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The muon mass and the anomalous magnetic moment aμ are quantities which

require chirality flips, i.e., transitions between left- and right-handed muons.

Muon chirality flips are connected to electroweak symmetry breaking and

Yukawa couplings. Scenarios for physics beyond the Standard Model

motivated by the quest to understand electroweak symmetry breaking and/

or the origin of flavour often introduce new sources of chirality flips; they hence

provide potentially large contributions to aμ, and the current aμ measurement

provides relevant constraints on such scenarios. This connection between aμ,

chirality flips, and the muon mass generation mechanism is important and

underlies much of the current research on aμ. The present article provides a

brief pedagogical introduction to this role of chirality flips and an overview of

general relationships. The general statements are illustrated with several

concrete models involving e.g., leptoquarks and supersymmetry.
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1 Introduction

The anomalous magnetic moment of the muon, aμ = (g − 2)μ/2, provides a unique

constraint on physics beyond the Standard Model (BSM). The recent run-1 measurement

at Fermilab has sharpened the deviation from the corresponding Standard Model

prediction. Using the world average taking into account the Fermilab measurement

[1] and the Theory Initiative prediction [2],1 this deviation amounts to

Δa2021μ � 25.1 ± 5.9( ) × 10−10. (1)

The observable aμ not only motivates the existence of BSM physics but also constrains

BSM physics complementarily to other constraints from the collider, intensity and cosmic

frontiers.

aμ is an observable with four distinctive properties:
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• loop-induced,

• flavour-conserving,

• CP-conserving,

• chirality-flipping.

Among these properties, the last one is arguably the least

obvious and least intuitive. But the role of chirality flips is

extremely important, in particular for BSM phenomenology of

aμ. The present article aims to provide a pedagogical introduction

to the role of chirality flips and to elucidate how different

mechanisms for chirality flips impact BSM aμ phenomenology.

In a nutshell, the notion and the importance of chirality may

be explained as follows. In a relativistic theory, massive and

massless particles are fundamentally different. Massive particles

can be put into the rest frame, where the spin can point into any

direction. Massless particles always move at the speed of light,

and their spin degree of freedom reduces to helicity, the spin in

the direction of velocity. For spin 1/2 fermions, the massless limit

is characterized by an additional symmetry—chiral symmetry.2

The massless limit of the muon would thus lead to an additional,

chiral symmetry. Themeasurement principle of themagnetic moment

anomaly aμ, however, directly uses the continuous spin precession

relative to the direction of velocity. This makes clear that non-zero aμ is

related to a non-zero muon mass, and thus to a breaking of the

corresponding chiral symmetry. Accordingly, the two operators for the

muonmass and aμ involve chirality flips, i.e., products of left- and right-

handed spinors such as ψLψR and ψLσ
μ]ψR.

This connection is of high interest. In the Standard Model the

muon mass is explained in complicated way: there is a Higgs field,

subject to a wine-bottle shaped potential, which acquires a vacuum

expectation value and breaking electroweak gauge invariance; the

muon couples to the Higgs field via Yukawa interactions and

thereby receives its rest mass. Many open questions are related to

the origin of the Higgs field, its potential as well as the origins and

the hierarchical family-structure of the Yukawa couplings.

In the quest to answer such questions many BSM scenarios

have been proposed which modify the Higgs and/or Yukawa

sector of the Standard Model. Through the connection via

chirality flips, such scenarios can often lead to enhanced

contributions to aμ and thus provide promising explanations

of the deviation (1). Conversely the determination of the value (1)

leads to constraints on such scenarios and thus helps learning

more about the origin of muon mass generation.

Section 2 of the present article presents the background of these

connections and discusses the role of chirality flips for aμ and for the

muon mass in general terms. Section 3 draws general, model-

independent conclusions. Section 4 provides an illustration in

terms of generic one-loop results and Section 5 discusses three

concrete BSM scenarios which represent three very different ways

how chirality flipping mechanisms can appear and how the

corresponding contributions to aμ and the muon mass behave. As

the present article aims to present theoretical background knowledge

it will not present an overview of the vast phenomenological

literature. As an example of a broad up-to-date phenomenological

study with detailed literature survey we mention Ref. [3].

2 Relationships between g − 2,
chirality flips, and the muon mass
generation mechanism

2.1 Derivation of the relationships

There is a deep connection between the anomalous magnetic

dipole moment and the rest mass of a fermion. The connection

follows from the relationships of both observables to chirality flips. To

illustrate the connection we begin with the quantum field theory

operators describing a generic mass term for a Dirac fermion ψ and

the operator for the anomalousmagnetic dipolemoment a= (g− 2)/2,

Lm � −m �ψψ, (2a)
Ldip � −a Qe

4m
�ψσμ]ψ Fμ]. (2b)

Here Fμ] is the electromagnetic field strength tensor,

σμ] � i
2 [γμ, γ]], and our sign conventions for charges and

gauge couplings are defined by the QED gauge covariant

derivativeDμ = zμ + iQeAμ, whereQ = −1 for an electron ormuon.

Any Dirac fermion field can be decomposed into its left- and

right-handed (or: left- and right-chiral) parts as

ψ � ψL + ψR ψL,R � PL,Rψ ≡
1
2

1 ∓ γ5( )ψ. (3)

The left- and right-handed parts are eigenstates of chirality,

i.e., of the γ5 matrix with eigenvalues ∓ 1, respectively. It is useful

to record the relations for barred fields,

ψL � �ψPR ψR � �ψPL. (4)

In a free massless quantum field theory, chirality is related to

helicity, the spin in the direction of the spatial momentum: ψL
describes massless fermions with helicity −1/2 and corresponding

antifermions with helicity +1/2; ψR has the opposite

property—hence the terminology left-/right-handed. In a theory

for massive Dirac fermions, however, ψL or ψR alone do not describe

energy eigenstates, and generally there are no simultaneous

eigenstates of chirality (i.e., of γ5) and of the Dirac Hamiltonian.3

2 Throughout this text, the notion of chiral symmetry is more general
and not the same as the notion of chiral symmetry in low-energy QCD
related to the light meson masses. We will later refer to muon-specific
chiral symmetry to highlight the distinction.

