source code

shown in section A1), taking advantage of QIR generation

support provided by the Q# compiler. We then utilized the QAT

tool [55] to apply transformations during compilation to produce
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QIR compatible with hardware (e.g. by assigning static qubit indices).

Submission and execution of the QIR program is all managed within

the Azure Quantum service [59].

TheRWPEprogram in its targetedQIR form can be transformed

to the native program representation required for execution on a

specific backend quantum computing system. QCI used a pre-release

version of the PyQIR package for Python [73] to parse the QIR

representation of RWPE and to perform the transformation within

the QCI quantum program compiler. The mapping from QIR

program features to QCI’s intermediate representation was mostly

a one-to-one translation, with a few exceptions. Specifically, the

quantum gates that are generated after transpilation are unique to

the QCI hardware and the behavior of division with respect to

numeric data types is limited as described below.

Integer and Boolean values are mapped to 18 bit signed integers,

while doubles map to Q2.16 fixed-point integers (with range

[−2, 2 − 2−16]). For a numerical value used as an angle, we

assume a convention that its value is in units of π for a range of

two full periods. Native addition, subtraction, and multiplication are

supported, but division is implemented with an approximation using

interpolation table techniques. Control flow is implemented with

hardware level if and goto statements and quantum gates are

transpiled to the native gate set, described in Section 5.4, using

internal methods. The system has the ability to return intermediate

values, including measurements, to the user.

The QCI compiler will raise an error if a variable is set to a value

outside its allowed range by the QIR, although there is no run-time

check on hardware if a value underflows or overflows. Indeed, in this

RWPE program, sigma will underflow after about 20 iterations. The

program variable 1/sigma is used as an angle and its run-time

overflow behavior of wrapping around the bounds is acceptable.

These behaviors were validated for RWPE using simulations. For

many problems of interest, sufficient accuracy may be obtained with

these constraints.

These limitations highlight two consequences of using a

quantum intermediate representation. First, data types provided in

hardware may not match exactly what is specified in the QIR

representation of the program. Second, since the same QIR may

be usedwith different hardware, the end user does not need to change

their algorithm in order to target different backend systems. For this

reason, it is important for the user to have available a simulator

subject to the same classical limitations as the hardware in order to

validate program behavior prior to scaling the program up to larger

numbers of qubits. See Section 5.3 for details about QCI’s simulator.

5.2 Parameterizing RWPE program for
execution

When a program such as RWPE is executed, a user may want to

select options to analyze variations in the run-time behavior. In this

case, the RWPE program shown in Supplementary Appendix defines

an oracle,U(t) = Rz (−0.5t), for which ϕ = ±0.5 (in units of π) are the

true eigenvalues. The RWPE algorithm will preferentially converge

on the eigenvalue at 0.5 because it is closer to the initial value for the

prior estimate mu. For this demonstration, the parameter value −0.5

to the Rz gate is hard-coded in the program source. Alternatively, this

could have been passed as a program parameter, but this was not in

place at the time this program was executed. Consequently, the

program is always expected to produce the result ϕ̂ ≈ 0.5.

For each program execution, the inner code loop is executed

nIter = 24 times, as the algorithm can make no progress beyond this

due to underflow. Throughout this paper, we refer to such executions

as shots, and use the term to include all embedded loops and

intermediate measurements. In this case, each shot returns a

single datum, the estimated value of mu. Since the eigenstate will

decohere across iterationswithin a single shot, the program includes a

parameter specifying a subset of iterations to run before the eigenstate

is refreshed (reset and prepared anew). In general, if the eigenstate is

expensive to prepare, it should be refreshed less often as each refresh

will increase execution time; the faster the eigenstate decoheres, the

more often it should be refreshed to improve accuracy. In this

program, the eigenstate is simply |1〉, prepared with a reset and

an X gate, which favors a frequent refresh. For our demonstration, we

chose to refresh every other iteration to highlight the existence of this

user-selectable trade-off.

The algorithm required a final calculation of mu * 2, which we

did in post processing instead of in the Q# program, meaning the

range of resultant values of mu was effectively doubled relative to the

range of the fixed-point data type. We could obtain a better estimate

of the eigenvalue by refitting all measurements as a post-processing

FIGURE 4
Ideal simulation of 10,000 shots, each resulting in one value
of μ included in this histogram. Each value of μ shows where the
RWPE algorithm ended after 24 iterations, and the success of the
RWPE algorithm is exhibited in the highest peak appearing at
the eigenvalue μ = 0.5. The other values in the histogram highlight
the random walk aspect of the RWPE algorithm and show that the
algorithm can “fail” even if perfectly executed. The asymmetry of
the distribution reflects the starting value, μ0. The height of the
peak depends on the number of bins, which was 100 in this paper.
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step as described in Section 4, but we do not do that here. Instead we

only show the result estimated at run-time by the program.

