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In this study, we focused on the photoacoustic wave production of a fluidic

elliptic cylinder for modelling blood vessels, where the consideration of the

elliptic cross section can be important for some diagnosis of vascular diseases.

First, under the condition of optically-thin absorption, the analytic solution

based on the photoacoustic Helmholtz equation in elliptic cylinder coordinates

by using Mathieu functions was derived. Then, the finite element method (FEM)

model was established to verify the analytic solution. In addition to

photoacoustic waves and corresponding photoacoustic power spectra, both

near- and far-field photoacoustic amplitude angular distributions were

compared. The results revealed that the angular dependent photoacoustic

power spectra are critical indicators of the ellipse shape variation. This

finding can provide a considerable insight into the photoacoustic diagnosis

of the blood vessel changes not only in terms of sizes but also shapes.
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Introduction

The geometry shape of blood vessels is highly correlated to vascular diseases such as

vascular blockage, thrombosis, tumour, and myocardial infarction [1, 2]. Although the

circular cross section is generally applied to model the blood vessels, in several situations,

such as variations in tension and blood pressure and the compression resulting from the

surrounding tissue, the noncircular cross section of the blood vessel should be

considered [3–7].

As a slightly complex model, elliptic cross section has been justified in various

blood vascular studies. For example, in magnetic resonance imaging, the elliptic cross

section of the aorta in healthy volunteers exhibited an ellipticity (ξ) of 0.8 [8]. Because

of the thin walls of the tube, the cross section of vein deforms anisotropically on being

subjected to forces. Therefore, the elliptic cross section can be an important parameter

for modelling blood vessels [9, 10]. When the elliptic microvessels bend considerably,

numerous reactants adhere to the inner wall of the microvessels resulted in

thrombosis [11].

Because of rapid advances in biomedical imaging, considerable progress has been

achieved in photoacoustic imaging through three-dimensional (3D) visualisation of blood
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vascular systems in disease diagnosis [12, 13]. Currently,

photoacoustic imaging can reveal information of blood

vascular deep morphology in biological tissues ranging from

brain to breast [14, 15]. Furthermore, noninvasive analysis of

arterial tortuousness of blood vessels in eyes and hands has been

realised [16, 17]. In term of function, photoacoustic imaging can

be used to determine whether a vessel is an artery or a vein based

on haemoglobin oxygen saturation [18] and to detect changes in

the vessel diameter and density related to the cardiovascular and

metabolic diseases [17, 19]. However, photoacoustic imaging is

yet to be realised for detailing cross-section changes of blood

microvessels.

To accurately detail variations in the cross section of the

blood vessels in terms of both size and shape, analyzing the

photoacoustic power spectra can be an effective approach.

Previous studies have revealed that in spherical [20], oblate

spherical [21, 22] and various nonspherical axisymmetric

particle models [23–26], the photoacoustic power spectra can

be used to investigate the differences in the cell structure during

early development and disease. The cylindrical model [27] has

been developed and applied in blood vessel photoacoustic

imaging [28, 29]. However, to the best of our knowledge, the

photoacoustic power spectra of elliptic cylinder blood vessels are

yet to be examined. By considering the elliptic cross section as an

idealisation of the geometry of a compressed blood vessel, we

derived an analytical solution for investigating photoacoustic

waves generated from a fluidic elliptic cylinder and calculated

various results based on this analytical solution.

For comparison and confirmation, we also developed the

FEM model to perform simulation. The proposed FEM model is

based on previously reported models [30–32]. In FEM

simulation, the photoacoustic wave is caused by the expansion

of light-absorbing fluidic elliptical cylinders and the

displacement of a thin adjacent layer of water treated as

expandable solid. We used multiphysics simulation software

(COMSOL) to develop our FEM programme to investigate

various physics processes.

The rest of the paper is organised as follows: in Section 2,

the analytical solution based on the Mathieu function was

discussed and the proposed FEM simulation model was

described. In Section 3, results of spectral response and

radiation distribution are provided. Finally, in Section 4,

discussion and conclusion are presented. The proposed

FEM simulations are consistent with results of the analytic

solution, and the angular dependent photoacoustic power

spectra can be used as an indicator of the shape changes of

the elliptic blood vessels.

Methods

Analytic solution

An infinite long elliptical cylinder filled with light-absorbing

fluid was considered to represent the blood vessel (Figure 1).

Therefore, the analytic solution expressed with two-dimensional

Mathieu wave functions was derived in elliptical coordinates

[33–35].