3 There are simultaneous eigenstates of energy/momentum and
helicity, but for massive fermions, helicity and chirality are distinct
concepts.
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Chiral fermion fields are useful even in case of massive

fermions because of their Lorentz transformation properties.

ψL and ψR transform differently; they do not mix under

Lorentz transformations, and Lorentz invariant Lagrangians

can be expressed completely in terms of chiral fermion fields.

For this reason it is possible to assign e.g., independent gauge

transformations to left- and right-handed fermion fields and to

construct a gauge theory with different gauge interactions of left-

and right-handed fields—the electroweak Standard Model is an

example.

Now we can rewrite the two Lagrangian terms (2) in terms of

chiral fermion fields,

Lm � −m ψLψR + ψRψL( ), (5a)
Ldip � −a Qe

4m
ψLσ

μ]ψR + ψRσ
μ]ψL( )Fμ]. (5b)

Both the fermion mass term and the (g − 2)-term connect

left- and right-handed fields, i.e., both need a chirality flip.

The need for chirality flips has very important general

consequences, which we now explain. We first focus on the

muon mass; the consequences for (g − 2) will be similar.

In QED or QCD, left- and right-handed fermions have the

same gauge transformations and Dirac mass terms such as Eqs

2a, 5a are gauge invariant. However in a theory with electroweak

interactions and associated SU(2)L×U (1)Y gauge invariance, no

gauge invariant Dirac mass terms for leptons or quarks are

possible. Specifically the left-handed muon μL is part of an

SU(2)L doublet L � ]μL
μL

( ) with U (1)Y hypercharge −1/2

while the right-handed muon μR is an SU(2)L singlet with

hypercharge −1. The only way to generate a muon mass in a

theory with electroweak gauge invariance (SM or beyond) is to

have spontaneous electroweak symmetry breaking (EWSB) and

to couple the muon in a gauge invariant way to the corresponding

vacuum expectation value. In the SM, EWSB is realized via the

vacuum expectation value of the Higgs doublet

〈Φ〉 � 0
vSM/

�
2

√( ), and the gauge invariant coupling is

realized via the Yukawa interaction

Lm � −yμ
�LΦμR + h.c. → − yμvSM�

2
√ μLμR + h.c.. (6)

Thus a tree-level muon mass mμ � yμvSM�
2

√ is generated. While

this formula is specific to the SM and to tree level, an analogous

more general conclusion is true in any extension of the SM which

has electroweak gauge invariance. Any such theory must have

some (set of) expectation values (VEVs) v(B)SM responsible for

EWSB (these may be expectation values of fundamental or of

composite fields). The physical muon mass mμ will always be

generated from (tree-level and/or loop-induced) couplings to

these VEVs, and thus there will inevitably be the proportionality

mμ ∝ v(B)SM. (7)

Next we can connect the general relation (7) to chirality. It is

useful to define a muon-specific chiral symmetry, under which the

left- and right-handed muons transform with opposite phases:

μR → eiαμR L → e−iαL. (8)

Under this chiral symmetry transformation, the muon mass

term in the form (2a) or (5a) is not invariant. Hence in a theory

which is invariant under the chiral symmetry (8), the muon mass

must be zero—not only at tree level but exactly. Conversely, a

non-zero muon mass requires a breaking of the chiral symmetry.

In the SM Lagrangian, there is precisely one source of breaking of

this chiral symmetry, namely the Yukawa interaction (6). The

muon Yukawa coupling yμ thus acts as the breaking parameter of

the chiral symmetry. Combining this discussion with Eq. 7 we

obtain that

mμ ∝yμv
SM (9)

in the SM not only at tree level but at all orders. Any contribution

to the physical muon massmμmust involve one factor of vSM and

one factor of yμ (and possibly other factors).

Again an analogous conclusion is true in any extension of the

SM which contains electroweak gauge invariance. Any such

theory must contain some (set of) parameter(s) which break

the chiral symmetry (8). We call them collectively y(B)SM
μ . Any

contribution to the physical muon mass in any such theory will

then involve the factors

Δmμ ∝ y(B)SM
μ v(B)SM[ ] × other couplings( ). (10)

This expresses that any contribution to mμ must be

proportional to the parameter(s) responsible for chiral

FIGURE 1
One-loop Feynman diagram illustrating Eqs 10, 11. Each
contribution to the muon mass and to aμ must involve one factor
of some SM or BSM VEV breaking electroweak symmetry,
illustrated by v(B)SM, and a chirality flip between μL and μR. In
order to obtain a contribution to aμ, a photon needs to couple to
any of the charged internal lines. S and F denote generic scalar and
fermionic particles.
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symmetry breaking and to the VEVs responsible for EWSB;

Figure 1 shows an illustrative Feynman diagram. The “other

couplings”may be any couplings of the theory in question which

appear in appropriate Feynman diagrams and do not have to be

related to EWSB or chiral symmetry breaking. Apart from the

proportionality factors given here, the full results for mμ may

contain numerical prefactors or loop functions of dimensionless

quantities.

The chiral symmetry breaking parameters y(B)SM
μ in Eq. 10

are often equal or similar to the SM Yukawa coupling yμ, but they

don’t have to be. They may be generalized Yukawa couplings to

the SM-like Higgs doublet, Yukawa couplings to other Higgs-like

fields, or even different types of couplings which nevertheless

contribute to the breaking of the chiral symmetry.