5.3 Execution on an enhanced quantum
simulator

Prior to executing on quantum hardware, it is important

to validate the program by running it on a simulator that

mimics closely the computational behavior of the target

system. Existing simulators that execute only quantum

operations or which don’t match the capabilities of the

target hardware are not adequate.

To address this, QCI developed a custom simulator in

which control-flow and classical operations are executed in

Python and quantum operations on a statevector or a density

matrix from Qiskit Terra’s [48] quantum_info module.

Classical registers are simulated using native Python int and

float data types or, to model the hardware closely, the

fixedpoint Python package. The simulator can also leverage

Qiskit Aer’s noise_modelmodule to include quantum gate

and readout noise. Three sources of infidelity can be modeled:

a finite number of shots, quantum noise, and hardware-

specific classical computation.

We executed the RWPE program on the simulator with no

noise configured, i.e. an “ideal simulation,” to validate that

the algorithm performs as designed. Results are shown in

Figure 4. To mimic an ideal quantum computer, the

statevector simulator is seeded with a pseudo random

number generator (RNG). It includes no quantum noise,

and classical operations use full precision registers. Each

repetition, or shot, of the RWPE protocol generates a

single value for mu corresponding to a different RNG seed.

The only source of error in this simulation is associated with

the RNG in the finite number of shots executed. The result of

the simulation is a distinct peak in the histogram at the

expected eigenvalue of 0.5.

We then ran the RWPE simulation with a noise model

that approximates the characteristics of the target hardware

to predict the behavior to be expected when the program is

executed on that system. Data were obtained from execution

of the RWPE program on this “noisy” simulator and

compared against results obtained when running on

hardware, as discussed in Section 5.4 below.

5.4 Execution on quantum hardware

In this section, we present results obtained from

executing the RWPE program on a quantum computing

system provided by Quantum Circuits Inc (QCI) [71, 72].

For its work with Microsoft Azure, QCI had deployed for

testing and validation a quantum computer designed around

superconducting 3-D resonator technology and which

provides a hardware-efficient platform for the development

of advanced quantum algorithms. The control system that

manages the components of this system has been

implemented with many of the quantum/classical

computational features described in this paper.

In Figure 5 we present results from execution of the

RWPE program on the QCI quantum hardware alongside

results from the quantum simulator described above Section

5.3). Execution on the simulator was performed using a QCI-

specific noise model along with classical computation which

models the fixed-point precision of the system.

For both the noisy simulation and the hardware

execution, there is a prominent peak in the data at μ = 0.5

which corresponds to the eigenvalue described in Section 5.2,

matching closely what was seen in the ideal simulation. The

correctness of these results is suggested by the location of the

highest peak in this histogram. Both the hardware and

simulator results include shoulders in the data, loosely

corresponding to where we see population in the ideal

simulation in Figure 4. Detailed error analysis and

quantitative comparison of these results was deferred to

future work. These results may be considered sufficient to

confirm a successful translation of the quantum program

defined in the QIR representation, resulting in nearly

equivalent results on the both the simulator and the QCI

hardware.

The native gate set used in the QCI hardware system

includes the H,
��
X

√
, X, and RZ single qubit gates. As discussed

FIGURE 5
Results on hardware compared with a noisy simulation. We
collected 5,000 shots on hardware and 10,000 shots in the
simulator. This histogram is comparable with Figure 4 because it
uses the same x-axis bounds and number of bins. The
correctness of the result is evident in the position on the x-axis of
the highest peak, not directly its height. The peak at μ=0.5 is lower
in this histogram because the noise made it less likely to converge
there.
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in Section 3.3, the RZ gate can accept variable arguments at

run-time and is executed in a small fraction of the time it

takes to execute a pulse-based gate. The native entangling

gate in the QCI hardware is the exponential-SWAP [74], or

ESWAP, which can also accept a run-time variable argument,

and which has the unitary

UeSWAP θ( ) �
e−iθ/2 0 0 0
0 cos θ/2( ) −i sin θ/2( ) 0
0 −i sin θ/2( ) cos θ/2( ) 0
0 0 0 e−iθ/2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� e−i

θ
2 11+XX+YY+ZZ( ).

(2)

Useful for larger programs than the one demonstrated here,

the SWAP gate is a special case of the ESWAP corresponding to

θ = π. Near synonyms of this gate are referred to as the

SwapPowGate [50] and SWAPα [75]. Gate fidelity is likely the

largest factor influencing the height of the peak in the results for

both the noisy simulator and hardware, however, and these

fidelities were sufficient for the RWPE algorithm to produce a

well-defined solution.