Assuming the optically thin absorption condition, the

photoacoustic pressure wave generation equation with the

FIGURE 1
Illustration of the model for deriving the analytic solution. (A) Illustration of a blood vessel. (B) The corresponding model of the infinite long
fluidic elliptic cylinder in the elliptical coordinates. The semi-major and semi-minor axis of the elliptic cylinder is a and b, respectively. In the
z-direction, L is infinite. The half focal distance (the focal radius) is denoted by h.
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omission of the heat conduction and the fluidic viscosity [36] can

be expressed as follows:

(∇2 − 1
c2

z2

zt2
)p � − β

Cp

zH

zt
(1)

where β is the thermal expansion coefficient, Cp is the heat

capacity of the irradiated fluid, c is the speed of sound, and H is a

function that describes the optical heating of the elliptical

cylinder per unit time and volume.

For a short laser pulse with the intensity profile of I(t), the

following equation can express H:

H � αI(t) (2)

where α represents the optical absorption coefficient of the fluidic

elliptic cylinder. However, the spectral decomposition method

based on the Fourier transform can be applied to first solve the

problem of single frequency intensity modulated laser

illumination as follows:

H � αI0e
−iωt (3)

where the frequency originates from the following expression:

I(t) � 1
2π

∫+∞
−∞

~I0(ω)e−iωtdω (4)

Next, the final solution can be obtained through Fourier

integration.

By incorporating Eq. 3 into Eq. 1 (which is essentially

considering that the intensity modulated laser illuminates

the fluidic elliptical cylinder uniformly), according to [27],

the solution can be separated into two parts. In one

part, the solution of inhomogeneous wave equation is

expressed as follows (only for the region inside the

elliptical cylinder):

p1 � p0e
−iωt � iαβI0c2c

ωCp
e−iωt (5)

in the next part, the solution related to the homogeneous

photoacoustic wave Helmholtz equation is expressed as follows:

(∇2 − 1
c2

z2

zt2
)p2 � 0 (6)

The Helmholtz equation can be solved in the elliptical

coordinates and expressed by the radial and angular Mathieu

functions. This approach is similar to the acoustic scattering

problem of an elliptical cylinder [37, 38]. Because of the

constrains of finite values both at the origin point located

inside the elliptical cylinder and at the infinite point outside the

elliptical cylinder, the solution inside and the solution outside are

respectively expressed by Mathieu–Bessel functions Jem(ξ, s), and
Mathieu–Hankel functions Hem(ξ, s). A further constrain exists

specifically for photoacoustic wave generation (but not for the

acoustic scattering or the light scattering): the mirror symmetry

requirement according to the symmetry of an ellipse. Therefore,

radial functions Jem(ξ, s)and Hem(ξ, s)both can only take even

orders. Therefore, by considering contribution described in Eq. 5,

the solution inside and outside can be expressed as follows:

pc(ω, ξ, η) � p0
⎛⎝1 + ∑∞

m�0
Cc

2mJe2m(ξ, sc)ce2m(η, sc)⎞⎠e−iωt (7)

pf(ω, ξ, η) � p0∑∞
m�0

Cf
2mHe2m(ξ, sf)ce2m(η, sf)e−iωt (8)

where subscript or superscript “c” denotes quantities of

the fluidic elliptic cylinder, and “f” denotes those of the

surrounding fluid. Here, ce2m(η, s) represents angular

Mathieu functions, which only take the even order and

are periodic in nature, Cc
2m and Cf

2m represent the

coefficients to be determined, and the dimensionless

variables sc and sf are related to the frequency ω and

defined as follows:

sc � 1
4
ω2

c2c
h2, sf � 1

4
ω2

c2f
h2 (9)

with 2h the inter-focal distance, and cc and cf the velocity of sound

in the fluidic elliptic cylinder and the surrounding fluid,

respectively.