Exactly the same kind of discussion applies to (g − 2) in view

of the analogous structure of Eqs 5a, 5b. The (g − 2) Lagrangian

(5b) breaks electroweak gauge invariance as well as the chiral

symmetry associated with the respective fermion in the same way

as the mass term (5a). Any non-zero contribution to (g − 2)

therefore must involve the same kind of factors as any

contribution to the mass. Specializing to the muon, we can

write the generic relationship

Δaμ ∝mμ × y(B)SM
μ v(B)SM[ ] × other couplings( )

M2
typical

(11)

for any contribution to aμ in any model. The factors in the square

bracket reflect the present discussion; they are required for any

non-zero contribution to the coefficient in the Lagrangian (5b).

Up to numerical factors the coefficient is given by the ratio aμ/mμ;

hence solving for aμ produces the explicit factor mμ on the r.h.s.

The denominator M2
typical represents a typical mass scale of the

theory and must appear for dimensional reasons. The “other

couplings” and further, not explicitly written factors are as in

Eq. 10.

2.2 Application to the standard model

Equation 11 provides crucial insight into the structure of

possible BSM contributions to aμ and allows to draw many

general conclusions. We will explore such conclusions in the

subsequent sections. Here we briefly remark that the relation also

applies to all sectors of the SM itself.

In all pure QED and the hadronic contributions of the SM the

factors in the square bracket of (11) can simply be replaced by the

muon mass [. . .] → mμ. In QED Feynman diagrams which

contain only photon and muon lines (“mass-independent

contributions”) the only typical mass scale is mμ itself, hence

(11) in this case simply reduces to the known structure [2].

aQED,mass−indep.
μ � ∑

n≥1
A 2n( )

1

α

π
( )n

(12)

with the finestructure constant α = e2/4π and where the

coefficients A(2n)
1 are pure numbers, including the famous

result A(2)
1 � 1/2.

Among the QED mass-dependent contributions are

diagrams with τ-lepton loops. For those diagrams, the

“typical” mass scale is the τ-lepton mass mτ, and e.g., the

leading contribution from the τ-lepton is

aQED,τ,leadingμ � α2

45π2

m2
μ

m2
τ

, (13)

again in line with the generic result (11).

The hadronic SM contributions also follow the generic

pattern (11), with the square bracket simply replaced by mμ.

As an example we mention here the analytical result for the

leading logarithmic hadronic light-by-light contribution

obtained in an effective-field-theory approach in Ref. [4]:

aHlbl,Knecht et al. (2002)
μ � α

π
( )3

ln2 mμ

μ0
( )C, C � 3

NC

12π
( )2 mμ

Fπ
( )

2

.

(14)
Here the relevant mass scale is the pion decay constant Fπ,

explaining the appearance of the ratio (mμ/Fπ)2.
For the weak SM contributions to aμ, the discussion of gauge

invariance and chiral symmetry breaking is obviously far more

important. Nevertheless, in the generic pattern (11) the

interesting factors in the square bracket can only correspond

to the single Higgs VEV and the single muon Yukawa coupling in

the SM. For this reason ultimately the square bracket essentially

reduces to the muon mass mμ even in the electroweak SM.

Correspondingly, the SM one-loop contributions from the

weak interactions, i.e., from W- and Z-boson Feynman

diagrams can be written as

aEW(1)
μ ∝

α

4πs2W

m2
μ

M2
W,Z

(15)

where sW is the sine of the weak mixing angle and MW,Z are the

W- and Z-boson masses. This formula is valid up to numerical

factors of order unity, and it is in line with (11) for

Mtypical = MW,Z.

It is also useful to note that in this way the generic pattern

(11) allows to correctly predict the order of magnitude of the

weak contributions, which is around 10 × 10–10 according to the

estimate (15). The actual value is aEWμ � 15.36(10) × 10−10 [2].

3 General conclusions for physics
beyond the SM

The analysis of chirality flips, electroweak gauge invariance

and muon-chiral symmetry has led to the generic patterns (10)

and (11) for any contribution tomμ and aμ in the SM or any BSM
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extension. Here we draw several general conclusions from this

analysis.

First, the relationship between aμ and mμ means that aμ can

provide a window to the muon mass generation mechanism:

According to the SM the muon mass is generated by EWSB

generating a Higgs VEV and the Yukawa interaction which

couples the muon to the Higgs VEV. But many open questions

remain. Importantly, understanding the muon mass generation

mechanism does not only involve understanding EWSB and the

origin of the Higgs potential and the Higgs VEV but also

understanding the origin and the structure of Yukawa

couplings.

Many BSM scenarios extend or modify the Higgs sector

and/or the Yukawa sector. Technically, the muon mass

generation mechanism is reflected by the factors in square

brackets in Eqs 10, 11, and many BSM scenarios substantially

modify these factors. This implies on the one hand that BSM

scenarios with modified Higgs/Yukawa sectors can lead to

strong enhancements in these factors and thereby provide

potentially large contributions to aμ and promising

explanations of the current aμ deviation. On the other

hand, the enhancement mechanisms can differ significantly

between various BSM scenarios. The measurement of aμ thus

provides a sensitive probe of BSM scenarios with modified

muon mass generation mechanism.