6 Future work

The RWPE algorithm presented here could be enhanced

with additional study. We limited our consideration only to

those inferences made on timescales significantly shorter

than qubit lifetimes. Even under such severe constraints,

the deep integration of classical and quantum computation

allows us to derive estimates of the phase in real-time. With

this unique capability, we can validate hypotheses that

mitigate the impact of noise and other errors on phase

estimation.

Generally, we could relax this restriction by re-analyzing

intermediate measurements after the fact. The sequence {(ti,

ϕinv,i, di)} of evolution times, inversion angles, and

intermediate measurement results is sufficient to capture

the inferential effect of the RWPE protocol in the

likelihood function:

Pr data|ϕ( ) � ∏
i

cos2 ϕ − ϕinv,i[ ]ti/2( ) if di � 0

sin2 ϕ − ϕinv,i[ ]ti/2( ) if di � 1.

⎧⎨⎩ (3)

Taking an expectation over a prior distribution updated by (3)

yields an estimate that minimizes the average mean squared error in

ϕ [69]; such expectation values can be readily computed in

postprocessing using software packages such as PyMC3 [76] or

QInfer [77]. For example, Granade and Wiebe [66] used a QInfer

particlefilter to post-process results of RWPEexecution and observed

a reduction in the impact of outliers on overall performance, allowing

recovery from some approximation failures observed in Figure 4.

In a similar fashion, future work could incorporate real-time

hybrid applications more deeply into data processing workflows.

Intermediatemeasurements can be used to inform online experiment

design heuristics and approximations, while the full power of classical

data processing can be used outside of qubit lifetimes to refine

estimates offline.

Beyond the RWPE algorithm, an obvious next step is to

explore other quantum algorithms that might benefit from

the ability to do mathematical computation within the

quantum program. One use case for this is in the quantum

algorithms designed to implement error correction. Any

quantum algorithm that requires some computation of

classical variables within the algorithm itself could

conceivably be implemented using classical arithmetic

operations rather than with quantum gates. Other known

complex algorithms could be candidates for efficiency gains,

such as in chemistry simulation [78]. Developing entirely new

and novel algorithms that use this capability at their core is

another area to be explored.

7 Summary and conclusion

In this paper, we have demonstrated an initial step towards

fully general and tightly integrated quantum and classical

processing, backed by QIR, an intermediate representation

that can be used to express hybrid quantum–classical

programs in a form that can be translated to the unique

assembly language of specific hardware targets. We then used

a newly developed suite of supporting software tools together

with advanced quantum simulation and physical quantum

hardware capabilities to demonstrate random walk phase

estimation, a recent algorithm that effectively exploits

real–time hybrid quantum–classical computation within a

quantum program.

The Quantum Algorithm Zoo [3] lists 64 quantum

computing algorithms—by comparison, Knuth’s unfinished

multi-volume compendium of classical algorithms [79] has

more than 64 chapters. One hypothesis for the enormous gap

between the number of quantum and classical algorithms is that

we have a better language for the latter, as it is easier to conceive

of new algorithms when we have a language in which to express

them [80] easily, along with a robust software and hardware

ecosystem in which they can be exercised.

If it is the case that progress towards development of new and

more efficient quantum algorithms has been limited by our

computational models, then the work described in this paper

offers substantial progress towards resolving that gap. We hope

that the results that we demonstrated in this paper provide an

impetus to fundamentally rethink and expand what a quantum

algorithm can look like and to go beyond the limitations seen in

the current algorithms.

The success of quantum computing hinges not only on

progress in qubit fidelities and lifetimes and in electronics for

controlling qubits, but also on the development of innovative

software components that support the hardware in creative and

Frontiers in Physics frontiersin.org14

Lubinski et al. 10.3389/fphy.2022.940293

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.940293


extensible ways. Our work may enable us to narrow the gap, and

accelerate the development of new techniques.

The section on Code Availability below VII provides

information about various public repositories containing tools

related to the Quantum Intermediate Representation (QIR). We

are early in the evolution of this new form of hybrid and adaptive

quantum programming and it is likely that additional resources

and examples will soon become available.

8 Code availability

The QIR Alliance [45] provides information and tools to

support the development of a specification for Quantum

Intermediate Representation (QIR) [81]. Source code for tools

such as “PyQIR” and “QAT” mentioned in the text of this paper

is available online [55, 73].

For more information about the OpenQASM

3.0 specification, please see Cross et al. [44].
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