FIGURE 2
Schematic of the two-dimensional cross section model of
the fluidic elliptic cylinder for finite element modelling (FEM)
simulation of photoacoustic waves. The small arrows denote the
thermal expansion due to both fluidic elliptic cylinder and
adjacent thin layer of water treated as the elastic solid. The
photoacoustic pressure is simulated in the surrounding liquid.
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To solve the coefficients in Eqs 7, 8, we applied the boundary

conditions, which require continuity of the pressure and the

acceleration (related to the first derivative of the pressure

respective to the radial coordinate ξ). The elliptic boundary is

determined by the single-parameter radial coordinate ξ � ξ0,

which clearly reflects the convenience of using the elliptical

coordinates. In these two boundary condition equations, we

can further bring in the expansion formula for the angular

Mathieu functions as follows:

ce2m(η, s) � ∑∞
k�0

A2m
2k (s) cos 2kη (10)

and apply the orthogonal condition of cos2kη. Therefore, we

obtain that for every k, we have the following equation:

δk0 + ∑∞
m�0

Cc
2mJe2m(ξ0, sc)A2m

2k (sc) � ∑∞
m�0

Cf
2mHe2m(ξ0, sf)A2m

2k (sf)
(11)

∑∞
m�0

Cc
2mJe2m

′ (ξ0, sc)A2m
2k (sc) �

ρc
ρf

∑∞
m�0

Cf
2mHe2m

′ (ξ0, sf)A2m
2k (sf)

(12)
where ρc and ρf denote the density of the fluidic elliptical

cylinder and the surrounding fluid respectively, and Je2m′ and

He2m′ both denote the first derivative with respect to ξ.

Eqs 11 and 12 contain a series of such linear equations with

the total number determined by the number of k. Therefore,

these linear equations can be transformed into a square-matrix

form by setting the dimension in k equal to that in m, thereby

arriving at the following equations:

M
� + P

�c
�Rc
�Ac � P

�f
�Rf

�Af (13)
P
�c

�R
′
c
�Ac � ~ρP

�f
�R
′
f
�Af (14)

where ~ρ is the ratio of the inside density of elliptic cylinder ρc to

outside density ρf. Here, the row vector P
�c

and P
�f

that are to be

solved are constituted byCc
2m and Cf

2m as their elements. Another

row vector M
�

can be expressed as follows (where δij is the

Kronecker delta symbol):

M
� � δ1i (15)

Furthermore, �Rc, �R
′
c, �Rf, and �R′

f are related to Je2m, Jeʹ2m,

He2m and Heʹ2m, which are diagonal square matrixes. �Ac and �Af

are also square matrixes and related to A2m
2k (sc) and A2m

2k (sf),
respectively.

With thematrix algebra, the coefficient vectors P
�c

and P
�f

can

be solved from Eqs 13 and 14, which result in the following

expression:

TABLE 1 Parameters have been used for PA FEM model.

Density (kg/m3) Thermal conductivity
(W/m/K)

Heat capacity
(J/kg/K)

Thermal expansion
coefficient (1/K)

Shear modulus
(N/m)

Bulk modulus
(N/m2)

water 1,000 0.58 4,200 2.08 × 10–4 1.3 × 10–5 2.15×109

blood 1,060 0.60 3,640 3.3 × 10–4 1.1 × 10–5 2.19×109

FIGURE 3
Calculation results of the photoacoustic wave based on the analytical solution and compared with the FEM simulation results. (A) Amplitude
with respect to the frequency. (B) Corresponding temporal profiles.
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P
�c � M

� [1
~ρ
�R
′
c
�Ac( �Af)−1(�R′

f)−1 �Rf
�Af − �Rc

�Ac]−1
(16)

P
�f � M

� [�Rf
�Af − ~ρ�R

′
f
�Af( �Ac)−1(�R′

c)−1 �Rc
�Ac]−1 (17)

Finally, the time-dependent solution according to the laser

pulse expressed in Eq. 4 can be achieved as follows:

pc(t, ξ, η) � 1
2π

∫+∞
−∞

~I0(ω)
I0

p0
⎡⎣1

+∑∞
m

Cc
2mJe2m(ξ, sc)ce2m(η, sc)⎤⎦e−iωtdω (18)

pf(t, ξ, η) � 1
2π

∫+∞
−∞

~I0(ω)
I0

p0∑∞
m

Cf
2mHe2m(ξ, sf)ce2m(η, sf)e−iωtdω

(19)

Calculation method based on the analytic
solution

To calculate the photoacoustic wave generated by the fluidic

elliptical cylinder, the integral of Eq. 19 is premised on the

coefficient Cf
2m from Eq. 17. Apparently, accurate calculation

of various Mathieu functions and coefficients in Eq. 10 is the

prerequisite. Here we applied the MATLAB Mathieu function

package provided by Zhang and Jin [39, 40].