As a second conclusion, we may introduce a universal,

model-independent expression for contributions to mμ and to

aμ in some given BSM scenario as (see also Refs. [5, 6]),

ΔmBSM
μ

mμ
� O CBSM( ), (16a)

ΔaBSMμ � CBSM

m2
μ

M2
BSM

, (16b)

where MBSM is the relevant mass scale. The dimensionless

coefficient CBSM introduced here summarizes the interesting

chirality-flipping factors in square brackets in Eq. 11, the

“other couplings” and the not explicitly written factors. It also

includes by definition a factor 1/mμ such that CBSM corresponds

to the relative muon mass correction and such that the explicit

factor m2
μ appears in the expression for Δaμ. In writing (16) we

used that the proportionality factors appearing in Eqs 10, 11 are

equal up to potential O(1) differences.
Equation 16 highlight that any BSM scenario contributing to

aμwill simultaneously contribute tomμ, and the contributions are

related. The complicated origin of the muon mass, the necessity

for EWSB and chiral symmetry breaking are all encapsulated in

the factor CBSM. This factor is very model-dependent and its

value reflects the interesting dynamical details of the model. But

the relation (16) is model independent and holds at any loop

order.

A third conclusion is that one may impose a criterion that the

BSM corrections to the muon mass do not introduce fine-tuning,

i.e., do not exceed the actual muon mass. In models where this

criterion is satisfied, CBSM can be at most of order unity and a

generic upper limit4,

ΔaBSMμ ≲O 1( ) m2
μ

M2
BSM

, (17)

is obtained [5, 6]. In this wide class of models, imposing this

criterion then implies an order-of-magnitude upper limit on the

mass scale for which the current observed value Δaμ can be

accommodated. This upper limit is approximately 2 TeV,5 which

is obviously of high interest in view of complementary searches

for BSM particles at LHC. If the fine-tuning criterion applies,

particles responsible for the aμ deviation should be in reach of the

LHC—even though it is not guaranteed that they can be

discovered in view of background and their interactions with

LHC detectors.

4 Generic one-loop results

Here we provide explicit one-loop results for contributions to

aμ and mμ which illustrate the general relationships explained in

the previous sections. To be specific we consider the case of one-

loop diagrams as in Figure 1, with one neutral scalar particle S

and one charged fermion F which couple to the muon via the

interaction

Lint � S† �F cLPL + cRPR( )μ + h.c.. (18)

We note that if S and F are interaction eigenstates with definite

gauge quantum numbers at most one of the two couplings cL and

cR can be non-zero. If S and/or F are linear combinations of states

with different quantum numbers, both cL and cR can be non-zero

4 We note that Eq. 16 does not imply the naive scaling
ΔaBSMe : ΔaBSMμ : ΔaBSMτ ≈ m2

e: m
2
μ: m

2
τ with the lepton generation since

the coefficient CBSM does not have to be generation-independent. As
mentioned, the definition of CBSM contains an explicit factor 1/mμ; the
later example of a leptoquark model will provide further illustration.
Still, the prefactor m2

l /M
2
BSM in al implies that the muon magnetic

moment is more sensitive to BSM physics than the electron
magnetic moment and that typical models which explain e.g., the
BNL deviation for aμ give negligible contributions to ae. For detailed
discussions and examples for deviations from naive scaling in models
with leptoquarks, two Higgs doublets or supersymmetry we refer to
Refs. [42, 43].

5 The relation (16) and the resulting (17) assume that BSM contributions
to aμ and tomμ arise at the same loop order. This is generally true, but
an exception can arise in models which allow BSM contributions tomμ

already at tree level. An example is provided by models vector-like
leptons which mix at tree level with muons, see Refs. [44–46] and the
brief discussion in Ref. [3]. There, also tree-level BSM contributions to
the muon mass exist, and the ratio between Δaμ and Δmtree

μ does not
scale as 1/M2

BSM as above but as 1/(16π2v2). This might seem to allow
arbitrarily high masses without fine-tuning, circumventing the upper
mass limit of around 2 TeV. However, even using only tree-level effects
in the muon mass, these references also find upper mass limits from
perturbativity and constraints on the Higgs–muon coupling.

Frontiers in Physics frontiersin.org05

Stöckinger and Stöckinger-Kim 10.3389/fphy.2022.944614

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.944614


(e.g., F could be a SM quark or lepton, or F and S could be SUSY

charginos and sfermions).

The one-loop contributions of S and Fwith these interactions

to the muon mass and to aμ read

Δmμ � 1
16π2

mμ

2
|cL|2 + |cR|2[ ]B1 − mF Re cLcR

p[ ]B0{ },
(19a)

Δaμ � mμ

16π2

mμ

12m2
S

|cL|2 + |cR|2[ ]FC
1 + 2mF

3m2
S

Re cLcR
p[ ]FC

2{ }.
(19b)

The results are evaluated in the limit mμ ≪ mS,F. The loop

functions B0,1 ≡ B0,1 (0, mF, mS) are standard Passarino-Veltman

functions; the loop functions FC
i ≡ FC

i (m2
F/m

2
S) are given e.g., in

Ref. [3]. In the limit mS = mF the loop functions reduce to B0 �
−2B1 � 1/�ϵ + ln(μ2/m2

S) and FC
i � 1, where μ is the

renormalization scale and where 1/�ϵ is the dimensional

regularization parameter which is set to zero in the

MS-renormalization scheme. Hence in general all appearing

loop functions have values of O(1).
The two results (19) indeed have an analogous structure.

Each contribution to aμ has a counterpart contribution tomμ; the

contributions differ in the relative factor m2
μ/m

2
S and in the O(1)

coefficients and loop functions. Hence each term reflects the

general relationship (16), which holds in all cases. But the

interesting details and the dynamics of the BSM scenario is

summarized in the quantity CBSM. We can now go deeper and

relate each term to the discussion of chirality flips and EWSB and

to the generic patterns (10.11).

We first focus on the |cL,R|2-terms, illustrated in Figure 2A.