Another critical feature is the calculation of Eq. 17. The

dimension of the matrix should be limited to a small value,

otherwise, the converging solution can not be reached. A similar

situation has been extensively studied previously [38, 41]. In our

calculation, we investigated the trial-and-look approach, and

revealed that the truncation dimension should be enlarged

with the frequency by using the following optimum setting: if

sf ≤ 0.1, the truncation numberN should set to one; if sf is between

FIGURE 4
Calculated photoacoustic spectral amplitude of the fluidic elliptic cylinder with respect to (A) focal radius h, (B) density ρc and acoustic speed c,
(C) detecting distance ξ, and (D) polar angles η.
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0.3 and 0.5, the truncation number N should set to is four; the

truncation number N is set to seven for all of the other sf values

studied here.

FEM modelling

Considering the infinite long cylinder geometry, we established a

two-dimensional FEM simulation model in the COMSOL

Multiphysics platform as displayed in Figure 2. Spatially, this

model is composed by four distinction functional regions. The

innermost region is as the red area that represents the fluidic

elliptic cylinder. The next adjacent region represents a thin layer

of water, which is specifically treated as an elastic solid layer [30–32].

Next, the region is followed by a region representing the

surrounding liquid. The outmost region functions as the perfect

match layer (PML).

The maximum size of mesh elements is set to 1/6 of the

photoacoustic wavelength according to the general guideline for

FEM simulation of acoustic wave. Because the water elastic solid

layer typically has a thickness of approximately 100nm, its

mesh size is the smallest. Based on the general guideline, the

PML that was applied to optimum the acoustic wave

simulation was divided into eight layers by using the mesh

sweeping method.

Based on previous studies [30–32], the simulation is based on

multiphysics coupling and proceeds in the following four

sequential steps. 1) electromagnetic wave heating: the uniform

heating of the fluidic elliptic cylinder because of the linear

polarisation plane wave, which is limited to the innermost

region. 2) transient heat transfer: the temperature rise

resulting from the initial heat source and the subsequential of

the heat diffusion. 3) thermal expansion: the displacement due to

thermal expansion, which is limited to the region of the fluidic

elliptic cylinder, and also the adjacent water layer treated as the

elastic solid. 4) acoustic wave propagation: the photoacoustic

wave is generated and propagated in the surrounding liquid

region, which also includes PML.

FIGURE 5
Polar distribution patterns of the photoacoustic amplitude at the near-field ξ = 1.2 for various frequencies (A–D) Respectively for the frequency
of 40, 100, 200, and 300 MHz. The amplitude distribution of each frequency is normalised to its maximum value, which are 0.08, 0.1, 0.03, and 0.05,
respectively.
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FIGURE 6
Polar distribution patterns of the photoacoustic amplitude at the far-field ξ = 6 for various frequencies. (A–D) Respectively for the frequency of
40, 100, 200 and 300 MHz. The amplitude distribution of each frequency is normalised to its maximum value, which were 0.0073, 0.0085, 0.0024,
and 0.0027.

FIGURE 7
FEM simulation of the photoacoustic amplitude polar distribution patterns at the near-field ξ = 1.2 (blue line) and far-field ξ = 6 ((red line) for
various frequencies. (A–C) respectively for the frequency of 100, 200 and 300 MHz.
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Notably, FEM simulation takes the approach of the

transition model deployed in the time domain. The

frequency response is obtained from the Fourier

transformation. This procedure is opposite to the calculation

based on the analytical solution. In the FEM model, the direct

simulation results can be obtained only in the near region.

However, the COMSOL Multiphysics platform can be used to

obtain the far-field results based on the boundary integral

method to extend the near-field results onto the far field.

This type of far-field calculation is performed in the

frequency domain.

Table 1 lists all the parameters used in the FEM simulations,

where shear modulus and bulk modulus of water represent the

parameters for the thin water layer treated as solid.

Results

Spectral response and the corresponding
temporal profile

First, we simulated the photoacoustic wave generated using

the small fluidic elliptic cylinder with the size setting of h � 5μm

and ξ0 � 0.8, respectively. The mass density and acoustic velocity

of the wave are ρc = 1060 kg/m3 and c = 1590 m/s, respectively.

Figure 3 presents a comparison of the results from the analytical

solution as well as the FEM simulation. Here, the calculation is

performed at the spatial point of ξ0 � 1.2 and η� 0°, respectively.
The laser pulse is set with a Gaussian profile with standard

deviation σ � (τ/2 ������(2 ln 2)√ ) and pulse width τ � 1ns.

FIGURE 8
Near-field contribution of various modes for photoacoustic wave with various frequencies. (A–D) Mode contribution coefficients for 40, 100,
200, and 300 MHz. (E–H) The mode polar distribution patterns of the three lowest modes for each frequency.
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Both the spectral response and the temporal profile were

consistent, especially the period structure in Figure 3A and

pulse location in Figure 3B. The major difference in Figure 3B

can be attributed to the following factors: in analytical

solutions, stronger approximations were made, that is, the

heat conduction and the fluidic viscosity were both omitted;

the photoacoustic pulse is calculated from the power spectra,

and the effective number of data points for describing the pulse

is limited by the maximum frequency. In FEM calculation, the

pulse is first calculated and the resulting frequency range is

wider than that presented in Figure 3A. The results revealed

consistency between MATLAB calculation programme and

FEM simulation programme.

Spectral response at various parameter
settings

We focused on the calculation based on the analytical solution

and considered various parameters setting, as displayed in Figure 4.

The varying parameters included various focal radii [Figure 4A],

various mass densities and sound velocities [Figure 4B], various

acoustic transport distances [Figure 4C] and different acoustic

transport angle [Figure 4D]. These parameters are critical in the

study of photoacoustic effect of blood vessels.

Figure 4A displays the effect of the shape and size of blood

vessels. The radial parameter was fixed at ξ0 � 0.8, whereas the

focal radius was varied. Thus, the ratio of the major axis length to

the minor axis length was fixed but the overall size changed. The

other parameters including spatial location, the mass density and

the sound speed were the same as those used for calculating

Figure 3.When the size increased, the oscillation period in frequency

decreased and the frequency of the first maximum and the first

minimum shifted to a lower value, which is consistent with the trend

of the cylinder [27]. As displayed in Figure 4A, the result for

the cylinder (with � 3μm ) is calculated using the following

equation: pf(q�) � iλ
q
� ( J1(q�)H(1)

0 (c�q�r�)
J1(q�)H(1)

0 (c�q�)−ρcJ0(q�)H(1)
1 (c�q�))e−iq

�
t
�

. The

comparison revealed that the result of the elliptic cylinder

with the smallest h is the result most close to that of the

cylinder, which agrees with the expectation.

For calculations in Figures 4B–D, the elliptical cylinder size is

fixed to the case of h � 5μm and ξ0 � 0.8, respectively. The

calculation in Figure 4B can reveal the effect of the slight

change in the mass density and the sound velocity. The

spatial point of ξ0 � 1.2 and η� 0° is still considered. The

apparent change is only the magnitude, not the overall shape

of the curves (especially the oscillation structure).

In the calculation in Figure 4C, only the spatial distance of the

calculated point changes, and the other parameters remain the

same in case of Figure 3. The results also clearly revealed that the

distance only changes the magnitude of the spectral response.

Finally, we investigated the effect of changes in the angular

coordinates presented in Figure 4D (all the other parameters are

the same as those used in Figure 3). At different acoustic

transport angles (η), both the position of maximal PA spectral

amplitude and the amplitude value of the photoacoustic

spectrum changed drastically with the decrease in the angle.

These results indicated that the major characteristic in the

spectral response should be angular dependence because the

elliptical cylinder became anisotropic compared with the

cylinder.

We have performed the FEM simulation for the same

parameter settings of Figure 4A, Figure 4C and Figure 4D and

the corresponding results are almost the same as those shown in

Figure 4. The results of Figure 4B can not be directly simulated

since the FEMmodel does not consider the sound wave (thus the

sound velocity) inside the elliptical cylinder.

Near- and far-field angular dependence

Figure 4D reveals that at angles η = 0°, 45°, 90°, the spectral

response curves differ considerably. The change at all other angles

was also noted.We further calculate the polar distribution pattern of

the photoacoustic wave amplitude. In this case, we displayed the

results for four frequencies f = 40, 100, 200, and 300MHz (which

correspond to sf = 0.16, 1.01, 4.39, and 9.85) as the representative.

Their results calculated for the near field at ξ= 1.2 are displayed from

Figures 5A–D.

FIGURE 9
Curves of the combination coefficient of various order with
the distance. The curves are normalised relative to their maximum
value at ξ = 1.2.
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As displayed in Figure 5, the polar distribution is approximately

isotropic at the low frequency of 40MHz. When the frequency

increases, the anisotropy of the distribution pattern becomes

pronounced. To understand these results, we analysed the

separated orders of modes calculated by Eq. 8 (see Appendix A).