For the |cL,R|
2-terms we would define

CBSM ~
|cL,R|2
192π2

. (20)

HereΔmμ is proportional to an explicit factor ofmμ itself, and

Δaμ is proportional to an explicit factor m2
μ. These terms have a

very simple behaviour with respect to chirality flips. The |cL,R|
2

structure means that the S–F–loop does not change the muon

chirality. Hence the muon chirality must be flipped at the

external muon line (in the diagrammatic computation this

corresponds to an application of the Dirac equation p/u(p) =

mμu(p) of the external muon spinor). The chirality flip at the

external muon line may also be interpreted as a coupling of the

muon line to the Higgs background field, as illustrated in the

Feynman diagram.

Hence BSM contributions behaving like this neither involve

new sources of chirality flips nor new sources of EWSB. The

factors in square brackets in Eqs 10, 11 originate purely from the

SM and amount simply to mμ. Accordingly, such BSM scenarios

also do not provide significant enhancement mechanisms.

In contrast, the cLcRp-terms in Eq. 19 behave more

interestingly. Here we would define

CBSM ~
Re cLcRp[ ]
24π2

mF

mμ
. (21)

This case exhibits the explicit factor 1/mμ mentioned in the

context of the definition of CBSM.
6 These contributions are

illustrated in the Feynman diagram of Figure 2B. At one

vertex, a right-handed muon couples to the loop particles S

and F, via the coupling cR. At the other vertex a left-handed muon

couples to the loop, via the coupling cL. In the computation of the

diagram, the fermion mass mF also arises via the propagator of

the fermion F in the loop, explaining the total combination of

factors cLcpRmF. An important point is that this loop diagram

effectively breaks electroweak gauge invariance and it breaks the

muon-chiral symmetry (8). As mentioned before, the product

cLcpR can only be non-zero if F and/or S are no gauge eigenstates.

Now we see in more detail that the combination

. . .[ ] → cLc
p
RmF (22)

corresponds to the square brackets in Eqs 10, 11, i.e., to the

factors related to EWSB and muon-chiral symmetry breaking. It

may be that the fermion mass mF arises from a VEV, in which

case mF ∝ v(B)SM, where the VEV could arise either from the SM

FIGURE 2
Concrete instances of the generic diagram of Figure 1. In the (A) diagram, themuon chirality is flipped at the external muon line via a coupling to
an EWSB VEV. In the (B) diagram, the muon chirality is flipped via the loop, and the EWSB VEV couples to the scalar particle in the loop.

6 See also the related discussion in footnote 4.
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Higgs or from some BSM Higgs field. It may also be that the

scalar field is a mixture of fields of different quantum numbers

such that the couplings cL,R involve mixing matrix elements

which effectively are ∝ v(B)SM. In all cases, a non-zero product

cLcpRmF implies that the muon-chiral symmetry (8) is broken, no

matter how the fields S, F might be assigned to transform under

that symmetry.

In general, therefore, the cLcpR-terms may be strongly

enhanced—the factor cLcpRmF may be much larger than |cL,R|
2mμ. This is the chiral enhancement due to new sources of

chirality flips and possibly new sources of EWSB. For this

reason BSM scenarios with such contributions can provide

particularly promising explanations of the current aμ value,

and the precise measurement of aμ provides stringent

constraints on the parameter spaces of such scenarios.

One may wonder about the fact that these terms involve one

power of mμ less. In some models (e.g., in certain leptoquark

models) the apparent behaviour of Eq. 19 is real; the factors

cLcpRmF are indeed independent of mμ. The corresponding terms

then provide additive contributions tomμ which are independent

of mμ itself; the contributions to aμ are only proportional to mμ

instead ofm2
μ. The interpretation is that such models involve new

parameters breaking muon-chiral symmetry, and those

parameters are unrelated to the muon Yukawa coupling. In

such models the chiral enhancement of aμ contributions can

be particularly large, but at the same time the discussion of fine-

tuning in the muon mass becomes particularly relevant. We will

encounter an example of this in the discussion of the leptoquark

model in Section 5.2.

In somemodels, however, the behaviour of the cLcpRmF-terms

is more involved (e.g., in supersymmetric models). Here, even

though there are additional new sources of muon chirality flips

beyond the muon Yukawa coupling, all chirality flips can be

traced to one common origin. Hence the new sources of chirality

flips can be fundamentally related to the original muon Yukawa

coupling, and effectively we can write

cLc
p
RmF ∝mμ (23)

i.e., the relevant enhancement factors are actually proportional to

the muon mass. In terms of the generic relations (10.11), the

square brackets are proportional to the muon mass. There can

still be important enhancements in the proportionality factors

such as tan β in supersymmetric models. This abstract discussion

will be made concrete in the context of explicit examples in the

following section.

5 Examples of concrete BSM
scenarios

Here we discuss the role of chirality flips in three concrete

BSM scenarios. The scenarios are also phenomenologically

interesting in their own right, and they are discussed

extensively in the literature. Here we use them to illustrate the

general discussion of the previous sections and the range of

possibilities.

The first example has a very simple behaviour and no chiral

enhancement; the second example is a specific kind of

leptoquarks which leads to strong chirality enhancement

proportional to the top-quark mass; the third example is

supersymmetry, where the chiral enhancement is given by as

tan β, the ratio of Higgs VEVs.

5.1 Simple 2-field model without chiral
enhancement

We begin with a very straightforward extension of the SM by

two new fields, one fermion F and one scalar S, which together

couple to the muon as in Section 4. However now we assume in

addition that this setup already forms a complete gauge invariant

extension of the SM, i.e., both F and S are gauge eigenstates with

definite gauge quantum numbers, and the fermion mass mF is a

gauge invariant Dirac mass term.

To be specific we choose F to be a Dirac fermion SU(2)L
doublet with hypercharge −1/2 and S to be an SU(2)L singlet with

hypercharge zero. We also assign F and S to be odd under a Z2
symmetry. In this way, the scalar S constitutes a neutral dark

matter candidate, while the fermion doublet F contains one

neutral and one charged component. The only Z2 and gauge

invariant interaction with the muon is possible via a Lagrangian

Lint � λLS
† �FPLL + h.c.. (24)

As mentioned in Section 4 such models where F and S are

gauge eigenstates allow either only couplings to the left-handed

or to the right-handed muon. In this case, there is only a coupling

to the left-handed muon doublet L with a coupling constant λL.

In addition the model involves gauge invariant mass terms mF

and mS for the two fields.

Because there is only a left-handed coupling λL this

model—and such models in general—cannot lead to new

sources of chirality flips. In terms of the discussion of Section

4 the chirality can only be flipped at the external muon line, and

the Feynman diagrams behave as illustrated in Figure 2B.

The explicit one-loop contributions of the two new particles

to the muon mass and to aμ simply read

Δmμ � 1
16π2

mμ

2
|λL|2B1{ }, (25a)

Δaμ � mμ

16π2

mμ

12m2
S

|λL|2FC
1{ }. (25b)

Similarly to the generic case we can define a quantity CBSM as

CBSM � |λL|2
192π2

. (26)
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It is simply given by a typical loop factor and by a squared

coupling. No special enhancement or suppression mechanism

exists. For values of couplings around λL ~ 1, it amounts to

around one per-mille.

With this quantity we can parametrize the contributions to

the muon mass and to aμ as

Δmμ

mμ
� CBSM × 6B1, (27)

Δaμ � CBSM ×
m2

μ

m2
S

FC
1 . (28)

This highlights that the relative contribution to the muon

mass is very simply given by a few per-mille, a typical one-loop

magnitude if no enhancements are present. Similarly, plugging in

numbers, aμ is numerically given by

Δaμ ~ 25 × 10−10|λL|2 100GeV
mS

( )
2

. (29)

Hence the scenario could explain the current aμ deviation for

rather large coupling values |λL|≳ 1 and small BSM masses

around 100 . . . 200 GeV.

Models such as this have been discussed in detail in the

literature, in particular in Refs. [3, 7–9]. Such models can indeed

accommodate the current aμ value in a viable way. However, Ref.

[3] has shown that no such gauge invariant two-field extension is

able to explain aμ simultaneously with the dark matter relic

density while evading constraints from dark matter and LHC

searches. Along similar lines, Ref. [10] has shown that if one also

requires an explanation of B-physics measurements, BSM

scenarios with at least four new fields are required.

5.2 Leptoquark model with chiral
enhancement

Next we consider an example of a leptoquark model, a model

with the so-called leptoquark S1. It involves only one new field

and is in this sense even simpler than the model of the previous

subsection, but the leptoquark S1 allows more complicated

interactions. The field S1 is defined as a colour anti-triplet,

and SU(2)L singlet, with hypercharge 1/3. With this

assignment, two different interactions with quarks and leptons

are possible in a gauge invariant way.

The relevant part of the interaction Lagrangian reads

LS1 � − λLQ · LS1 + λRtRμRS1 + h.c.( ), (30)

where Q · L denotes the SU(2) invariant product of the left-

handed quark doublet and left-handed lepton doublet.

Generation indices are suppressed but we consider only

quarks of the third generation (i.e., the top/bottom quark

doublet) and leptons of the second generation. Accordingly,

tRμR is the product of the right-handed top-quark and muon

singlets (we assume here 2-spinor notation for the fermion

fields).

Hence the coupling λL governs the interaction between S1
and left-handed muon and left-handed top quark (and muon

neutrino and bottom quark); the coupling λR governs the

interaction between S1 and the right-handed muon and right-

handed top quark. The structure of the relevant Feynman

diagrams contributing to the muon mass and to aμ is shown

in Figure 3B.

The fact that both left-handed and right-handed couplings

exist indicates that new sources of muon chirality flips are

possible in this scenario. It is instructive to connect the

discussion to the notion of the muon-specific chiral symmetry

introduced in Eq. 8. We might ask: is the additional Lagrangian

LS1 invariant under this chiral symmetry? The most general

ansatz of the chiral transformations of the relevant fields,

extending (8), is

μR → eiαμR L → e−iα L (31a)
tR → eintRαQ Q → einQαQ (31b)

S1 → einS1αS1. (31c)

In order for the λL-term to be invariant we need to choose

nS1 � 1 − nQ. In order for the λR-term to be invariant we need to

choose nS1 � −1 − ntR. This is compatible only if nQ − ntR � 2. If

this is the case, the top–Higgs Yukawa interaction governed by

the top Yukawa coupling yt is not invariant under the chiral

symmetry.

Overall, we learn that if the product of the three couplings

λLλRyt is non-zero, there is no way to define the chiral symmetry

such that all Lagrangian terms are invariant. Hence the muon-

specific chiral symmetry in this scenario is not only broken by the

muon Yukawa coupling yμ, but also by the product of these three

couplings, i.e., there are two sources of breaking

yμ, λLλRyt, (32)

which are independent of each other.

In the explicit one-loop contributions to the muon mass

and to aμ, the chirality-flip enhanced contributions dominate

for realistic parameter choices. Focusing only on them, we can

write

Δmμ � 1
16π2

− mt Re λLλR
p[ ]B0{ }, (33a)

Δaμ � mμ

16π2

2mt

3m2
S1

Re λLλR
p[ ]FC

2{ }. (33b)

Feynman diagrammatically (see Figure 3A), these

contributions correspond to a left-handed muon coupling via

λL to a left-handed top-quark, the top-quark changing its

chirality via the term mt or equivalently via the product ytv
SM,

and the right-handed top-quark coupling to a right-handed

muon via λR. The appearing factors λLλRmt reflect the

discussion of chirality flips and EWSB in Section 2.1.
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Expressing the top-quark mass as mt � ytvSM/
�
2

√
, the essential

factors can be written as the product

λLλRytv
SM, (34)

and this product precisely corresponds to the factors in square

brackets of Eqs 10, 11. They involve the new source of muon-

specific chiral symmetry breaking, λLλRyt, and the SMHiggs VEV

vSM, which is the only source of EWSB in this model.