The combination coefficient ofCf
2mandHem(ξ, s)decrease rapidly for

the higher orders, which reveals that the final results are predominated

by the contribution of a few lowest modes. The combination results of

Figure 4D and Figure 5 strongly suggest that the polar distribution

measurement of the photoacoustic wave can provide a signature signal

to differentiate the fluidic elliptical cylinders. However, the

aforementioned simulations are performed in the near field, which

is only severalmicrometres away from the elliptical cylinder boundary,

whereas the usual photoacousticmeasurement is considered at the far-

field region. Therefore, calculating the photoacoustic measure in far-

field case is critical to evaluate if these announced anisotropic patterns

displayed in Figure 5 can still exist.

In Figure 6, the results revealed when the distance moves to ξ =

6 (which corresponds to the distance of 1000um) when keeping

other parameters unchanged as applied in Figure 5. Notably, the

polar distributions appear similar to those in Figure 5. We trace

back to Eq. 8, which reveals that these results indicate radial

Mathieu functions Hem(ξ, s) did not change the proportional

contribution, that is, each order exhibits a similar decreasing trend

with the increase in the distance (see Appendix B).

Finally, we performed FEM simulation for the near-field and

far-field polar distributions. The results are displayed in Figure 7.

These results are consistent with those in Figures 5, 6.

Discussions and conclusion

For the light-absorbing fluidic elliptical cylinder, we performed

calculation based on the analytic solution derived and FEMmodelling

in this study. The comparison results presented in Figure 3 and in

Figures 5–7 reveal consistency of these two approaches. In practice, the

FEM simulation should provide more accurate results and also are

more flexible. For example, the light attenuation inside the fluidic

elliptical cylinder due to the light absorption can be easily incorporated

into the FEM simulation which is difficult in deriving the analytical

solution. However, the calculation based on the analytical solution is

considerably faster and can conventionally provide physical insight

regarding the impact of different parameters: the results in Figure 4

revealed the size and the shape changes considerably affect the shape of

the power spectra, whereas the density and acoustic speed primarily

affect the overall magnitude. Moreover, the analytical solution can be

potentially very useful for the eigen mode analysis of the elliptical

cylinder, as referring to the previous study of the circular cylinder [42].

In the current study, we have omitted the possible acoustic

attenuation of the surrounding fluid medium. This should not be

a problem for the near field solution but will affect the far field

solution, especially the far field photoacoustic amplitude spectra. The

impact is worth for further study both in the FEMmodeling [43–45]

and the analytical solution derivation. However, since the acoustic

attenuation should not affect the polar profile at a specified frequency,

the major conclusions deduced from Figures 5–7 should still be valid.

In summary, the major finding of our current study is that

the polar angular radiation patterns of the photoacoustic wave of

a fluidic elliptic cylinder exhibit anisotropic characteristics,

which is true even for the far-field case. It strongly suggests

that the method of measuring the photoacoustic pulses in various

angles and analyzing the angular dependent amplitude spectra

can be used to differentiate the small blood vessels with elliptical

cross section. We expect that the experimental study regarding

this method will be performed in the near future.
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Appendix A: Analysis of the mode
contribution in the polar radiation
pattern

To understand the near-field polar distribution patterns

displayed in Figure 5, we refer to Eq. 8 and analyse the

contribution from various orders. As indicated in Eq. 8, the

polar distribution pattern is primarily determined by the angular

Mathieu function ce2m(η, s) and the combination coefficient of

Cf
2m and Hem(ξ, s) determines the weight of each order. As

displayed in the left column in Figures 8A–D, the amplitude of

the combination coefficient decreased rapidly after a few orders.

This phenomenon is true for all of the four frequencies

investigated. Therefore, only the lowest few modes contribute

to the final polar distribution pattern. This analysis can be

visualised by comparing Figure 8 with the final pattern

shown in Figure 5: for f = 40 and 100MHz, only the first

order m = 0 dominates; for f = 200 MHz, the contribution

combing from the second order m = 1 becomes clear; for

f = 300 MHz, the third order m = 2 starts a comparable

contribution as the first two orders.

Appendix B: Distance dependent
curves of various orders of the radial
mathieu function

To investigate the similarity of the far-field polar distribution

patterns of Figure 6 comparing to the near-field patterns shown

in Figure 5, we traced back to Eq. 8. The combination coefficient

of Cf
2m and Hem(ξ, s) versus the distance ξ were plotted in

Figure 9. As displayed, the combination coefficient curves of

various orders exhibit almost identical decreasing trend. The

angular Mathieu functions ce2m(η, s) do not depend on ξ, the

polar distribution pattern should not change considerably from

the near field to the far field.
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