As mentioned in Section 2.1, the factors in the SM

corresponding to (34) are simply yμv
SM. Hence the leptoquark

model provides an example where the chirality flip is governed by

a different, a priori unrelated set of factors. Thanks to the large

top-Yukawa coupling and the potentially large couplings λL,R this

provides a very strong enhancement.

We can also connect to the discussion of the parametrization

(16) and define the quantity CBSM as

CBSM � Re λLλR
p[ ]

24π2

mt

mμ
(35)

such that

Δmμ

mμ
� −CBSM ×

3B0

2
, (36a)

Δaμ � CBSM ×
m2

μ

m2
S1

FC
2 . (36b)

Here the quantity CBSM involves the mass ratio mt/mμ

because of the new source of chirality flips which is unrelated

to the muon mass. Plugging in numbers we obtain

CBSM ≈ 7Re λLλR
p[ ], (37)

which highlights that very large contributions are possible. The

relative corrections to the muon mass can easily be larger than

100%, and the contributions to aμ can easily reach 25 × 10–10 even

if the leptoquark mass mS1 is in the several-TeV region.

Accordingly, leptoquark models with such chiral

enhancements are among the most promising and most

discussed potential explanations of the current deviation (1).

In particular, more complicated leptoquark models are

promising to explain aμ simultaneously with other deviations

from the SM in B-physics, see e.g., Refs. [11, 12].

Since the muon mass is pushed up by the top-quark mass, we

provide here further discussion of the contributions to the muon

mass. The definition of CBSM and writing Eq. 36 hides the fact

that the absolute correction to the muon mass is actually

independent of the muon mass itself. This fact is clearly

exhibited by the original Eq. 33 and by the discussion of

origins of chirality flips, Eq. 32. Schematically, the structure of

the tree-level and leading one-loop contributions to the muon

mass in this model read

mμ � yμvSM�
2

√ + λLλRytvSM

16π2
�
2

√ × loop functions( ). (38)

This way of writing emphasizes the additive structure and the

fact that the one-loop correction is independent of the tree-level

term. In view of the large value of the top-Yukawa coupling the

one-loop term can easily dominate.

It also raises a question related to fine-tuning and naturalness.

If the one-loop correction is significantly larger than the physical

muon mass (say, in the MS-scheme), it must be cancelled precisely

by a corresponding tree-level contribution. The larger the one-loop

correction becomes, the more fine-tuned the tree-level term has to

be and the less natural the model appears. In phenomenological

discussions it is therefore motivated to impose an upper limit on

the level of fine-tuning one is willing to accept. This will lead to

upper limits on the couplings and correspondingly to an upper

limit on the leptoquarkmass for which the current aμ deviation can

be explained. This upper mass limit will be in the ball-park of

2 TeV, corresponding to the discussion around Eq. 17. For an

example we refer to Ref. [3].

5.3 Minimal supersymmetric standard
model with tan β enhancement

Third we consider the case of the Minimal Supersymmetric

Standard Model (MSSM). The MSSM is well known as one of the

FIGURE 3
Concrete instances of the generic diagrams Figure 1 for a leptoquark model (A) and supersymmetry (B). The diagrams correspond to the results
(35.36) and (43.44), respectively.
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most studied extensions of the SM and one of the most promising

explanations of the current aμ deviation. Here we will not discuss

its phenomenology and not review the extensive literature.

Instead we focus on the leading MSSM one-loop

contributions to aμ and discuss them from the perspective of

chirality flips, in analogy to the previous examples.

The leading MSSM contributions arise from one-loop

diagrams with virtual charginos χ−i and a sneutrino ~]. The

couplings depend on the chargino index i ∈ {1, 2} and read

cL � −g2Vi1* cR � yμUi2, (39)

where g2 is the SU(2)L gauge coupling and Vi1 and Ui2 are mixing

matrix elements corresponding to the gaugino-like and

Higgsino-like components of the chargino i. With these

definitions, the generic one-loop formulas (19) apply.

Figure 3B shows a Feynman diagram in mass-insertion

approximation, where the interaction eigenstate gaugino and

Higgsino mix via a coupling to a Higgs VEV.

In this MSSM case, the generic formulas are deceptive. The

cLcR* -terms are proportional to the large chargino mass mχ−i , so

one might expect a relative enhancement factor like

mχ−i
mμ

, or
yμmχ−i
mμ

∝
mχ−i
v
, (40)

depending on whether one takes into account that the coupling cR is

proportional to themuonYukawa coupling. The first option is similar

to the enhancement by mt/mμ in case of leptoquarks; the second

option still seems to allow very large contributions for very high

chargino masses. Both expectations are incorrect. The techical reason

is the chargino mixing, and the correct behaviour can be obtained by

combining the values of themixingmatrices with the behaviour of the

loop functions as a function of the mass eigenvalues, see e.g., [13, 14].

The true behaviour of these chargino–sneutrino contributions

can be better understood by analyzing the underlying chirality flips

and EWSB, as discussed in Section 2.1. In the MSSM, one may

extend the muon-specific chiral symmetry (8) to supermultiplets.

In this way, the chiral symmetry is broken precisely only by the

muon Yukawa coupling yμ, like in the SM. All other terms in the

MSSM Lagrangian are invariant under this chiral symmetry.7

Therefore, there are no new sources of muon-specific chiral

symmetry breaking in the MSSM.

However, there is a new source of EWSB. The MSSM

contains two Higgs doublets, with two different VEVs vu and

vd. Their ratio is defined as tan β = vu/vd, and the case of large

tan β is of particular relevance for aμ. The tree-level muon mass is

given by the Yukawa coupling to the small VEV, yμvd/
�
2

√
; hence

the value of the Yukawa coupling yμ is bigger than in the SM. In

the one-loop diagrams like Figure 3B, the charginos can couple to

the large VEV vu. This coupling fundamentally originates from

the supersymmetrized gauge interaction between gaugino,

Higgsino, and Higgs, and thus contributes a factor g2vu.

Therefore, the true behaviour of these MSSM contributions

can be brought into the form of Eqs 10, 11 as follows. The factors

in square brackets become

yμvu, (41)

a product of the single chiral symmetry breaking parameter and

the large VEV; the “other couplings” amount to g2
2 from the

coupling cL and from the gaugino–Higgsino–Higgs-VEV

coupling.8 The relative enhancement compared to the tree-

level muon mass yμvd is thus given by the famous

enhancement by

tan β. (42)

Similarly, up to O(1) factors we can write

Δmμ

mμ
~ CBSM, (43a)

Δaμ ~ CBSM

m2
μ

m2
SUSY

(43b)

with

CBSM ~
g2
2

16π2
tan β. (44)

This version of the formulas makes manifest several

important properties. It exhibits the well-known tan β-

enhancement, compared to a typical one-loop prefactor

g2
2/16π

2, which is around one per-mille. For values such as

tan β � O(50), the current aμ deviation can be explained if the

relevant SUSY masses are of the order 500 GeV, a mass region

which is constrained but not excluded by the LHC. The

formulas also show that despite the enhancement, there is

no issue of potential fine-tuning in the muon mass, in contrast

to the case of leptoquarks.

7 This is true if we follow the customary treatment of trilinear soft SUSY-
breaking terms and write the corresponding parameters as products
yfAf of the appropriate Yukawa coupling times the so-called A-
parameters.

8 In addition to the discussion presented here, it is possible to analyze
the consequences of further symmetries related to MSSM parameters:
the tan β-enhanced chirality flips actually break a Peccei-Quinn
symmetry and an R-symmetry, which implies that the tan β-
enhanced terms must also be proportional to products of the
MSSM Higgsino mass and gaugino mass parameters μM1 or μM2;
hence actually the “other couplings” and CBSM also need to contain
ratios such as μMi/M

2
SUSY, where i = 1, 2 and where MSUSY is a generic

mass scale of the relevant particles. These additional factors are
typically of O(1) but they can lead to enhancements in special
regions of parameter space, see e.g., [3, 14].
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6 Summary

This article has focused on the role of chirality flips for aμ and

the resulting connection to the muon mass. Both aμ and the

muon mass correspond to chirality-flipping operators, and non-

vanishing contributions require breaking of electroweak

symmetry and of a muon-specific chiral symmetry.9

These basic connections are visible in the generic relations

(10.11) which expose the role of the chirality flips and EWSB for

mμ and aμ. Any contribution in any model (and at any loop

order) must involve some SM or BSM VEV and some chirality-

flipping coupling (Yukawa-like coupling or generalization).

Hence BSM scenarios with new sources of EWSM and/or new

flavour structures, new Yukawa-like couplings can provide large

chirality flip enhancements, and accordingly to large

contributions to aμ and promising explanations of the

deviation (1). Conversely, the aμ measurement helps to

identify promising parameter regions in concrete BSM

scenarios10.

The generic relations (10.11) can be simplified to Eq. 16 by

introducing the abbreviation CBSM which encapsulates the

model-dependent details. The abbreviated equations highlight

the 1/M2
typical dependence of contributions to aμ and the

correlation to large contributions to mμ. As an example, 100%

corrections to mμ generally correlate to an explanation of the aμ
deviation (1) at a mass scale Mtypical ~ 2 TeV, see Eq. 17.

The explicit examples of Sections 4 and 5 illustrate models

without chirality flip enhancements, as well as different kinds of

models with chirality flip enhancements. The first example is a

simple 2-field model without chiral enhancement, and

correspondingly large contributions to aμ are only possible for

rather light BSM masses and large couplings. The second

example is a specific kind of leptoquarks which leads to new

sources of chirality flips and strong chiral enhancement. The

enhancement is proportional tomt and formally unrelated to the

muon mass itself; hence this scenario provides a potentially large

additive contribution to mμ (and potential fine-tuning) and a

contribution to aμ which is linear in the muon mass and which

leads to potential explanations of (1) for multi-TeV scale

leptoquark masses. The third example is the MSSM, where the

chiral enhancement is related to the muon mass. The actual

chirality flipping mechanism exemplifies Eq. 23 and the

enhancement scales as tan β, the ratio of Higgs VEVs. These

examples are representative of important trends in current

phenomenological literature, and we refer to Ref. [3] for a

survey including an overview of the literature.

The discussion of chirality flips and the resulting

interpretation of aμ as a window to the muon mass generation

mechanism raises the question: which other key observables

allow to test models with large potential contributions to aμ
and with new sources of chirality flips? One such observable is

clearly theH–μ–μ coupling between the Higgs boson and muons.

Like the muon mass and aμ, this coupling is directly affected by

new sources of EWSB and chirality flips, and its role and

connection to aμ is explored in a general setting in Ref. [15].

Similarly, aμ is strongly correlated with charged lepton flavour

violating processes such as μ→ eγ which are calculated from the

similar Feynman diagrams with a chirality flip. Such lepton

flavour-violating processs are governed by flavour violating

coupling constants. Therefore in the BSM scenarios with

significant contributions to aμ, large lepton flavour violation is

possible and may be seen in future experiments; conversely

current experimental limits constrain values of corresponding

lepton flavour-violating parameters.
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10 We also refer to the workshop webpage http://pheno.csic.es/g-
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